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Isogeometric analysis uses spline parameterizations to describe the geometry of the 
physical domain. If such a parameterization is not available, it has to be generated from 
the domain boundaries. The construction of a good parameterization is crucial since it 
strongly influences the accuracy of the subsequent analysis. It is of interest to use adaptive 
techniques such as hierarchical splines for the parameterization, since this facilitates an 
accurate representation of detailed geometries and potentially improves the efficiency of 
the subsequent numerical simulation. We use truncated hierarchical (TH) B-splines to 
generate hierarchical spline spaces, since these functions possess many useful properties, 
such as linear independence and the fact that they form a non-negative partition of unity. 
In order to address the trade-off between computational effort and level of difficulty of 
a specific instance of the problem, we propose three levels of domain parameterization 
techniques that are based on THB-splines.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this section we provide a motivation for this work and describe the related work on domain parameterization in 
isogeometric analysis. We then specify the problem addressed in the paper in detail and give an outline of the paper.

1.1. Motivation

The numerical simulation framework of isogeometric analysis (IGA), which has been proposed recently by Hughes et al.
(2005), uses the mathematical technology of multivariate spline functions to describe both the computational domain and 
the functions that represent the unknown physical quantities. It has been introduced in order to address the challenging 
issue of data exchange between the CAD model and the numerical simulation software, which is greatly facilitated by using 
the same exact representation of the geometry.

However, IGA typically requires parameterizations of the interior of an object (a computational domain), while CAD 
systems only provide information about its boundary, cf. Cohen et al. (2010). Thus, methods for constructing a domain 
parameterization from given boundary data are required in order to make CAD models usable for IGA. In this paper we 
consider the case of single-patch parameterizations in the plane, where we need to assume that the computational domain 
is topologically equivalent to the unit square. Segmentation techniques, which split more complex domains into simpler 
ones that admit a single-patch parameterizations, are well-studied in the rich literature on block-structured quadrilateral 
mesh generation. For instance, an approach based on the medial axis has been proposed by Tam and Armstrong (1991).

* Corresponding author. Tel.: +43 732 2468 4086.
E-mail addresses: antonella.falini@jku.at (A. Falini), jaka.speh@jku.at (J. Špeh), bert.juettler@jku.at (B. Jüttler).
http://dx.doi.org/10.1016/j.cagd.2015.03.014
0167-8396/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cagd.2015.03.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:antonella.falini@jku.at
mailto:jaka.speh@jku.at
mailto:bert.juettler@jku.at
http://dx.doi.org/10.1016/j.cagd.2015.03.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2015.03.014&domain=pdf


96 A. Falini et al. / Computer Aided Geometric Design 35–36 (2015) 95–108
Fig. 1. The hierarchical mesh in the parameter domain (left) and the parameterization of the U.S. state of Indiana (right) obtained by using hierarchical 
splines defined on it.

A tensor-product spline parameterization of the computational domain is determined by control points, knot vectors 
and the degrees of the tensor-product B-splines. Typically, the knot vectors and degrees of the computational domain are 
specified by the given boundary representation. Clearly, the use of tensor-product splines imposes severe restrictions on 
the distribution of the degrees of freedom, due to the non-local influence of the knot lines. Using multivariate splines that 
provide the possibility of adaptive refinement can eliminate these restrictions. In the present paper, this is achieved by 
using hierarchical splines, which are represented by their basis consisting of truncated hierarchical (TH)B-splines (Giannelli 
et al., 2012). See Fig. 1 for a first example, where the use of adaptive refinement allows for an accurate representation of 
the domain boundaries while keeping the total number of degrees of freedom fairly small.

The quality of the parameterization of the computational domain is then determined by the positions of inner control 
points. Hence, finding a good placement of the inner control points inside the computational domain is a key issue. It is 
important to produce a good parameterization because this affects the accuracy of the isogeometric analysis. As a basic 
requirement, we need a parameterization that is free from self-intersections, so that it provides an injective mapping from 
the parameter domain to the computational domain. In addition, several quality measures for parameterizations have been 
described in the literature.

We present three levels of domain parameterization techniques that are based on THB-splines, with varying level of 
computational effort. The first level is formed by the linear direct method, where the parameterization is computed by 
solving a single linear system. The second level, which consists of the nonlinear direct method, also employs various quality 
measures in order to improve the properties of the parameterization. In these two levels, we exploit the adaptivity in order 
to obtain highly accurate representations along the boundary, see Fig. 2, left. In the third level, we use a harmonic mapping, 
which is computed with the help of the boundary element method (BEM), in order to construct a parameterization where 
the regularity is guaranteed. In this case, the use of THB-splines is needed to obtain an accurate representation of this 
mapping not only along the boundary, but also in the interior of the domain, see Fig. 2, right. We obtain parameterizations 
that are suitable for IGA, as shown in Fig. 3.

In this paper, we restrict ourselves to simple methods in the sense that they can be implemented without using al-
gorithms for solving (possibly constrained) non-linear optimization problems. In all three levels, we use linear systems to 
compute the solutions. Only in the second level, we use a simple Gauss–Newton type technique for minimizing a non-linear 
objective function (which is a sum of squares and therefore admits this approach). Consequently, computing the solution is 
relatively fast and makes it possible to perform adaptive refinement, based on an iterative approach.

1.2. Related work

Parameterization methods possess numerous applications in geometric design, image processing and computer graphics, 
and have continuously attracted the attention of many researchers. In particular, various techniques for mesh and surface 
parameterization exist (Floater and Hormann, 2005; Hormann et al., 2008; Sheffer et al., 2006, and the references cited 
therein).

Most approaches assume that a representation of the interior of the computational domain (e.g., a triangulation of a 
surface) is available. In contrast, we are interested in methods that do not make this assumption and which are therefore 
based on the given boundary representation.

A simple method – which still gives good results in many cases – is the use of discrete Coons patches introduced by Farin 
and Hansford (1999). It is explicit and computationally inexpensive. However, the resulting map needs not to be injective, 
and it may not be suitable for singular cases and complex shapes.

Another approach is based on the spring model (Gravesen et al., 2014). This technique is slightly more expensive than 
the discrete Coons patch, but the quality of the resulting parameterizations is better. Other linear methods, such as methods 
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Fig. 2. Left: Parameterizations of the jigsaw puzzle boundary piece obtained by using the linear (bottom left) and nonlinear (bottom right) direct methods. 
The same hierarchical mesh (top) is used for both parameterizations. It has been refined along the boundary in order to represent the geometry with 
sufficient accuracy. Right: A parameterization of the same piece obtained by using the indirect method, which is based on a harmonic mapping (bottom). 
In this case, the hierarchical mesh (top) is refined not only along the boundary but also in the interior of the domain, in order to represent the inverse of 
a harmonic mapping.

Fig. 3. The solution of the heat equation on the jigsaw puzzle. The temperature at the boundary is set to 1, while the interior is initialized with tempera-
ture 0. The pictures are captured after 10, 100 and 1000 time steps (starting from left to right). See Section 6 for more information. (For interpretation of 
the colors in this figure, the reader is referred to the web version of this article.)

based on mean value coordinates (Hormann and Floater, 2006), are discussed by Gravesen et al. (2014) too. There it is also 
observed that while linear methods do not guarantee the injectivity of the resulting parameterization, they can be used to 
provide initial solutions for non-linear optimization.

If an initial parameterization is available, it can be optimized with respect to some quality functionals (e.g., length of 
parameter lines, uniformity, orthogonality, skewness, eccentricity and others) in order to relocate the inner control points to 
a better position. A two-step method has been described by Xu et al. (2011). Firstly, an initial mapping from the parametric 
domain (usually the unit square) to the computational domain is constructed. Its injectivity is guaranteed by imposing 
certain inequality constraints on the coordinates of inner control points. Secondly, the quality of the mapping is improved 
by minimizing some quality functionals while preserving the injectivity of the mapping. The extension to the trivariate 
multi-block case has been presented by Xu et al. (2013). Reparameterization methods have been used by Xu et al. (2014).

In the context of T-splines, adaptive splines have been used for domain parameterization by Y. Zhang in several publica-
tions, (e.g. Zhang et al., 2013).

1.3. Problem statement and outline

We consider the following problem: A planar domain � ⊆ R
2, which admits a single-patch parameterization (i.e., it is 

diffeomorphic to the unit square) is given. We also assume that a parameterization of the boundary

b : ∂[0,1]2 → ∂�

is available. It is not necessary that this parameterization is given by spline curves; in fact the given parameterization will 
always be approximated by hierarchical splines.
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Fig. 4. Left: boundary parameterization b of the domain. Right: adaptively refined domain parameterization s, represented by THB-splines.

Fig. 5. Left: The hierarchical mesh is obtained by dyadic refinement (cross insertion). Right: The THB-splines of degree (2, 2) over the mesh. They are 
obtained by selecting tensor-product B-splines from all levels and then subtracting the contributions of functions selected at higher levels, see Giannelli et 
al. (2012) for details.

The aim of the work is to find a mapping s : [0, 1]2 → �, which is represented by THB-splines, such that

s|∂[0,1]2 ≈ b,

see Fig. 4. The next section summarizes the properties of THB splines and explains why this basis is simultaneously well 
suited for geometric modeling and for numerical simulation via IGA.

Clearly, in order to be useful for IGA, the domain parameterization s needs to be bijective and regular at every interior 
point. The shape of the boundary precludes the existence of such a parameterization if non-convex vertices are present (see 
Gravesen et al., 2014 for details), therefore, we will assume that this is not the case. More precisely, the boundary should 
consist of at least four smooth curve segments which meet in convex vertices, and four of them should correspond to the 
four vertices of the parameter domain. The use of THB splines allows to represent additional vertices approximately using 
the adaptive refinement. (It is even possible to represent them exactly by locally inserting knots with higher multiplicity, 
but this has not yet been exploited in our implementation.)

In order to obtain a parameterization with these properties, we present three levels of domain parameterization tech-
niques that are based on THB-splines, with varying level of computational effort. These techniques are described in Sec-
tions 3, 4 and 5 of the paper. They are based on a combination of several existing approaches, such as the use of quality 
measures, non-linear optimization, and harmonic mappings. In the latter case, in order to avoid the use of traditional mesh 
generation we use the boundary element method (BEM) for computing the harmonic mappings.

We discuss the performance of the different methods in Section 6. Finally we conclude the paper.

2. Preliminaries: THB-splines

Tensor-product B-splines are well established in CAD. They have many useful properties, but also a major disadvantage: 
They do not provide the possibility of local refinement. Indeed, the insertion of a knot into one of the knot vectors refines 
an entire row or column of cells in the mesh.

Several generalizations of tensor-product splines were introduced to address this problem, including T-splines, PHT-
splines, LR splines and hierarchical splines (Deng et al., 2008; Dokken et al., 2013; Forsey and Bartels, 1988; Kraft, 1997;
Sederberg et al., 2003). In this paper we focus on the latter approach, and we use the recently introduced basis of truncated 
hierarchical (TH) B-splines for the corresponding adaptively refined spline spaces (Giannelli et al., 2012). Fig. 5 shows an 
example of THB-splines over a hierarchical mesh with three levels of refinement.
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The THB-splines possess several useful properties, which make them well-suited for applications in isogeometric analysis:

• THB-splines form a non-negative partition of unity. This is particularly important in geometric design, since it guarantees 
affine invariance and the convex hull property.

• Compared to the standard hierarchical basis of the same space introduced by Kraft (1997), the number of THB-splines 
that possess non-zero values at a given point is smaller. Consequently, when using hierarchical spline spaces for numer-
ical simulation or least-squares approximation, the coefficient matrices of the linear systems obtained are more sparse
for THB-splines than for the standard basis.

• Under certain simple conditions on the hierarchical refinement, the THB-splines are complete: they span the full space 
of piecewise polynomial functions which are available on the hierarchical grid (Mokriš et al., 2014).

• THB-splines are strongly stable basis with respect to the maximum norm if the knots of the different levels satisfy a 
quasi-uniformity condition (Giannelli et al., 2014). More precisely, the maximum norm of the coefficient vector and 
the L∞ norm of the associated spline function are equivalent, and the constants in the corresponding inequalities are 
independent of the number of levels and on the specific choice of the knot vectors.

By using adaptive refinement of an initial tensor-product mesh we will obtain a parameterization

s(u, v) =
L∑

�=1

J �∑
j=1

c�
jτ

�
j (u, v), (u, v) ∈ [0,1]2, (1)

of the domain � ⊂ R
2, which is represented as a linear combination of THB-splines τ �

j (u, v) and coefficients c�
j ∈ R

2. The 
coefficients admit an interpretation as control points since the THB splines form a non-negative partition of unity. In this 
equation, the upper index � identifies the level, L is the total number of levels of refinement and J � is the number of 
THB-splines of level �. In order to simplify the notation we define the matrix of coefficients

c = (. . . , c�
j, . . .) ∈R

2,n,

where n = ∑L
�=1 J � is the number of THB-splines from all levels.

Two issues need to be addressed in order to find such a parameterization. Firstly we have to identify a suitable hierar-
chical spline space. This is done by applying adaptive refinement to an initial tensor-product space. Secondly, the unknown 
coefficients (control points) c need to be found, and this will be done by minimizing a suitable objective function. Both 
steps are intertwined, since the adaptive refinement is guided by the result of the second step. The following three sections 
present three approaches, which require an increasing amount of computational effort.

3. Linear direct methods

The simplest class of methods is based on quadratic optimization problems, which lead to systems of linear equations.

3.1. The optimization problem

The first method for obtaining the coefficients of parameterization (1) is to minimize the objective function∫
∂[0,1]2

‖s − b‖2 + λQ (c) → min
c

(2)

where λ is a parameter and Q is a quadratic functional. Candidates for the functional Q are

• the parametric length functional, which penalizes long parameter lines

Q�(c) =
∫

[0,1]2

(‖su‖2 + ‖sv‖2)du dv,

• and the uniformity functional

Qu(c) =
∫

[0,1]2

(‖suu‖2 + 2‖suv‖2 + ‖sv v‖2)du dv,

which measures the thin plate spline energy or the uniformity of the parameterization.
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Fig. 6. Uniform vs. adaptive refinement of a domain parameterization with tensor-product B-splines (top row) and THB-splines (bottom row).

Table 1
Numbers of degrees of freedom of B-splines and THB-splines for the exam-
ple in Fig. 6.

Levels B-splines THB-splines Ratio

1 49 49 100%
2 121 97 80%
3 361 193 53%
4 1225 385 31%

The first term in Eq. (2) expresses the fact that the solution should match the boundary with high precision. Using only 
this term would lead to a singular system of equations, since it does not impose any constraints for the interior of the 
domain. Therefore, the second term is introduced. It guarantees the regularity of the system, which is obtained from the 
objective function.

The choice for the parameter λ is based on a trade-off between accuracy and parameterization quality. On the one 
hand, this value should be large enough to guarantee a real influence of the functional over the parameterization. On the 
other hand, since every functional penalizes the entire parameter domain, λ should be small enough to achieve a good 
parameterization of the boundary.

In order to find a solution to our minimization problem (2) we need to solve a linear system. Clearly, this is only possible 
when using quadratic functionals, since functionals of higher order would lead to non-linear systems.

Remark 1. If an exact representation of the boundary is available and compatible with the hierarchical spline space, then 
the first part of the objective function can be replaced by linear constraints on the THB coefficients along the boundary, 
or these constraints can even be used to eliminate these coefficients as unknowns from the problem. This approach would 
allow to preserve a given exact representation of the domain boundary.

3.2. The procedure

The input for a domain parameterization problem is a parameterization of the boundary or simply a sequence of points 
(with associated parameter values, possibly estimated from the data, e.g. via chord-length parameterization). See for ex-
ample Fig. 6, where the input is given by a set of points. Then, the coefficients of initial B-spline surface are computed, 
by minimizing the objective function. The procedure marks the boundary of s, where the error ‖s − b‖2 is above a pre-
scribed threshold. The marked area is then refined. Note that the use of THB splines allows local refinement (Fig. 6) while 
tensor-product B-splines do not.

Only the boundary elements are refined by this procedure. In order to keep the number of degrees of freedom as small 
as possible, we restrict the refinement to the vicinity of the boundary cells.

After that we construct the new basis of THB-splines and recompute the coefficients, again by minimizing (2). This 
initiates a new step of the iteration. The algorithm terminates either when a maximum number of iterations is reached or 
when the error on the boundary is below a prescribed threshold.

Table 1 reports the difference between numbers of degrees of freedom of B-splines and THB-splines for the example in 
Fig. 6. We obtain the same error in the boundary (below 10−6 with respect to the size of the bounding box) with fewer 
control points.

3.3. Examples

In the example shown in Fig. 1 we have obtained a parameterization of a domain in the shape of the U.S. state of Indiana. 
The input points were sampled from a map.
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The domain is approximated by using THB-splines of bidegree (3, 3) with 7 refinement levels. The error on the boundary 
is under 10−6. The parameter λ for the quadratic functional Qu is 10−12.

The THB-splines approximate the boundary with high accuracy. Some parts of the boundary are not very complicated 
and there is no need for high level of refinement.

We also applied the linear direct method to the jigsaw puzzle boundary piece in Fig. 2 (bottom left). In this case, the 
resulting parameterization is singular. For larger values of the regularization parameter λ, the parameterization tends to 
become regular, but this simultaneously increases the error along the boundary. Also, adaptive refinement does not improve 
this situation. Thus, many domains require more sophisticated techniques for parameterization.

4. Nonlinear direct methods

Since the simple quadratic functionals from the previous section do not always lead to satisfactory results, we now 
propose to extend the catalog of functionals.

4.1. The optimization problem

Quality measures are functionals which measure certain properties of the parameterization. Relocation of the control 
points can improve the measure of the parameterization. By moving only the inner control points of the THB-spline, the 
boundary does not change, because it is determined by the boundary control points in the case of the clamped knot vectors.

The quadratic functionals Q� and Qu are instances of quality measures. Now we consider non-quadratic functionals also, 
which are taken from the rich literature on mesh generation. We restrict ourselves to functionals which are integrals of 
squares of some function which depends on the first and second derivatives of the parameterization,∫

[0,1]2

F (su, sv , suu, suv , sv v)2du dv.

Discretizing such functionals via numerical quadrature gives a sum of squares, which can be minimized efficiently by Gauss–
Newton-type methods. Also, we do not consider higher order derivatives since the parameterizations are generally only C2

smooth.
More precisely, we consider

• the orthogonality functional

Qo(c) =
∫

[0,1]2

(susv)2du dv,

which measures the orthogonality of parameter lines,
• the skewness functional,

Qs(c) =
∫

[0,1]2

(
(susv)2

susu · sv sv

)2

du dv,

which measures the cosine of the angle between tangent vectors, and
• the eccentricity functional,

Qe(c) =
∫

[0,1]2

(
susuu

susu

)2

+
(

sv sv v

sv sv

)2

du dv,

which measures the acceleration of the parameterization projected onto the tangents along the parameter lines.

Typically, improving just one quality measure does not give good results. Instead we use a weighted linear combination

Q(c) = ωuQu(c) + ω�Q�(c) + ωoQo(c) + ωsQs(c) + ωeQe(c) → min
c∗ , (3)

where ωu , ω� , ωo , ωs , ωe are positive weights and c∗ denotes the inner control points. As mentioned before, discretization 
transforms all functionals into sums of squares, hence the minimum is found iteratively using Gauss–Newton method.

This technique requires an initial solution. We use the result of the linear direct method as the initial solution. The 
method stops if we obtain a regular parameterization or if the maximum number of iterations is reached. The regularity is 
checked by evaluating the sign of the Jacobian at points sampled from a fine grid.
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Fig. 7. Left: Adaptively refined parameter domain. Right: Non-regular parameterization of a jigsaw puzzle piece (blue) and input boundary (red). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Parameterization by the indirect method. The harmonic map h maps sample points from the inside of input domain to parametric domain. Using 
these pairs of points, the solution s is constructed by least-squares approximation.

4.2. Examples

Consider again the parameterization of the jigsaw puzzle boundary piece in Fig. 2. In this situation, we were able to 
obtain a regular parameterization (left column, bottom right) from an initial non-regular one (left column, bottom left). 
More precisely, we used 90 iterations minimizing Qs with weight 1 and Qe with weight 0.001, setting all the other weights 
to zero to find this result.

Clearly, the main problem of this approach is the selection of appropriate weights. These are found by trial and error, i.e., 
by testing a large catalog of possible combinations. It is not known whether a choice of weights giving a regular solution 
exists at all. In another slightly more complicated example, which is shown in Fig. 7, we did not succeed to obtain a regular 
parameterization, even after experimenting with many different linear combinations.

Another disadvantage is that we do not know whether minimizing Eq. (3) yields a regular solution for some choice of 
the weights at all. For example in Fig. 7, we were not able to find such parameters that the minimization would produce a 
regular result. The next section presents a different approach, where no user-guided selection of parameters is needed.

5. Indirect method

We present a different procedure for constructing the parameterization s of our domain �. We call it the “indirect” 
method since it is based on a mapping in the other direction: from � to the unit square, see Fig. 8. More precisely, we solve 
the Laplace equation on the computational domain using a boundary element method (BEM). This will produce a bijective 
harmonic map h : � → [0, 1]2. The desired parameterization s will be found by approximating the inverse map h−1 using 
THB splines. As a major advantage, this method facilitates adaptive refinement also in the interior of the domain, since the 
approximation error that the inverse map provides can be used to guide the refinement.

Clearly, the Laplace equation could also be solved by a finite element method, possibly even based on isogeometric 
analysis. However, this would require a computational mesh or a parameterization of the domain, which is not yet available. 
Thus, using FEM for this step would lead to a “vicious circle”, which can be avoided by the boundary element method.

A related approach has been used in Nguyen and Jüttler (2012). In that paper, the harmonic mapping was computed by 
a web-spline-based approach (Höllig, 2003), which requires a careful choice of the parameter that controls the influence of 
the boundary conditions. Also, the earlier paper was based solely on tensor-product splines. In the present paper we use 
a boundary element method (BEM) instead of web splines, which gives more accurate results and eliminates the need to 
choose a free parameter. In addition, we extend the mentioned works by introducing the possibility of adaptive refinement 
based on the use of THB-splines.

A valid alternative to harmonic mappings has been presented by Schneider et al. (2013). There the authors propose the 
novel concept of composite barycentric mappings. However, the theoretical guarantees for the bijectivity of such a mapping 
are currently restricted to convex polygons.

Before going into details of our method we think it is worth presenting some theoretical background concerning har-
monic mappings. The remainder of this section is organized as follows: firstly we summarize several well-known results 
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Fig. 9. The Riemann mapping theorem provides a conformal map r : � → D. The Radó–Kneser–Choquet theorem provides the harmonic extension ϕ̂ to the 
unit disk of the homeomorphism ϕ : ∂D → ∂T .

regarding harmonic mappings. This is followed by the description of our method in the BEM framework. Finally we describe 
the steps needed to compute the desired parameterization s.

5.1. Theoretical background

Given a simply connected domain � ⊂ R
2, a convex target T ⊂ R

2 and a boundary correspondence from ∂� to ∂T , there 
exists a univalent harmonic mapping h: 	h = 0. The proof is sketched in Fig. 9. Firstly, the Riemann mapping theorem 
ensures the existence of a unique conformal mapping r between any simply connected domain � and the unit disk D. 
Secondly, the Radó–Kneser–Choquet theorem asserts that the unit disk D can always be harmonically mapped onto a 
convex domain T , bounded by a Jordan curve, provided a homeomorphic boundary correspondence ϕ : ∂D → ∂T . Indeed 
its harmonic extension ϕ̂ will provide a univalent harmonic map from the unit disk to the target T . Combining these two 
results the existence of a univalent harmonic mapping h = r ◦ ϕ̂ is guaranteed from any simply connected Jordan domain 
� onto a bounded convex domain T , since the composition r ◦ ϕ̂ is also harmonic. The required parameterization s will be 
obtained by approximating the inverse of the harmonic map h.

5.2. Computation of the harmonic univalent map: a glance at BEM

The univalent harmonic map h : � → T consisting of two components h(x) = (h1(x), h2(x)), where x = (x1, x2), will be 
computed solving two Laplace problems (one for each component) with suitable Dirichlet boundary conditions. Given a map 
β : ∂� → ∂�̂, the problem is compactly formulated as follows: Find h such that{

	h = 0 in �,

h(x) = β(x) on ∂�.
(4)

We compute a numerical solution using an isogeometric boundary element method (BEM). BEM is very well described in 
the literature (Brebbia and Dominguez, 1996; Gaul et al., 2003; Sauter and Schwab, 2011). We will limit ourselves to the 
discussion of the Laplace problem (4).

The idea behind BEM consists in transforming the partial differential equation into a boundary integral equation (BIE) 
and representing the solution of the problem by means of boundary potentials (representation formula). More precisely, 
following Rjasanow and Steinbach (2007), the starting point is the equation

αh(y) =
∫
∂�

G(x,y)
∂h(x)

∂n
d∂� −

∫
∂�

h(x)
∂G(x,y)

∂n
d∂� (5)

where

α =
⎧⎨
⎩

1 if y ∈ �,
1
2 if y ∈ ∂�,

0 otherwise.

The symbol G(x, y) denotes the Green’s function

G(x,y) = − 1

2π
ln(|x − y|) (6)

and ∂h(x)/∂n is the directional derivative with respect to the outward-pointing normal vector of the domain boundary. This 
derivative will be called the flux of the solution. The derivative ∂G(x, y)/∂n refers to the normal derivative with respect to 
the first argument, i.e.,

∂G(x,y) = d
G(x + τnx,y)|τ=0,
∂n dτ
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where x ∈ ∂� and nx is the associated outward-pointing normal vector. In Eq. (5), it is assumed that the domain � has a 
C1-smooth boundary, but the equation can be extended to domains with non-smooth boundaries also.

This equation has two aspects. Firstly, if both h and its normal derivative along the boundary are known, then it can be 
used to evaluate the solution at any other point. Secondly, this equation can be used to compute the flux ∂h(x)/∂n, simply 
by restricting it to the domain boundary.

In order to perform these computations in practice, we define a 1-periodic boundary parameterization ρ(u), u ∈ R such 
that:

• corners of domain and target correspond to each other,
• the target boundary is also parameterized by, i.e.,

f(u) = ( f1(u), f2(u)) = h ◦ ρ(u)

• the flux ∂h(x)/∂n of the solution h is represented as a function of u using the parameterization ρ ,

g(u) = ∂h

∂n
◦ ρ(u).

We use these notations and we rewrite Eq. (5) by substituting ρ(u) in place of x:

αh(y) =
1∫

0

G(ρ(u),y)g(u)‖ρ̇(u)‖ du −
1∫

0

f(u)
∂G(ρ(u),y)

∂n
‖ρ̇(u)‖ du. (7)

Before we can use this equation to evaluate h at arbitrary points y ∈ �, we need to find the flux g by solving the BIE

1

2
f(v) =

1∫
0

G(ρ(u),ρ(v))g(u)‖ρ̇(u)‖ du −
1∫

0

f(u)
∂G(ρ(u),ρ(v))

∂n
‖ρ̇(u)‖ du (8)

which is derived from (7).

5.3. Discretization and collocation method

Keeping in mind the problem (4), we solve the BIE (8) for the unknown flux g of the solution h, represented as a spline 
function

g(u) =
n∑

j=1

c j N j(u), u ∈ [0,1]. (9)

The B-splines N j(u) are defined over a suitable 1-periodic knot vector. The given functions are represented in the same 
form, {

ρ(u) = ∑n
j=1 d j N j(u)

f(u) = ∑n
j=1 d̂ j N j(u)

with known control points d j , d̂ j . The unknown coefficients c j can be computed with three different methods: collocation 
method, Galerkin method and least squares method (Aimi et al., 1997; Simpson et al., 2012). We chose a collocation scheme 
with collocation points in the parameter domain given by Greville abscissas1 (vk)k=1,...,n (Johnson, 2005). This leads to a 
linear system with n equations and two vectors on the right-hand side,

Ac = B (10)

where the entries of matrix A are

Akj =
1∫

0

G(ρ(u),ρ(vk))N j(u)‖ρ̇(u)‖ du, (k = 1, . . . ,n; j = 1, . . . ,n).

The k-th row of the right hand side B takes the form

1 Greville points at corners require a different value for α in Eq. (5), since the factor 1/2 holds only under the assumption of a C1-smooth boundary.
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Fig. 10. A parameterization of the jigsaw puzzle piece by THB-splines over an adaptively refined domain (left), which was obtained using the indirect 
method. The result is represented by parameter lines (right).

Bk = 1

2
f(vk) +

1∫
0

f(vk) · ∂G(ρ(u),ρ(vk))

∂n
‖ρ̇(u)‖ du, k = 1, . . . ,n

while the N × 2-matrix c stores the unknown coefficients c j . The linear system (10) has two right-hand-sides and is fully 
populated. It should be noted that some of the integrals in the final discretized BIE contain singular kernels due to the 
definition of the Green function G , thus special methods are needed to evaluate them. Several techniques to address this 
problem are discussed in the literature (Huang and Cruse, 1993; Jun et al., 1985; Sauter and Schwab, 2011).

5.4. THB-spline projection of the inverse mapping

The final step for computing the unknown parameterization s consists in approximating the inverse map h−1. This is 
done by projecting h−1 into the THB-spline space, which is performed by executing the following steps:

1. Sample points x j ∈ �, j = 0, 1, . . . , J .
2. Map sampled points into unit square by using h. This produces pairs (h(x j), x j).
3. Use fitting to construct parameterization s. More precisely, we solve the problem⎛

⎝ M∑
j=0

s(h(x j)) − x j

⎞
⎠

2

+ λQ (c) → min
c

where Q (c) is a quadratic functional from Eq. (2) and λ � 1 is a positive parameter. The quadratic functional makes 
the system non-singular if the number of sampled points M is too small.2

4. If the accuracy is not sufficient, then increase the number of degrees of freedom by adaptive refinement of the mesh 
and continue with the previous step.

5.5. Examples

Fig. 10 shows a regular parameterization of the jigsaw puzzle piece, which was obtained using the indirect method. 
The direct methods that were described in the previous two sections were not able to produce a regular result. By using 
the possibility of adaptive refinement, which is provided by the THB-splines, we could keep a low number of degrees of 
freedom compared to the tensor-product B-spline case. The order of the error on the boundary is around 10−5.

As a major difference to the approaches presented in the previous two sections, there are no user-selected weights. The 
parameterization method will give a regular results whenever the number of degrees of freedom (for solving the boundary 
integral integration and for the THB-spline projection of the inverse harmonic mapping) is sufficiently large. Clearly, this 
also means that the user does not have the possibility to fine-tune the solution by adjusting free parameters. The method 
has also been applied to the jigsaw puzzle boundary piece in Fig. 2 (bottom right) where it gives a different result than the 
non-linear direct method with user-guided selection of free parameters. Due to the uniqueness of the harmonic mapping, 
the result of the indirect parameterization procedure is fully determined by the boundary correspondence between the 
domain and the parameter domain.

6. Discussion

Along with the methods of the three different levels we also presented several examples within this paper. The simplest 
examples, such as the U.S. state of Indiana (Fig. 1) or the square with wiggly boundary (Fig. 6) do not pose any problems 
and can be successfully dealt with by all three approaches.

2 Since this method approximates the inverse harmonic map, the sampling of additional points is another possibility to eliminate problems with singular 
matrices. If one adopts this approach, the functional Q (c) can be omitted.
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Fig. 11. Right column, from top: Parameterization of Austria computed with direct linear, direct nonlinear and indirect method. Left column: The hierarchical 
meshes used for the first two methods (top) and for the indirect one (bottom).

The next class of examples contains the jigsaw puzzle boundary piece (Fig. 2). In this situation, the linear direct methods 
failed. Using the nonlinear direct method changed the non-regular parameterization into a regular one. This approach, how-
ever, required additional work to identify the correct choice of the free parameters (the weights in the objective function). 
Moreover, the result does not appear very natural since the shape of some of the parameter lines is more complicated than 
the shape of the domain boundaries. In this case, the indirect method gives a better looking result without the need to play 
around with free parameters.

Finally there are examples which can be dealt with only by using the indirect method, based on harmonic mappings, 
such as the jigsaw puzzle piece in Figs. 7 and 10. This example is particularly difficult since the geometry is highly distorted. 
In a real application one would probably prefer to perform a segmentation into smaller subdomains and to parameterize 
them separately. However we consider this example as a stress test for indirect method, which has the potential to deal 
with any domain.

Finally we use the three methods to create a parameterization of a domain in the shape of Austria (Fig. 11). The bidegree 
of the solution is (3, 3) and the desired accuracy is 10−5. The number of iterations of the direct method is equal to 4. 
Here both direct methods return a singular parameterization, but the nonlinear method improves the initial result of linear 
one and reduces the area of negative Jacobian determinant from 4% to 2% (in the parameter domain). The weights used by 
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Fig. 12. The solution of the heat equation for the parameterization of Austria. The boundary conditions are set to 0. The source function is also set to 0
everywhere, except on a small circle with origin in Linz where it is set to 10. The pictures show how heat propagates from Linz after 10 and 1000 time 
steps. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

the nonlinear method are 1 for QS and 0.001 for Qe . The number of iterations is 25. Finally, the indirect finds a regular 
parameterization. The adaptive fitting process requires 8 iterations for the computation of a solution. The number is higher 
than for the direct method, but the direct method did not succeed in this example.

The resulting parameterizations can be successfully used for IGA-based simulations. As a simple example we consider 
the heat equation

ut = �u + f on � × [0, T ] and

u = g on ∂� × [0, T ],
with the unknown field u, the source f , the boundary condition g and time T . In Fig. 3, we solve it with f = 0 and g = 1. 
The result shows how the puzzle piece gets warmer inside.

The second example is displayed in Fig. 12. In this case the source is set to 0 everywhere except on a small circular 
region around Linz, where it is set to 10. The boundary conditions are set to 0. We can see how heat propagates from Linz 
towards the remainder of Austria.

More information about isogeometric simulations with THB-splines will be provided in a forthcoming paper (Giannelli 
et al., in preparation).

7. Conclusion

We proposed several techniques for solving the planar domain parameterization problem in isogeometric analysis. These 
techniques, which allow adaptive refinement to be performed, are based on the mathematical technology of THB-splines. 
Consequently we were able to obtain parameterizations with a lower number of degrees of freedom than traditional tensor-
product approaches. THB-splines possess good mathematical properties, such as the fact that they form a non-negative 
partition of unity, which makes them well suited for applications in geometric design and numerical simulation.

The parameterization techniques that we described in this paper were assigned to three levels with increasing compu-
tational effort. The simpler methods work for relatively simple domains, while more complicated shapes require additional 
efforts. The most sophisticated method, which is based on the approximation of the inverse of a harmonic mapping, has 
two main advantages: Firstly, it does not need any user-selected parameters, except for the polynomial degrees and for the 
initial (tensor-product) knot configuration. Secondly, it provides error estimators that can guide the adaptive refinement of 
the THB-splines in the entire domain. In contrast to this, the simpler techniques do not provide such estimators and lead to 
an adaptive refinement only along the domain boundary.

Other advanced techniques for planar domain parameterization in isogeometric analysis, such as the methods described 
in Gravesen et al. (2014) that are (among others) based on the minimization of the Winslow functional, rely on minimization 
of the (generally non-quadratic) functionals subject to (possibly non-linear) constraints. However, optimization tools typically 
do not guarantee to find the global minimum, finding a local one instead. This makes it difficult to provide theoretical 
guarantees for these approaches.

In contrast, the indirect method described in this paper is based only on relatively simple mathematical techniques which 
provide such guarantees. In fact, if the number of degrees of freedom is sufficiently large (and this can be guaranteed by 
uniform or adaptive refinement), then the boundary element method finds highly accurate approximation of the harmonic 
mapping (which is guaranteed to be injective), and the approximation of its inverse will also succeed.

It should be noted that, when applied to a given domain boundary, our methods produce an approximation thereof 
by functions in the hierarchical spline space. In many situations, there is no geometric description available that satisfies 
the needs of geometric design and numerical simulation, e.g., when using data generated by measurements such as geo-
graphic data. Using the IGA framework then requires only one approximation step, and all subsequent processes are based 
on the same representation of the geometry. This representation is then considered as “exact” even though it is only an 
approximation of the exact geometry.

In cases where an exact representation of the boundary is available and compatible with the hierarchical spline spaces, 
we can modify our methods to preserve this geometrical input, as outlined in Remark 1.
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Future work will be devoted to planar domains which are not simply connected and to the three-dimensional situation. 
In the first case we plan to use results on harmonic mappings between multiply connected domains from Duren and 
Hengartner (1997). In the second case, since the theoretical results for harmonic mappings between three-dimensional 
domains are less strong than in the bivariate case, we may also try to use other mappings, similar to the approach used in 
Nguyen and Jüttler (2012).
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