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Nitsche method application in non-conforming plate is presented in the context of 
isogeometric analysis. Reissner–Mindlin plate theory is employed to build governing 
equation and stiffness matrix. We use this theory to solve the elasticity problems of 
various classical plate models, and compare the obtained results to those from single-patch 
models and the exact solutions in Kirchhoff theory. The solutions of problem involving the 
use of complex model are as well obtained using the same Reissner–Mindlin theory and 
compared to the results from finite element method. All models are built with NURBS 
(non-uniform rational B-spline) patches with non-conforming mesh along the common 
boundaries. The algorithms of knot insertion and order elevation are applied to enrich the 
basis functions of NURBS patches. The results of numerical examples show the accuracy, 
robustness and high convergence rate of this method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Isogeometric Analysis (IGA) proposed by Hughes et al. (2005) achieves true sense of seamless combination of Computer-
Aided Design (CAD) and Finite Element Analysis (FEA) with the concept that both the geometry description in design and 
field variables approximation in analysis use the same NURBS basis functions. More accurate results, less time consumption 
and other various advantages can be obtained compared with the classical finite element method, so isogeometric analysis 
won a broad attention as soon as it was proposed. By far, isogeometric analysis has been successfully used in many ar-
eas including structural mechanics and vibration (Cottrell et al., 2007, 2006), fluid structure and turbulence (Bazilevs et al., 
2006, 2008), plate and shell (Beirão da Veiga et al., 2012; Kiendl et al., 2009), large deformation (Benson et al., 2011), 
electromagnetics (Buffa et al., 2010), phase-field analysis (Gómez et al., 2008) and so on.

As the unifying mathematical expression of the elementary analytic geometries and free-form shapes, NURBS possesses 
many fast, efficient and numerically stable algorithms (Piegl and Tiller, 1997). Therefore, it becomes the method most widely 
used in engineering design and the unique computational geometry technology in prevailing CAD systems as well as the de 
facto international standards for geometry data exchange. It has a variety of useful mathematical properties such as affine 
covariance, variation diminishing, and convex hull properties. Additionally, NURBS is equipped with effective algorithms 
like knot insertion and order elevation, which can be used for the refinement of analysis models without changing the 
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geometric structure. However, the tensor product structure of NURBS based isogeometric analysis has its essential weak-
ness.

The first limitation is that it is impossible to implement the local refinement without propagating superfluous control 
points. This shortcoming can be overcome by T-spline proposed by Sederberg et al. (2003), which allows the existence
of T-junction and makes it possible to build a watertight model with single patch (Sederberg et al., 2008). To some 
extent, T-spline is the generalization of the NURBS. PHT-spline (Deng et al., 2008) and LR-spline (Dokken et al., 2013)
can also be used to realize the local refinement. Moreover, it is difficult to represent a complex geometry with single 
NURBS patch. This leads to another limitation of NURBS-based isogeometric analysis, which means that various difficul-
ties such as continuity and compatibility problems should be settled between patches when using multiple patches to 
describe the complex object. Conforming mesh is required to be generated when geometry is built with multi-patches 
in isogeometric method. While how to deal with non-conforming multi-patch geometries for applications in isogeo-
metric analysis in order to reduce the tedious work involved in coupling the boundaries is still a challenging prob-
lem.

Mortar, Penalty and Nitsche are currently existing methods usually employed to solve the non-conforming problems. 
In mortar method, the extra unknowns are introduced to establish the relationship between different domains along the 
interfaces, which is one of Lagrange multiplier method essentially (Lacour and Maday, 1997; Moro et al., 2014). It de-
stroys the positive definiteness of matrix in discrete system of equation and makes the solution complex. In penalty 
method, penalty term is substituted for Lagrange multiplier term to avoid solving a mixed variational formulation. The 
size of equation system is kept effectively in this method, but the equation set becomes ill-conditioned and the results 
are sensitive to the value of penalty operator (Toselli and Widlund, 2005; Zhu et al., 2005). Nitsche method is consid-
ered to be deduced from mortar and penalty method. It is used to weakly impose Dirichlet boundary conditions originally 
proposed in Nitsche (1971). This method not only keeps the size of equation system unchanged but also maintains the 
positive definiteness of matrix (Sanders et al., 2012). Similarly to Nitsche method’s application in non-conforming prob-
lems, discontinuous Galerkin (DG) method allows for discontinuities in problem unknowns’ field (Cockburn et al., 2000). 
It is successfully applied to various problems such as plates (Marini, 2008), shells (Noels and Radovitzky, 2008), and 
multi-domains (Mergheim et al., 2004). Furthermore it is used to solve elliptic problems combined with isogeometric 
method (Brunero et al., 2012). In the context of IGA, Hesch and Betsch used mortar method to handle non-conforming 
problems in the framework of nonlinear elasticity (Hesch and Betsch, 2012). Embar et al. weakly imposed Dirichlet bound-
ary conditions with Nitsche method and applied it to second- and fourth-order problems (Embar et al., 2010). Nguyen 
et al. employed Nitsche method to couple two and three dimensional NURBS patches (Nguyen et al., 2014). Aposto-
latos et al. made the comparison of these methods applied on the two dimensional problems of linear elasticity and 
eigenfrequency analysis (Apostolatos et al., 2014). Guo and Ruess applied Nitsche method on gluing thin shell structures 
(Guo and Ruess, 2015). In this paper, the isogeometric analysis of non-conforming plates are investigated with Nitsche 
method.

Kirchhoff hypothesis and Reissner–Mindlin hypothesis are two widely used theories of plate in finite element method 
(Zienkiewicz and Taylor, 2005), which deal with thin and thick plate respectively. Both theories were successfully applied 
to IGA (Beirão da Veiga et al., 2012; Shojaee and Valizadeh, 2012). In contrast with Kirchhoff hypothesis, any cross section 
of undeformed plate is assumed to remain straight but not perpendicular to the middle surface during the deformation 
in the assumption of Reissner–Mindlin plates, of which the main features include that shear deformation of plate is con-
sidered and basic variables (deflection and rotations) are independently interpolated. It can be used to analyze both thin 
and thick plate problems and only C0 continuity should be satisfied across the inner-elements (Quek and Liu, 2003). The 
principal limitation of this theory, the shear locking phenomenon in thin plates, can be completely precluded with a re-
formulated version of Reissner–Mindlin theory combining smooth NURBS basis functions (Beirão da Veiga et al., 2015), as 
well as effectively alleviated by a stabilization approach in IGA (Thai et al., 2012). Moreover, transverse shear deformation 
should not be neglected for many practical situations. The Mindlin theory, thus is used to study the plate problems in this 
work.

This paper is organized as follows. Section 2 introduces the problem description and governing equations. Nitsche-type 
formulation is simply derived in Section 3. Section 4 describes the NURBS basis function and its derivatives. Section 5
discusses the discretization and derives the stiffness matrix based on Mindlin plate theory. Some numerical examples are 
provided in Section 6.

2. Problem description

Consider the Reissner–Mindlin plate problems in elastic analysis. As depicted in Fig. 1, we define the domain � in 3D 
Euclidean space with boundary � = ∂�, which is divided into two non-overlapping bodies by one internal boundary �∗ . 
Boundary in each body �m(m = 1, 2) excluding �∗ is split into Dirichlet part �m

u and Neumann part �m
t . The prescribed 

traction t̄m is posted along its boundary �m
t , and the nm defined on the internal boundary �∗ represents the outward unit 

normal to corresponding part. The superscript m is used to denote different region �m that is valid, with m = 1, 2.
A system of linear elastostatic governing equations of Reissner–Mindlin plate with primary unknown displacement um , 

can be written as
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Fig. 1. Computational domain with two bodies.

∇σm = −bm in �m (1a)

um = ūm on �m
u (1b)

σm · nm = t̄m on �m
t (1c)

u1 = u2 on �∗ (1d)

σ 1 · n1 = −σ 2 · n2 on �∗ (1e)

where σ and ū are the stress tensor and prescribed displacement, respectively. According to the plate theory, the displace-
ment u is defined as

u =
{ u

v
w

}
=

{ zθy

−zθx

w

}
(2)

in which u, v, w are the displacements along the three coordinate axes, θx and θy are the rotation angles about X-axis and 
Y-axis.

Then the strain is given by Zhu et al. (2005):

εm(u) = 0.5(∇um + ∇T um) (3)

and the stress can be written as

σm(u) = Cm : εm(u) (4)

where Cm is elastic matrix depending on material properties. We assume that both computational domains have the same 
linear isotropic elastic materials in the context.

3. Weak form of Nitsche-type method

We simply derive the weak form of Nitsche-type formulation in this section.
Let us denote the solution space and weighting space by Sm and Vm over the domain �m , respectively. Each um ∈ Sm

satisfies the condition um = ūm on Dirichlet boundary �m
u , and each wm ∈ Vm satisfies wm = 0 on �m

u , which can be 
rewritten as

Sm = {um(x)|um(x) ∈ H1(�m),um = ūm,on �m
u }

Vm = {wm(x)|wm(x) ∈ H1(�m),wm = 0,on �m
u }

In each domain �m , the variational form of the boundary value problem given by Eqs. (1a)–(1e) is: Find um ∈ Sm such 
that for all wm ∈ Vm

a(um,wm) = L(wm) (5)

where bilinear form a(·,·) and linear form L(·) are defined as follows (Cottrell et al., 2009):

a(um,wm) =
∫

�m

εm(w) : σm (6a)

L(wm) =
∫

�m

wm · bm +
∫
�m

t

wm · t̄m (6b)

Here the variational form of Eq. (5) is called a weak form compared with the strong form of Eq. (1).
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Considering the coupling of solutions of two bodies, extra constraint terms are required to eliminate the limitation of 
non-matching situation between two domains along the interface �∗ . Several methods were proposed to solve this problem, 
such as Lagrange multiplier, penalty, and Nitsche method as introduced in Section 1. In the approach of Lagrange multi-
plier, the so-called Lagrange multiplier field interpreted as the traction field is introduced to be added to the variational 
formulation. However, this operation compels us to settle a mixed variational formulation containing two fields, displace-
ment and traction. Penalty approach is one of the methods that can avoid this disadvantage, which employs a penalty 
parameter multiplying the jump operator on the interface to solve the unique unknown field: displacement. Unfortunately, 
penalty method is variationally inconsistent and the solutions are sensitive to the penalty parameter. Nitsche method pro-
vides a new weak constraint enforcement to resolve these problems. For the two-body problem described in Section 2, the 
standard application of Nitsche method is: Find u1, u2 ∈ S1 × S2 such that

2∑
m=1

∫
�m

εm(w) : σmd� −
∫
�∗

(�w� ⊗ n1) : 〈σ 〉d� −
∫
�∗

(�u� ⊗ n1) : 〈σ (w)〉d� + β

∫
�∗

�u� · �w�d�

=
2∑

m=1

∫
�m

wm · bmd� +
2∑

m=1

∫
�m

t

wm · t̄md� (7)

for all (w1, w2) ∈ V1 ×V2. More details can be found in Nguyen et al. (2014), Sanders et al. (2012). Here the double square 
brackets �·� and angle brackets 〈·〉 denote jump and average operators, respectively, and defined as:

�u� = u1 − u2 (8)

〈σ 〉 = γ σ 1 + (1 − γ )σ 2 (9)

where the parameter γ acts as a weight corresponding to each problem domain and γ ∈ [0, 1]. γ = 0.5 is chosen for our 
study because the same material is used in each domain. Parameter β here has the same form as in penalty method but 
means differently. It is viewed as the stabilization parameter and plays an important role in the coercivity of bilinear form 
in Nitsche method (Annavarapu et al., 2012; Dolbow and Harari, 2009).

4. NURBS functions and derivatives

In this section, non-uniform rational B-spline functions and its derivatives are briefly reviewed. We refer readers to Piegl 
and Tiller (1997) for more details on NURBS.

A knot vector is a series of non-decreasing coordinates in the parameter space, written as � = {ξ1, ξ2, · · · , ξn+p+1}, where 
ξi is the ith knot, p denotes the polynomial degree of B-spline basis functions, and n is the number of control points. In 
this paper, we will only consider open knot vectors in which the first and last knot have p + 1 multiplicities. Open knot 
vectors are standard in the CAD literature. B-spline basis functions are interpolatory at both ends of the parameter domain 
if its knot vectors are open.

With a given knot vector, the B-spline basis functions are defined by Cox–de Boor recursive formula:

Ni,0(ξ) =
{

1 if ξi ≤ ξ ≤ ξi+1
0 otherwise

(10)

for the beginning with p = 0 and

Ni,p(ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (11)

for p = 1, 2, 3, · · · .
Some important properties of B-spline basis functions can be listed as:

(1) Partition of unity: 
∑n

i=1 Ni,p(ξ) = 1, ∀ξ .
(2) Non-negativity: Ni,p(ξ) ≥ 0, ∀ξ .
(3) Local support: Ni,p(ξ) > 0, ∀ξ ∈ (ξi, ξi+p+1).
(4) Differentiability: the B-spline basis are C∞ continuous in knot intervals and C p−k continuous at a knot ξi , where k is 

the multiplicity of the knot ξi in the knot vector.

A sequence of B-spline basis functions of cubic basis is shown in Fig. 2 for an open knot vector � = {0, 0, 0, 0, 0.25, 0.5,

0.5, 0.75, 1, 1, 1, 1}. The basis functions are interpolatory at two ends of the parameter space, and C p−k = C1 continuous at 
the knot value ξ = 0.5 with the multiplicity k = 2.



X. Du et al. / Computer Aided Geometric Design 35–36 (2015) 121–136 125
Fig. 2. Cubic basis functions for an open knot vector � = {0,0,0,0,0.25,0.5,0.5,0.75,1,1,1,1}.

The NURBS curve of order p is defined as follows:

C(ξ) =
n∑

i=1

Ri,p(ξ)Pi (12a)

Ri,p(ξ) = Ni,p(ξ)∑n
j=1 N j,p(ξ)w j

(12b)

where {Ri,p} (i = 1, 2, · · · , n) represent the basis functions of NURBS and the shape functions in IGA, {Pi} are the control 
points, and {wi} are the weights corresponding to each control point.

Let �1 = {ξ1, ξ2, · · · , ξn+p+1} and �2 = {η1, η2, · · · , ηm+q+1} be the two knot vectors, the NURBS surface is given by

S(ξ,η) =
n∑

i=1

m∑
j=1

R p,q
i, j (ξ,η)Pi, j (13a)

R p,q
i, j (ξ,η) = Ni,p(ξ)M j,q(η)wi, j∑n

k=1
∑m

l=1 Nk,p(ξ)Ml,q(η)wk,l
(13b)

where {R p,q
i, j } are the basis functions of surface, {Pi, j} are the control points emerging as a grid of topologically rectangular 

array, {wi, j} are the corresponding weights, {Ni,p} and {M j,q} are the B-spline basis functions defined on �1 with order 
p + 1 and �2 with order q + 1, respectively.

Let R denote the NURBS basis functions, X and W represent the numerators and denominators of the basis respectively, 
then the basis function can be expressed as

R = X

W
⇒ RW = X (14)

Employing Leibnitz’s formula, we obtain the nth-order derivatives

R ′ = X ′ − RW ′

W
(15a)

R ′′ = X ′′ − 2R ′W ′ − RW ′′

W
(15b)

R(n) = X (n) − ∑n
k=1

(n
k

)
R(n−k)W (k)

W
(15c)

where 
(n

k

)
is the binomial coefficient, (·) represents the order of functions.

5. Discretization

In this section, we discretize the non-overlapping problem domains �1 and �2, and derive the stiffness matrix of Mindlin 
plate employing Nitsche method discussed in previous sections. In the context of isogeometric analysis, the discretization of 
the approximation functions uh ∈ S and the weighting functions wh ∈ V are defined with the Galerkin method as follows:
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uh(x) =
nel∑
i=1

Ri(ξ)ui (16)

wh(x) =
nel∑
i=1

Ri(ξ)wi (17)

in which {Ri} represent the NURBS basis functions, nel is the number of basis functions in each element of IGA, and ξ de-
notes the coordinates in geometry parameter domain. Upon substituting Eqs. (16) and (17) into the variational formulation 
(7), the discrete system equation of Nitsche method is obtained straightforwardly as follow:[

K1
b + K1

n + K1
s Kc

KT
c K2

b + K2
n + K2

s

]{
u1

u2

}
=

{
F1

F2

}
(18)

where Km
b denotes the bulk stiffness matrix, Km

n , Km
s and Kc denote the Nitsche contribution term, stabilization term 

and coupling matrix, respectively. The detailed derivation is recommended to Annavarapu et al. (2012). For simplification, 
Eq. (18) can be rewritten as Ku = F with the same form in the classical finite element method.

The bulk stiffness matrix is given by:

Km
b =

∫
�m

(Bm)T CmBmd� (19)

where Bm is the gradient of the shape functions. The matrix derived from Nitsche contribution term can be defined as:

Km
n = −1

2

∫
�∗

(Rm)T nCmBmd� − 1

2

∫
�∗

(Bm)T (Cm)T nT Rmd� (20)

The stabilization term Km
s is expressed as:

Km
s = β

∫
�∗

(Rm)T Rmd� (21)

and the coupling matrix can be written as:

Kc = −β

∫
�∗

(R1)T R2d� − 1

2

∫
�∗

(R1)T nC2B2d� + 1

2

∫
�∗

(B1)T (C1)T nT R2d� (22)

in which superscript m = 1, 2 and weighting parameter γ = 0.5 are applied on all of the above four discrete equations. The 
value of stabilization parameter β should guarantee the coercivity of bilinear form defined in Eq. (7). Assuming that there 
exists a mesh-dependent constant C0 > 0 such that

‖ ∇wh · n ‖�∗≤ C0(wh, wh)
1
2 (23)

The stabilization parameter should satisfy the inequation: β ≥ C2
0 and the suitable value β = 2C2

0 is recommended to use 
from Dolbow and Harari (2009), Embar et al. (2010). (·) denotes L2 inner product, expressing an energy norm.

In the theory of Reissner–Mindlin plate, the transverse displacement w and two rotation angles θx, θy are three indepen-
dent variables. Only the deformation in middle surface of plate is considered here. Therefore, we employ w, θx, θy to serve 
as the components of displacement field u, which is written as:

u = [ w θx θy ]T (24)

Under isogeometric framework, NURBS basis function in geometry is introduced to be used as shape function in FEA, and 
the relationship is obtained between the basis functions and control variables. Then the displacement fields in each element 
can be expressed as:

ue =
{ w

θx

θy

}
=

nel∑
i=1

[ Ri 0 0
0 Ri 0
0 0 Ri

]{ wi
θxi
θyi

}
= Reδe (25)

where R is the shape function matrix, δe denotes the control variables at the position of corresponding control points and 
superscript e indicates the relevant element. In contrast to the interpolatory shape functions in conventional finite element 
analysis, NURBS basis function is commonly non-interpolatory, which will produce some difficulties on the imposition of 
essential boundary conditions on certain circumstance. It is shown that boundary collocation method, Nitsche variational 
method and Lagrange multiplier method can be used to enforce the essential boundary conditions from Embar et al. (2010), 
Shojaee and Valizadeh (2012), Wang and Xuan (2010).



X. Du et al. / Computer Aided Geometric Design 35–36 (2015) 121–136 127
The pseudo-strain of the plate is then given by

εe
p =

{ ∂θy

∂x
−∂θx

∂ y

∂θy

∂ y
− ∂θx

∂x
θx − ∂ w

∂ y
θy + ∂ w

∂x

}T

=
nel∑
i=1

⎡
⎢⎢⎢⎣

0 0 Ri,x
0 −Ri,y 0
0 −Ri,x Ri,y

−Ri,y Ri 0
Ri,x 0 Ri

⎤
⎥⎥⎥⎦

{ wi
θxi
θyi

}

= Beδe (26)

The pseudo-stress is defined as

σ e
p = { Mx M y Mxy Q y Q x }T

=
{

Db 0
0 Ds

}
εe

p

= BeCδe (27)

where M(·), Q (·) are plate bending moments and shear forces, Db, Ds are bending constitutive matrix and shear constitutive 
matrix defined as:

Db = D0

⎡
⎣ 1 ν 0

ν 1 0

0 0
1 − ν

2

⎤
⎦ (28)

Ds = Et

2(1 + ν)λ

[
1 0
0 1

]
(29)

where E, t, ν are Young’s modulus, thickness of the plate and Poisson ratio, respectively, D0 = Et3

12(1−ν2)
is the flexural rigidity 

of the plate, λ is shear correction factor chosen as λ = 6/5 (Quek and Liu, 2003). The outward unit normal n is given by:

n =
[nx 0 ny 0 nz

0 ny nx nz 0
0 0 0 ny nx

]
(30)

Then, the stiffness matrices in Eqs. (19)–(22) can be calculated with shape function R, pseudo-strain matrix ε , pseudo-stress 
σ and outward unit normal n.

6. Numerical examples

We consider several numerical examples of Reissner–Mindlin multi-patch plates with different boundary conditions and 
show that Nitsche method gives good results in the analysis of non-conforming situations. For the sake of comparison, 
Mindlin theory is employed to analyze classical thin plate built with non-conforming multi-patch and single patch, and 
the results are compared to the analytical solutions obtained under the theory of Kirchhoff. Meanwhile, we study the 
problems of a complex cantilever plate model and compare the results with that of finite element method. The methods 
of knot insertion and order elevation are used to enrich the basis of NURBS model to explore the convergence, which have 
much in common with the h-refinement strategy and p-refinement strategy in classical finite element analysis, respectively. 
Gauss quadrature rule is applied to compute all integral terms. Some other quadrature rules for isogeometric analysis are 
introduced in Auricchio et al. (2012), Hughes et al. (2010), Schillinger et al. (2014). The material properties Young’s modulus 
E = 2.0 × 108 N/m2, Poisson ratio ν = 0.3 are taken to all examples unless special instructions. We denote patch 1 for left 
patch and patch 2 for right patch while the models are built with two patches in the following examples. The q-direction 
of NURBS patch is defined along the common boundary and another direction is called p-direction.

6.1. Simply supported square plate subjected to uniform load

We start with an example of simply supported square plate of side a subjected to uniformly distributed load p(x, y) = q0. 
The transverse displacement and bending moments are investigated in this section. The x axis is coincided with the axis 
of symmetry of the plate and y axis is fixed on the left side of square plate as shown in Fig. 3(a). Here we assume that 
a = 1 m, thickness t = 0.01 m and uniform pressure q0 = −100 N. The exact solutions in terms of deflection can be denoted 
by Ventsel and Krauthammer (2001):

w = 4q0a4

π5 D0

∞∑ 1

m5

(
1 − αm tanhαm + 2

2 coshαm
cosh

2αm y

a
+ αm

2 coshαm

2y

a
sinh

2αm y

a

)
sin

mπx

a
(31)
m
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Fig. 3. Simply supported square plate under uniform load. (a) The dimensions of square plate and (b) the refinement of plate.

and the exact bending moments are

Mx = q0x(a − x)

2
+ (1 − v)q0a2π2

∞∑
m

m2
[

Bm cosh
mπ y

a
+ Cm

(
mπ y

a
sinh

mπ y

a
− 2ν

1 − ν
cosh

mπ y

a

)]

× sinh
mπ y

a
(32)

M y = ν
q0x(a − x)

2
− (1 − v)q0a2π2

∞∑
m

m2
[

Bm cosh
mπ y

a
+ Cm

(
mπ y

a
sinh

mπ y

a
+ 2

1 − ν
cosh

mπ y

a

)]

× sinh
mπ y

a
(33)

where αm = mπ
2 , m = 1, 2, 3, . . . , Bm and Cm are given as

Bm = −2q0a4(αm sinhαm + 2 coshαm)

π5m5 D0 cosh2 αm

Cm = 2q0a4

π5m5 D0 coshαm

We build the square plate with two patches which are discretized by non-conforming mesh: 16 × 32 elements and 
polynomial degrees p1 = 3, q1 = 4 for left patch, 8 × 12 elements and polynomial degrees p2 = 4, q2 = 3 for right patch, 
see Fig. 3(b). Two domains �1, �2 and interface �∗ can be expressed in physical coordinate system as �1 = {0 ≤ x <
a/2, −a/2 ≤ y ≤ a/2}, �2 = {a/2 < x ≤ a, −a/2 ≤ y ≤ a/2} and �∗ = {x = a/2, −a/2 ≤ y ≤ a/2}. The square plate constructed 
with single NURBS patch is also explored to do the comparison with a special discretization, 16 × 16 elements and bicubic 
polynomial degrees, which is also applied to the next two examples. The deflection w and bending moments Mx and M y

on two domains are plotted under this circumstances in Figs. 4(a), 5(a) and 6(a), from which we can find that all the three 
variables reach a maximum in the center of square plate. We additionally study the distribution of each control variable 
along the lines of y = 0 and y = 0.25a, then compare them with the results obtained from single patch and the exact 
solutions in Ventsel and Krauthammer (2001). The comparisons in Figs. 4(b), 5(b) and 6(b) show that isogeometric analysis 
based on Nitsche method has a good approximation on two domains and along the interface. The variables are continuous 
across the interface according to the colors on opposite sides in post-processing figures.

What’s more, we make a simple investigation on the convergence of central deflection and central bending moment Mx

through the methods of knot insertion and order elevation in Fig. 7. The same certain number of knots were inserted into 
knot vectors in the two patches and the same intervals were kept between any two adjacent knots but with different value 
of knots. It is observed that better convergence can be obtained with the higher order of basis functions. Exact thin plate 
deflection on central point of this problem can be denoted as w = 0.0040624 q0a4

D0
and the result of convergence here is 

given by w = 0.0040970 q0a4

D0
. The transverse displacement is 0.84% bigger than analytical solution and almost equals to the 

result from single patch. We note that the stabilization parameter β has negligible effect on the solutions when the value is 
chosen within the range from 1 × 105 to 1 × 1016 for this problem. The parameter here and in the following three examples 
are all set to be 1 × 108 empirically, and details of the states can be found in Embar et al. (2010).
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Fig. 4. Simply supported square plate under uniform load: deflection w . (a) The deflection on both two domains and (b) in comparison with the solution 
on single patch and the exact solution along the lines of y = 0 and y = 0.25a.

Fig. 5. Simply supported square plate under uniform load: bending moment Mx . (a) The bending moment Mx on both two domains and (b) in comparison 
with the solution on single patch and the exact solution along the lines of y = 0 and y = 0.25a.

6.2. Simply supported square plate under sinusoidal distributed load

In this problem, we use the same square model as in the above example but substituting sinusoidal load for uniform 
load. The coordinate system should also be made a few small changes. We translate the x-axis in Fig. 3(a) to coincide 
with the bottom side of the square plate. The thickness and length of side of the plate are assumed to be t = 0.01 m, and 
a = 1 m, respectively. The distributed load over the surface of plate is given by:

q = q0 sin
πx

a
sin

π y

b

where q0 = −10 N. With simply supported boundary conditions on all sides, the exact deflection w of this problem is 
expressed as Timoshenko et al. (1959):

w = q0

π4 D0

(
1
2

+ 1
2

)2
sin

πx

a
sin

π y

b
(34)
a b
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Fig. 6. Simply supported square plate under uniform load: bending moment M y . (a) The bending moment M y on both two domains and (b) in comparison 
with the solution on single patch and the exact solution along the lines of y = 0 and y = 0.25a.

Fig. 7. Simply supported square plate under uniform load: the convergence of central deflection and moment. (a) The convergence of central deflection w
and (b) the convergence of central bending moment Mx .

where a = b for square plate. The plate is constructed with two NURBS patches with the physical domains denoted by 
�1 = {0 ≤ x < a/2, 0 ≤ y ≤ b} and �2 = {a/2 < x ≤ a, 0 ≤ y ≤ b}. Two different discretizations are implemented in both 
patches: 16 × 16 elements and polynomial degrees p1 = 2, q1 = 3 for patch 1, 11 × 11 elements and polynomial degrees 
p2 = 3, q2 = 4 for patch 2 see Fig. 8(a). Fig. 8(b) shows the transverse displacement of the plate. Absolute error of deflection 
on the whole domains is plotted in Fig. 8(c) with exact solution as a reference. The deflection and its absolute error are 
continuous across the interface as post processing figures show. Fig. 9 describes the convergence of central deflection under 
different order circumstances. The deflection in Nitsche method converge to 0.0025840 q0

D0
, which is 0.68% larger than the 

analytical solution 0.0025665 q0
D0

.

6.3. Clamped circle plate subjected to uniform load

We investigate the uniformly loaded circle plate with radius a = 1 m in this section. Thickness of the plate t = 0.01 m and 
uniform load q0 = −10 N. If outer edge is fixed, the exact thin plate solution in terms of deflection is given by Timoshenko 
et al. (1959):

w = q0

64D0
(a2 − r2)2 (35)

where r is the radial distance from the center of circle plate.
We model the plate with two symmetrical patches and build non-conforming mesh, where left patch is discretized by 

7 × 9 elements with polynomial degrees p1 = 3, q1 = 4 and right patch is discretized by 7 × 7 elements with polynomial 
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Fig. 8. Simply supported square plate under sinusoidal load. Patch 1 is built with 16 × 16 elements and polynomial degrees p1 = 2, q1 = 3; patch 2 is built 
with 11 × 11 elements and polynomial degrees p2 = 3, q2 = 4. (a) Non-conforming mesh, (b) deflection and (c) absolute error of deflection.

Fig. 9. Simply supported square plate under sinusoidal load: the convergence of central deflection.

degrees p2 = 4, q2 = 5, see Fig. 10(a). Here circle dots denote the control points of corresponding NURBS patch and blue 
lines express the parameter lines forming the elements. Fig. 10(b) shows the deflection of the middle plane of the plate. 
The absolute error can be obtained as given in Fig. 10(c) when compared to the analytical solution computed by Eq. (35). 
The convergence of central deflection of the circle plate is studied with different order in NURBS patches from Fig. 11. The 
exact thin plate solution of deflection 0.015625 q0

D0
is 0.68% smaller than the result of convergence 0.015732 q0

D0
calculated 

by Nitsche method under Mindlin theory.

6.4. Clamped square plate under a suitable body load

In this section, we consider a benchmark problem to study the convergence of the method. This problem consists of a 
unit square plate � ∈ [−1, 1]2 subjected to a body load f with all sides clamped, in which an analytical solution is explicitly 
known (Chinosi and Lovadina, 1995). The load f is the transverse load applied to the plate and can be expressed as:

f = (0,0, t2 f (x, y)) (36)

where

f (x, y) = E

12(1 − ν2)
[12y(y − 1)(5x2 − 5x + 1)(2y2(y − 1)2 + x(x − 1)(5y2 − 5y + 1))

+ 12x(x − 1)(5y2 − 5y + 1)(2x2(x − 1)2 + y(y − 1)(5x2 − 5x + 1))] (37)

The analytical solution of rotations and deflection is given by:

θx(x, y) = x3(x − 1)3 y2(y − 1)2(2y − 1) (38)

θy(x, y) = y3(y − 1)3x2(x − 1)2(2x − 1) (39)
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Fig. 10. Clamped circle plate subjected to uniform load. Patch 1 is built with 7 × 9 elements and polynomial degrees p1 = 3, q1 = 4; patch 2 is built with 
7 × 7 elements and polynomial degrees p2 = 4, q2 = 5. (a) Two patch with non-conforming mesh, (b) deflection and (c) absolute error of deflection. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 11. Clamped circle plate subjected to uniform load: the convergence of central deflection.

w(x, y) = 1

3
x3(x − 1)3 y3(y − 1)3 − 2t2

5(1 − ν)
[y3(y − 1)3x(x − 1)(5x2 − 5x + 1)

+ x3(x − 1)3 y(y − 1)(5y2 − 5y + 1)] (40)

Based on the displacements, the bending moments and shear forces were deduced (Kiendl et al., 2015):

Mx = Et3

6(1 − ν2)
[y3(y − 1)3(x − x2)(5x2 − 5x + 1) + ν(x3(x − 1)3(y − y2)(5y2 − 5y + 1))] (41)

Q x = − Et3

6(1 − ν2)
[y3(y − 1)3(20x3 − 30x2 + 12x − 1) + 3y(y − 1)(5y2 − 5y + 1)x2(x − 1)2(2x − 1)] (42)

The formulations of bending moment M y , twist moment Mxy and shear force Q y can be found in Kiendl et al. (2015), 
Beirão da Veiga et al. (2015). The material parameters and thickness are E = 10.92 × 106, ν = 0.3 and t = 0.1 m. The 
convergence rate of Nitsche method in L2-norm is studied here with the comparison to that from the isogeometric analysis 
on single patch, using different level of refinement. The relative L2-norm approximation error can be defined as:

Eψ = ‖ψex − ψh‖L2
�

‖ψex‖L2
�

(43)

where ψ represents unknown variables, ψex the exact solution and ψh expresses numerical solution with the discretization 
of element size h. The k-refinement strategy in isogeometric analysis was used to refine the domains to ensure C p−1
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Fig. 12. Clamped unit square plate under a suitable body load. Patch 1 is built with 16 × 16 elements and biquadratic polynomial degrees; patch 2 is built 
with 12 × 12 elements and bicubic polynomial degrees. (a) Non-conforming mesh, (b) deflection and (c) bending moment Mx .

Fig. 13. Clamped unit square plate under a body load: the relative error in L2 norm. (a) Deflection and (b) rotation θx .

continuities across inner-elements, as a result of the existence of marginal benefits with higher-continuous basis functions 
(Collier et al., 2014).

We present the post-processing images of deflection w and bending moment Mx with the discretization 16 ×16 elements 
and biquadratic degrees for patch 1, 12 × 12 elements and bicubic degrees for patch 2 as shown in Fig. 12. Then the 
convergence of deflection and rotation θx is studied with the same uniformly refined strategy for two patches. A cubic 
convergence rate of relative error in the L2-norm for the case of p = 2 and a quartic convergence rate for p = 3 can be 
obtained as shown in Fig. 13(a) and 13(b) plotted in a unified log–log scale, where p represents the equal degrees in 
two parameter directions of a patch. In addition, optimal rates of convergence of bending moments Mx and shear force 
Q x can be obtained as shown in Fig. 14(a) and 14(b). We can find that the convergence rate of the Nitsche method for 
non-conforming problems keeps consistent with the results that from single patch.

6.5. Uniformly loaded cantilever plate

In this example, a cantilever plate under uniformly distributed load is investigated. We assume that bottom bound-
ary of the plate is clamped, uniform load q0 = −10 N, and thickness t = 20 mm. The material properties Young modulus 
E = 1 × 1010, Poisson ratio ν = 0.3 and stabilization parameter is chosen as 1 × 1012. Dimension and boundary conditions 
of cantilever plate are depicted in Fig. 15. The plate is modeled by four patches and the discretizations are listed as follows: 
12 × 12 elements for patch 1; 9 × 9 elements for patch 2; 12 × 12 elements for patch 3; and 9 × 9 elements for patch 4. 
All patches are built with biquadratic NURBS basis functions and the mesh is non-matching along the interfaces. Fig. 16(a) 
shows the transverse displacement of plate in solid model analyzed by commercial software ABAQUS where up to 76 853 
hexahedral elements are built, and the maximum deflection here is 7.570 × 10−4 mm. The deflection pattern of the plate 
based isogeometric method is plotted in Fig. 16(b) and maximum value is 7.466 × 10−4 mm. Generally, in isogeometric 
analysis, conforming mesh needs to be built along the four common boundaries, which compels us to do complex and time 
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Fig. 14. Clamped unit square plate under a body load: the relative error in L2 norm. (a) Bending moment Mx and (b) shear force Q x .

Fig. 15. Cantilever plate: geometry, dimensions and boundary conditions. Units: mm.

Fig. 16. The deflection of the cantilever plate: (a) FEA in commercial software ABAQUS and (b) IGA with Nitsche method.
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consuming work including knot insertion and order elevation. More complex models, especially those utilized in big indus-
tries like autos and aerospace and so on, are almost surely to involve elements trimmed by different patches’ boundaries, 
which need to be treated differently and are under investigation now based on the work presented here.

7. Conclusion

In this work, we have adopted the Nitsche method to develop the NURBS-based isogeometric analysis of multi-patch 
plates, which are discretized into non-conforming mesh along the interfaces. The presented method relieves us from the 
complicated coupling operation that often occurs in isogeometric method in order to obtain conforming mesh, which is 
time-saving and straightforward. The Reissner–Mindlin plate theory has been employed to analyze some classical plate 
models and a complex cantilever plate model. Analytical solutions in Kirchhoff hypothesis, numerical solutions of single-
patch models in Mindlin theory and results from the ABAQUS hexahedral element have been used to make comparison. In 
the comparison with different variables in classical thin plate, we find that solutions in Mindlin theory are slightly differ-
ent with that in Kirchhoff theory because of the augmentation of shear deformation terms to the total potential energy 
functional. Meanwhile, for the same model, the results obtained from non-conforming situations coincide with that from 
single patch in Mindlin theory under the framework of isogeometric analysis. Optimal convergence rate can be achieved 
with Nitsche method. The results in different examples show the robustness, accuracy and high-efficiency convergence of 
Nitsche method in conjunction with isogeometric method.

We investigated the numerical examples with single-patch, two-patch and four-patch plates, and limited the contribu-
tions to the linear elastic problems. More complex geometries with non-conforming multi-patches and trimming patches are 
frequently designed in practical use. Thus, future studies will focus on the complex geometries built with non-conforming 
and trimming multi-patches, and the extension of this method to non-linear problems.
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