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In spectral decomposition of a 3D mesh model, it is well known that eigenvectors with 
respect to small eigenvalues determine its main pose while eigenvectors associated with 
large eigenvalues encode its surface details. Based on this property, given two meshes 
with different connectivities, one can use coupled quasi-harmonic technique to transfer 
the pose of one mesh onto the other by exchanging the low-frequency coefficients in 
their spectral representations. However, directly synthesizing the new low frequencies 
with old high frequencies usually exhibits two vital artifacts: one is detail shearing and 
shape collapsing, and the other is medium-scale pose missing. This paper reformulates 
the pose transfer as a deformation problem with low-frequency coefficients as handles. 
It finally leads to a non-linear optimization with the coefficients as data constraint and 
Laplacian coordinates as regularity term for preserving details. Meanwhile, a hierarchical 
pose transfer framework is introduced to capture the medium-frequency poses. To reduce 
the computation complexity and enhance the stability we further solve the problem in a 
subspace defined by mean-value coordinates.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

3D mesh editing has been exhaustedly investigated in digital geometry processing (Gain and Bechmann, 2008;
Xu and Zhou, 2009). Example-based mesh modeling is a commonly used strategy in this field. Deformation transfer, as 
an example-based deformation method, is an analogue in which two poses of a reference model are given and therefore 
the underlying motion of the two poses of the model can be extracted as a geometric transformation which can drive a 
source model deforming in the same manner (Baran et al., 2009; Sumner and Popović, 2004). In this case, the source model 
is usually required to have a similar pose with the first pose of the reference one.

However, sometimes we may encounter a more succinct problem: given two mesh models, named reference and source 
models respectively for example, which have different poses and usually possess different connectivities, how can we make 
the source one deform to a pose similar to that of the reference model? This problem is referred to as a pose transfer 
in the literature (Kovnatsky et al., 2013; Lévy, 2006). Since neither deforming course of the reference model nor pose 
registration between source and reference meshes is required, pose transfer can greatly expand the scope of application of 
example-based mesh manipulation compared to deformation transfer. From the viewpoint of human, it is not difficult to 
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Fig. 1. Naively transferring low-frequency coefficients fails to correctly capture the reference pose and source details: (a) and (b) are respectively reference 
and source meshes; (c) result by copying coefficients with bases optimization (Kovnatsky et al., 2013); (d) our pose transfer.

imitate all kinds of poses of other people or even creatures even if we do not know how they move to such pose. It is a 
challenge to automatically conduct a natural pose transfer in mesh editing, however, due to the difficulty in describing a 
pose. To our knowledge, no deformation process has been proposed to sophisticatedly tackle this issue.

Fortunately, the spectral analysis technique over a 3D mesh exposes that the low-frequency components of the Laplace 
matrix of a mesh usually encode its pose information. Once the mesh is decomposed as the linear combination of eigenvec-
tors of the matrix, altering the coefficients of the low-frequency components can change the pose of the model (Dey et al., 
2012). The coupled quasi-harmonic base technique described in Kovnatsky et al. (2013) first sheds light on transferring 
poses between two mesh models with different connectivities by replacing the low-frequency components of a mesh with 
that of the other one. However, as it is impossible to completely decouple pose and shape of a model, this method not only 
fails to reproduce the reference pose in all scales but also loses geometric details of the target model in general. We present 
an example to show this in Fig. 1 in which the first two images (Fig. 1(a)–(b)) are respectively reference and source poses. 
The approach by Kovnatsky et al. (2013) exhibits serious artifacts of distortion and details missing as shown in Fig. 1(c). 
Fig. 1(d) depicts our result which is better than Fig. 1(c) both in keeping details and in capturing multi-level poses.

Spectral analysis based on Laplace operator has achieved great success as a digital geometry processing tool in 
3D modeling applications such as compression (Karni and Gotsman, 2000), quadrangulation (Huang et al., 2008), de-
formation (Dey et al., 2012; Rong et al., 2008), and shape analysis (Song et al., 2014) to name a few, due to its 
harmonic and multi-scale properties. One can find more applications in excellent surveys (Lévy and Zhang, 2010;
Zhang et al., 2007). We investigate pose transfer in this paper by unifying the advantage of the frequency components 
of Laplace matrix in coding the rough pose, and the ability of Laplace coordinates in representing details into a framework. 
Specifically, we extract the low-frequency components of the reference model to drive the source model deforming based 
on the coupled quasi-harmonic bases and prevent details missing by preserving Laplacian coordinates of the source model 
up to a rotation during deformation. In addition, we organize the reference pose into a simple hierarchical structure and 
apply the same pose transfer strategy to learn medium-scale poses. Our main contributions are listed as follows:

• We establish a new Laplace editing framework which regards the frequency components as handles to address the pose 
transfer issue. It results in a non-linear optimization.

• Observing that solution of the above optimization leads to a dense linear system, we integrate the cage-based subspace 
technique into the framework. It is not only able to cut down the solution space greatly but also guarantee the stability 
of the solutions by reducing deforming degree of freedoms.

• Revealing the multi-scale property of the pose of a 3D model, we devise a simple hierarchical strategy to transfer the 
different-scale poses of the reference model onto the source one progressively.

2. Related work

Considering that 3D pose transfer can be regarded as a special mesh deformation/editing operation, we first recall some 
classical deformation methods in the beginning of this section. Immediately following, we mention some mesh manipulating 
methods based on subspace solution. Deformation transfer is semantically most close to pose transfer among all kinds of 
3D mesh manipulations. Functional maps are the foundation of the proposed method. We also make a brief survey on these 
two fields. Finally, we sketch some key ingredients upon which our framework is built.

Mesh deformation Given new positions or transformations of a subset of vertices on a 3D mesh as constraints, the 
metaphor of deformation (Gain and Bechmann, 2008) is to create a deformed mesh which not only satisfies the constraints 
but also preserves some plausible geometric or kinetic characteristics. Here, we only cite several simple examples: the 
Laplacian mesh editing preserves geometric details in terms of Laplacian coordinates (Lipman et al., 2004; Sorkine et al., 
2004; Zhang et al., 2011; Zhou et al., 2005); the ARAP deformation enforces the motion of each triangle of the mesh 
approximating rigidity so as to retain the triangle shape best (Igarashi et al., 2008; Sorkine and Alexa, 2007; Sumner et al., 
2007); the example-driven deformation by Fröhlich and Botsch minimizes the change of edge length, dihedral angle and 
mesh volume during deformation (Fröhlich and Botsch, 2011).
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Spectral-based deformation (Rong et al., 2008) minimizes the change of the first and second fundamental forms, which 
is actually a simplified elastic deformable model. To reduce computational complexity, the authors decomposed the mesh 
model into two layers, i.e., a smoothed eigen-skeleton and details and found the deformed eigen-skeleton in the frequency 
space spanned by low-frequency eigenvectors of the original model. The details are then added back to the deformed 
smoothed model using deformation transfer techniques. The eigen-deformation (Dey et al., 2012) follows a similar frame-
work, however an initial deformed eigen-skeleton is computed by rigidly transforming the specified region, and then 
approximated by a smoothed (deformed) one in the low-frequency space.

Subspace deformation There are three types of subspace methods for 3D deformation. The essence of these methods 
is driving the 3D model using a simple geometric agent such as cages, simplified meshes, and skeletons. In an interactive 
system, one can change the 3D model by manually updating the agent. Barycentric coordinates editing generally represents 
a 3D mesh as the combination of the vertices of its cage and deforms it by moving the cage vertices (Ju et al., 2005;
Li et al., 2013; Lipman et al., 2008). Cages are usually used as geometric agents of meshes to be manipulated. In this case, 
cages are optimized for driving the meshes deforming. As a cage generally has far fewer vertices than its corresponding 
mesh model the complexity of the solution space often decreases greatly (Huang et al., 2006). Solving deformation problem 
in a hierarchical manner (Kircher and Garland, 2005; Kilian et al., 2007; Winkler et al., 2010) can also improve efficiency 
and enhance robustness, however, it is usually more complex in implementation. Skeletal skinning-based deformation drives 
the mesh to change in a near rigid manner by estimating the transformation of mesh vertices as the linear combination of 
the transformations of bones (Capell et al., 2002; Weber et al., 2007).

Deformation transfer Sumner and Popović (2004) copied the deformation suggested by two given reference meshes 
with different shapes/poses onto a source mesh which usually bears connectivity different from the reference ones. They 
represented the deformation between the two reference meshes as a set of transformations, and then mapped these trans-
formations onto the source one to obtain a target (deformed) mesh via establishing a correspondence between the reference 
and source meshes. Baran et al. further considered semantic properties (Baran et al., 2009) during transferring. Zhou et al. 
addressed the deformation transfer between objects with unconnected components (Zhou et al., 2010). By deforming the 
space in which the reference model is embedded, Ben-Chen et al. enabled the deformation transfer from reference poses to 
a source model with different representations (Ben-Chen et al., 2009). Cage-based deformation transfer first solves a cage 
deformation using the reference meshes and then drives the source mesh deforming based on barycentric coordinate edit-
ing (Chen et al., 2010). It should be noticed that all aforementioned methods require multiple reference poses as input for 
defining the deformation of the reference model.

Functional maps To investigate the correspondence between two mesh models, Ovsjanikov et al. introduced linear func-
tional maps between two function spaces defined on the two meshes (Ovsjanikov et al., 2012). In a continuous viewpoint, 
a correspondence between functions defined on two shapes uniquely determines a matching between points on the two 
shapes. As square-integrable functions can be represented as linear combinations of eigenfunctions of the Laplacian opera-
tors on the two shapes, the compatibility of two groups of eigenfunctions is vital for many applications (Huang et al., 2014;
Lévy, 2006). Completely consistent behaving of two groups of eigenfunctions can only be guaranteed for a very restrictive 
shape pair, namely, isometric shapes with simple spectrum (i.e., multiplicity of eigenvalues equal to one) (Ovsjanikov et al., 
2012).

Pose transfer Compared to deformation transfer, pose transfer takes use of less information to modify the shape of a 3D 
mesh model. Only one reference mesh is given in the scenarios to specify the target pose from which a given source mesh 
should learn. Lévy revealed that if projecting the shape space of a mesh, namely the position vector consisting of all vertices 
of the mesh, onto the harmonic bases of its Laplacian matrix, the coefficients corresponding to low-frequency bases can 
reflect its pose. The author performed a rough pose transfer between two meshes with the same connectivity by exchanging 
their low-frequency coefficients. Kovnatsky et al. proposed the notion of coupled quasi-harmonic bases (Kovnatsky et al., 
2013) to construct compatible eigen-bases based on functional maps for two mesh shapes with different connectivities and 
poses. The authors showed the possibility to perform pose transfer by exchanging low-frequency coefficients of two meshes. 
In both methods, the naïve coefficient exchanging operation tends to impair the geometric details of the original source 
model. Furthermore, the transferred results are not able to capture the medium-scale poses of the reference shape too.

Our pose transfer framework also employs coupled quasi-harmonic bases to code the global pose, however, we force the 
whole model undergoing a global deformation under the guidance of low-frequency coefficients with Laplacian coordinates 
to preserve geometric features. As low-frequency coefficients only code the global pose of an object, only copying them 
cannot transfer the poses of different scales of the reference model to the source model. As shown in Fig. 1(a), the pose of 
the left-rear leg of the horse can be regarded as global while the deformation of the head and the right-rear leg of the horse 
is relatively small and their poses can be viewed as medium-size ones. We can observe in Fig. 1(c) that the low-frequency
coefficients of the horse can only drive the camel model deformed according to the global pose. To address the issue, we 
cut out the parts of the reference model with medium-size pose and the corresponding components of the source one. In 
each component pair, their original medium-size poses now become global ones and we can perform pose transfer based 
on our above formulation of global deformation. This process can be conducted in a nested manner if necessary. After all 
parts from the source model are completely deformed under the guidance of the reference model, we glue them together 
to form the final result.
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3. Preliminary

Before describing the proposed method in detail, we first introduce some terminologies and notations. Given a triangular 
mesh M = < V , E, F >, where V = {v0, v1, . . . , v |V |−1} is the vertex set and E, F are respectively the edge and face sets.

Laplacian matrix Laplacian matrix of M is defined as L = D−1W (Kovnatsky et al., 2013), where D = diag{1/a0, 1/a1,

. . . , 1/a|V |−1} with ai the Voronoi area of vertex i, and W is a symmetric matrix with cotangent weights as its entries:

wij =
{

1
2 (cotαi j + cotβi j), i �= j

−∑
k �=i wik, i = j,

(1)

with αi j and βi j , respectively, the opposite angles of edge (i, j) with respect to two triangles sharing the edge. Suppose 
Lφi = λiφi , i = 0, · · · , |V | − 1, where λi and φi are respectively eigenvalues and eigenvectors of L. We say � = {φi} (i =
0, · · · , |V | − 1) the harmonic bases of M . Notice that Eq. (1) may result in non-positive weights for triangular meshes of 
bad quality (Bobenko and Springborn, 2007). Refining them into intrinsic Delaunay triangulations can remedy the artifact as 
described in Fisher et al. (2006) and Liu et al. (2014). We can employ these methods to calculate the Laplacian weights if 
necessary.

Functional maps Given two mesh shapes M = < V , E, F > and M ′ = < V ′, E ′, F ′ > which are usually triangular meshes 
with different connectivities, bijective map T : M → M ′ induces a functional map (Ovsjanikov et al., 2012) F : L2(M) →
L2(M ′) with g(v ′) = F( f )(v ′) = f (T −1(v ′)). Denote � = {φi} (i = 0, · · · , |V | − 1) and �′ = {φ′

i} (i = 0, · · · , |V ′| − 1) the 
two groups of harmonic bases corresponding to M and M ′ , respectively. In the rest of this paper, we always assume that 
harmonic bases have been sorted according to their eigenvalues in an increasing order. Suppose

F(φi) =
∑

j=0,...,|V ′|−1

ci jφ
′
j, i = 0, · · · , |V | − 1, (2)

where � = (ci j)|V |×|V ′| is called a functional matrix.
Pose transfer Using the above notations, we can expand the vertex vectors of two meshes as follows:

V =
|V |−1∑

i=0

αiφi, V ′ =
|V ′|−1∑

i=0

α′
iφ

′
i . (3)

Noticing that αi with respect to small eigenvalues, as low-frequency coefficients, usually determine the whole pose of a 
model, Lévy (2006) found that exchanging low-frequency coefficients of two expansions in Eq. (3) can transfer the pose of 
one mesh to the other, provided that αi and α′

i are expressed in the same “language”. For example, replacing V with

Ṽ =
K∑

i=0

α′
iφi +

|V |−1∑
i=K+1

αiφi (4)

can transfer the pose of M ′ to M . Considering that the two groups of harmonic bases are generally incompatible, Kovnatsky 
et al. (2013) introduced coupled quasi-harmonic bases which are consistent in the sense that functional matrix � is close 
to diagonal with positive entries.

4. Spectrum-driven deformation

Given source and reference shapes M and M ′ which can possess different connectivities, pose transfer requires M not 
only imitating the pose of M ′ but also preserving the details of M , in an as-rigid-as-possible manner, for example. We found 
via experiments that neither Lévy (2006) nor Kovnatsky et al. (2013) can achieve a true pose transfer in this sense. Actually, 
Eq. (4) used by both methods only copies low-frequency coefficients of M ′ to M while the other frequency coefficients 
remain unchanged the therefore the details is added with any geometric transformations. This inevitably exhibits artifacts 
of local pose missing and detail shearing.

We cast pose transfer to a deformation problem with low-frequency coefficients as handles. We firstly establish a formu-
lation to reconstruct the deformed shape of M combining the global pose of M ′ and detail features of M together. To reduce 
the computational complexity, we further introduce the subspace technique based on barycentric coordinates. To address 
the local pose issue, we then discuss a segmentation-based strategy to convert local pose transfer into global pose transfer.

4.1. Spectral reconstruction constrained with Laplacian coordinates

Using the notations in Section 3, we assume that � and �′ have been optimized to be coupled quasi-harmonic 
and expansions in Eq. (3) have also been performed. We investigate how to combine low-frequency coefficients {α′

i}
(i = 0, 1, . . . , K ) from M ′ and Laplacian coordinates δ = LV = (δ0, δ1, . . . , δ|V |−1)

T of M to reconstruct a target pose 
M̃ = < Ṽ , Ẽ, F̃ > of M , where |Ṽ | = |V |, Ẽ = E , and F̃ = F . The first condition indicates that the projection of vertex 
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vector Ṽ onto φi (0 ≤ i ≤ K ) should be (Ṽ , φi) = α′
i , i = 0, 1, . . . , K , where ( , ) denotes inner product. This leads to a 

low-frequency energy

ELF =
K∑

i=0

‖Ṽ T φi − α′
i‖2. (5)

On the other hand, to preserve the Laplacian coordinates we set the following Laplacian energy (Lipman et al., 2004;
Sorkine et al., 2004)

ELC =
|V |−1∑

i=0

‖Ri(Ṽ )δi − δ̃i‖2, (6)

where δ̃i are Laplacian coordinates on M̃ , and Ri are matrices rotating δi according to the orientation of the new pose. This 
finally leads to our pose transfer energy

EPT = ELF + λELC. (7)

4.2. Formulation in cage subspaces

Different from the ordinary Laplacian surface editing described in Lipman et al. (2004), Sorkine et al. (2004), minimizing 
EPT in Eq. (7) will result in a dense linear system since energy item ELF defined in Eq. (5) is a global constraint. To reduce 
the computational complexity, we employ the subspace method. Let C be a cage of M , our goal is to find a new pose of 
C denoted by C̃ , such that M̃ reconstructed from C̃ based on barycentric coordinates editing can mimic the low-frequency 
pose of M ′ well. In the following, we also use the same notation to denote the vertex vector of a cage.

Let 	 be the barycentric coordinates matrix of mesh M with respect to C , namely, we have V = 	C . Once C̃ is found, 
we can compute the vertex vector of M̃ as Ṽ = 	 C̃ (Ju et al., 2005). Substituting Ṽ T for C̃ T 	T in Eqs. (5) and (6) leads 
to

EM
LF =

K∑
i=0

‖C̃ T 	T φi − α′
i‖2 (8)

and

EM
LC =

|V |−1∑
i=0

‖Ri(C̃ T 	T )δi − δ̃i(C̃ T 	T )‖2, (9)

respectively, where superscript M indicates the constraint is performed on vertices of the source mesh M . In our experi-
ments, we always set K = 5.

Minimization of the combined energy of Eqs. (8) and (9) poses over-constraint on the cage and easily yields distorted 
results. We therefore suppress the distortion of cage C̃ by substituting Laplacian coordinates of C for Laplacian coordinates 
preserving item of M in Eq. (9):

EC
LC =

|C |−1∑
i=0

‖Ri(C̃)δC
i − δ̃C̃

i ‖2, (10)

where δC
i and δ̃C̃

i are respectively Laplacian coordinates of C and C̃ .
We adapt the algorithm by Sorkine et al. (2004) to solve the minimization of the combined energy of Eq. (8) and Eq. (10). 

According to Sorkine et al. (2004), entries of both Ri(C̃ T 	T ) and Ri(C̃) can be expressed in terms of vertices of C̃ (see
Appendix A for more details). We find by experiments that directly applying their approach to our setting usually exhibits 
non-uniform scaling artifact in different regions of the model to be edited as shown in Fig. 2 in which the reference, source 
and result are shown from left to right. We therefore introduce a penalty which explicitly constrains the scaling factor si(C̃)

to 1:

EC
SF =

|C̃ |−1∑
i=0

‖si(C̃) − 1‖2. (11)

Notice that si(C̃) can be expressed as the function of vertices in C̃ (see Appendix A).
Since Ṽ = 	 C̃ , we constrained the cage Laplacian coordinates as regularity term EC

LC , this leads to our final energy

EC = EM + λ1EC + λ2EC , (12)
PT LF LC SF
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Fig. 2. Directly applying the original algorithm of Sorkine et al. (2004) to our scenarios tends to non-uniformly scale the source model: reference, source 
and resulting meshes are shown from left to right.

where λ1 and λ2 are weights and all energies are functions of vertices of unknown cage C̃ . A brief explanation on how to 
minimize Eq. (12) is presented in Appendix B. In our current implementation, weights λ1 and λ2 are manually chosen in 
order to make trade-off between pose learning and details preserving. For example, λ1 and λ2 are set to 0.05 in Fig. 3 while 
λ1 = λ2 = 5 × 10−4 in Fig. 9. If the details are not distorted obviously, we increase the two weights. Conversely, if the poses 
are not learned completely, we have to decrease the weights.

4.3. Hierarchical pose transfer

In spectral pose transfer, only low-frequency coefficients of the source model are conveyed to the target one, the sec-
ondary pose change of the source model cannot be captured by the target one. To address the issue, we interactively 
segment the corresponding components from two models whose poses are not identical by using easy mesh cutting (Ji 
et al., 2006). These medium-scale poses of the original model are then converted into low-frequency ones. It indicates that 
we can perform the pose transfer scheme described in Section 4.2 on these pairs of components. If necessary, we can also 
further decompose these local components into smaller parts in order to achieve complete pose learning. Namely, this is a 
multi-level or hierarchical process.

More specifically, suppose we have obtained new pose M̃ of M by learning low frequency of pose M ′ . Let P̃ and P ′ be 
two corresponding parts of M̃ and M ′ , respectively. We enforce P̃ deformed to ˜̃P by learning pose P ′ .

It should be noticed that the segmented parts are usually too coarse to obtain usable coupled quasi-harmonic bases. 
We employ the butterfly subdivision (Dyn, 1990) to refine them once or twice depending on their vertex numbers. After 
successfully transferring poses between the reference and source parts, we remove the inserted vertices such that the new 
pose has the same connectivity as the original one.

After multi-level transfer, each source part (for convenience, we call the part submesh) has been deformed to the similar 
pose with the reference one, but sometimes, it may be different from the reference counterpart in orientation. In order to 
achieve good effect, we use a simple strategy to register the components from two consecutive levels. First, we obtain a local 
frame for both the source part and the reference counterpart. Both local frames are constructed by three points, namely, 
the average point of the whole submesh, the average point of the cut boundary vertices and a point that is far away from 
the boundary. After that, we calculate the rotation matrix between the two local frames, and then, apply the transformation 
to all vertices of the deformed source submesh. Finally, we smooth the boundary area by keeping the Laplacian coordinates 
of boundary vertices of the deformed source submesh before rotation and the Laplacian coordinates of inner vertices of the 
deformed source submesh after rotation.

5. Implementation and results

We have implemented the proposed framework with Visual Studio 2010. All results are obtained by a notebook computer 
with Intel Core i7-3520M 2.90GHz CPU, 8.00GB RAM memory. We call the Matlab code provided by Kovnatsky et al. (2013)
in our C++ program to compute the coupled quasi-harmonic bases. In Kovnatsky et al. (2013), the given p corresponding 
functions gi = f i ◦ t−1 are represented in the discrete setting by matrices F = (f1, f2, . . . , fp) and G = (g1, g2, . . . , gp) of size 
|V | × p and |V ′| × p. Indicator functions of k-ring neighborhoods of selected vertices for correspondence are employed as 
the p corresponding functions fi and gi , where k is usually one of 3, 4 and 5. We always set k = 3 for reference meshes 
and choose the value of k for source meshes such that it minimizes the difference between the normalized areas of the two 
corresponding regions. Besides, in our experiments p is about 30 for the whole models.

In the rest of this section, we first explain the whole process of our approach using an example. Following that, we 
present a variety of examples to show the effect for various topological and geometric configurations, and meanwhile 
compare our results with that of methods described in Lévy (2006), Kovnatsky et al. (2013). We also analyze the efficiency 
of our approach by presenting the running time of key steps and finally discuss its limitations. To save space, some basic 
information such as vertex number and face number for all examples is summarized in Table 1 together with running 
time.
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Fig. 3. Hierarchical pose transfer: (a) the reference pose; (b) the source pose; (c) the result of the whole pose transfer; (d) the right arm medium-scale pose 
transfer, (e) the left arm medium-scale pose transfer, (f) the right leg medium-scale pose transfer and (g) the final result after adjusting the orientation of 
each part.

Fig. 4. Pose transfer between meshes with the same connectivity of the same object: (a) reference pose; (b) source pose and cage; (c) the result of Lévy
(2006); (d) the result of Kovnatsky et al. (2013); (e) two-level pose transfer by our method.

Hierarchical pose transfer Fig. 3 presents an example to show different-scale pose transfer step by step. In this example, 
two levels of hierarchical pose transfer are performed. Firstly, the first level pose transfer is performed for the whole model 
(Fig. 3(c)) and then the second level pose transfer are successively conducted for the right arm (Fig. 3(d)), the left arm 
(Fig. 3(e)) and the right leg (Fig. 3(f)), respectively. The parts that are segmented from the entirely model for local pose 
transfer are shown in red color in the figure. Notice that we reuse the resulting cage from the last transfer as the cage of 
all local parts to be processed instead of constructing a sole cage for each of them. Nevertheless, we always fix those cage 
vertices that are far away from the part to be processed.

The same object with the same connectivity The simplest case is pose transfer between two meshes of the same object 
with the same connectivity. Fig. 4 illustrates such an example in which (a) and (b) are reference and source meshes with a 
cage drawn in wireframe. From (c) to (e) are the pose transferring results by approaches in Lévy (2006) and Kovnatsky et al.
(2013) as well as our methods. The first five images in Fig. 5 illustrate the second to the sixth bases of Laplacian matrices 
of the reference mesh (upper row) and the source meshes (bottom row). These bases are directly used by Lévy (2006). The 
correspondence between two groups of bases looks good enough and therefore the pose transfer is successful to certain 
extent (see Fig. 4(c)). We also illustrate the functional matrix (rightmost one of Fig. 5) between coupled quasi-harmonic 
bases of two models used by Kovnatsky et al. (2013) and our method. It shows that the correspondence between coupled 
quasi-harmonic bases is also good enough. The pose transfer result by the method described in Kovnatsky et al. (2013) is 
comparable to that of the Lévy’s method. Nevertheless, though there exists little distortion in the result (Fig. 4(c)) by Lévy
(2006) and result (Fig. 4(d)) by the coupled quasi-harmonic technique (Kovnatsky et al., 2013), our pose transfer (Fig. 4(e))
is more sufficient in learning poses of the head, the tail and the rear right leg.

Different objects with the same connectivity The case of different objects with the same connectivity is relatively gen-
eral. In Fig. 6, the pose of a cat (Fig. 6(a)) is transferred onto a tiger (Fig. 6(b)). Both reference and source meshes are 
topologically identical. Also, results by three methods, Lévy (2006), Kovnatsky et al. (2013) and ours are illustrated in 
Fig. 6(c)–(e), respectively. In this example, the result by Lévy (2006) is still very unsatisfactory. The original Laplacian bases 
used by this method are illustrated in Fig. 7 which shows that the correspondence is very poor. In this figure, the rightmost 
image displays the correspondence matrix between two sets of coupled quasi-harmonic bases from the two models. Though 
the correspondence looks good, the result by Kovnatsky et al. (2013) also exhibits serious distortion or insufficient pose 
transfer. Our pose transfer is better in learning poses of the head, the tail and the front right leg. Note that our result is 
generated with two levels of pose transfer. In the second level, we perform pose transfer on the tail, head, left rear paw and 
right front paw separately.

The same object with different connectivities Here the same object means that the reference and source are similar in 
geometric shape but different in motion pose. Fig. 8 shows that our approach also works for this configuration. Fig. 8(a) and 
(b) are respectively reference and source meshes which possesses different triangulation. Fig. 8(c) is generated by Kovnatsky 
et al. (2013). Obviously, their method cannot capture the tail pose of the reference cat. Fig. 8(d) depicts our result which is 
generated by the first level pose transfer of the whole model and the second level pose transfer of the tail.
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Fig. 5. The second to sixth Laplacian eigenfunctions are visualized for both reference and source meshes from the first to fifth columns. The rightmost: the 
functional matrix between coupled quasi-harmonic bases between two reference and source poses.

Fig. 6. Pose transfer between different objects with the same mesh connectivity. (a) reference; (b) source; (c) result by Lévy (2006); (d) result by Kovnatsky 
et al. (2013); and (e) result by our approach.

Fig. 7. From left to right is the visualization of the original bases corresponding to the second to the sixth smallest eigenvalues while the rightmost image 
depicts the functional matrix between two sets of coupled quasi-harmonic bases for the two models.

Fig. 8. Pose transfer between meshes of the same object with the different connectivities: (a) reference; (b) source; (c) the result of Kovnatsky et al. (2013); 
(d) our result.

General examples – different objects with different connectivities Now we discuss two general examples in which the 
reference and source meshes represent different objects and have different connectivities. Fig. 9 is an example for pose 
transfer between two different men with Fig. 9(a) as reference and Fig. 9(b) as source. Their mesh models have different 
geometry, topology and pose. Fig. 9(c) and (d) are respectively results by Kovnatsky et al. (2013) and our method. After the 
first level pose transfer, we apply the second level pose transfer in the arms, the legs and the head of the source mesh. It 
can be observed that the result by our method is better in learning head orientation and the poses of two legs. Finally, we 
present more general example in which the reference and source models are from different species. It transfers the pose of 
a man model (Fig. 10(a)) to the armadillo model (Fig. 10(b)). Fig. 10(c)–(e) are results of Lévy (2006), Kovnatsky et al. (2013)
and this paper, respectively. We conduct the secondary pose transfer on the two legs and the head of the two models in 
this example. Notice that both former methods exhibit serious distortion while our result looks satisfactory.
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Fig. 9. Pose transfer between meshes of two men with the different connectivities: (a) reference; (b) source; (c) result by Kovnatsky et al. (2013); (d) ours.

Fig. 10. Pose transfer from a man to the armadillo: (a) reference; (b) source; (c) result by Lévy (2006); (d) result by Kovnatsky et al. (2013); (e) ours.

Table 1
Timings for aforementioned examples (unit: second).

Figures Ref. poses 
(V/F num.)

Source poses 
(V/F num.)

Cages 
(V/F num.)

Comput. of 
bases & MVC

Pose transfer 
opti. (iter. times)

The second level 
(the third level)

Fig. 1 19248/38492 10889/21774 452/900 122.079 31.479(10) 140.02 (20.706)

Fig. 3 6442/12880 7506/15008 166/328 53.135 9.812(10) 123.192
Fig. 4 8431/16858 8431/16858 348/692 32.772 7.825(5) 127.559
Fig. 6 7207/14410 7207/14410 520/1036 52.092 63.573(20) 288.196
Fig. 8 3604/7204 7207/14410 319/634 29.111 8.039(5) 33.322
Fig. 9 6241/12863 6449/12894 173/342 23.524 3.762(4) 65.052
Fig. 10 10002/20000 10495/20986 502/1000 55.474 16.775(5) 173.517

Timings To show the efficiency of the proposed approach, we report the running time of key steps such as eigen-
decomposition of Laplacian matrices, computation of coupled quasi-harmonic bases, evaluation of mean-value coordinates 
(MVC) and pose transfer optimization, for all examples used in the paper in Table 1. We also list the size of the reference 
pose, the source pose and the associated cage. Moreover, we also give the iteration number in addition to the whole opti-
mization time for the first level pose transfer while we only show the total time cost for all secondary pose transfers. As 
only Fig. 1 requires the third level pose transfer, we attach its consuming time to the end of the secondary pose transfer 
column (see the number in the small brace).

Limitations As cages used for subspace solution is generated in advance, they are not deformation-aware. Overstocked 
control points may lead to pose over-learning while too few control points may result in details distortion. In a word, the 
pose transfer quality is heavily dependent on the quality of cages to a certain extent. In Fig. 11, (a) is the reference pose, 
(b) and (d) are source poses with different cages, and (c) and (e) are respectively results of two cases. The cage in (b) is 
better than that in (d) (see the regions marked by red rectangles) and therefore its result (Fig. 11(c)) is also better than that 
of the other (Fig. 11(e)). Fig. 12 gives another example in which the right hand of the man in (d) is inappropriately bent.

6. Conclusion

We have described a spectral-based pose transfer approach. It is insufficient to learn the pose of a reference by only 
using low-frequency component. Therefore, our approach firstly creates a hierarchical pose structure to capture medium-
scale poses. It then segments the components including medium-scale pose. Finally, the approach performs pose transfer 
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Fig. 11. Bad cage quality may result in serious distortion: (a) reference pose; (b) and (c) are respectively source pose with a smoother cage and the 
corresponding result; (d) and (e) are respectively source pose with another cage and corresponding result.

Fig. 12. Bad cage quality may result in overlearning: (a) reference pose; (b) source pose with a good cage; (c) pose transfer result of (b); (d) source pose 
with a bad cage; (e) the result of (d). In (d), the right hand control points of the cage cannot align the joint well, and therefore the resulting right hand is 
overbent (see the regions marked by rectangles).

operation for low-scale frequency on two segmented parts. To prevent distortion during transferring process, we introduce 
a penalty to preserve Laplacian coordinates. Based on the new deformation formulation, a framework is established for 
a variety of applications such as pose transfer between two meshes with different connectivities, mesh deformation, and 
shape interpolation.

As future work, the current computational method for coupled quasi-harmonic basis is not stable enough, particularly, 
when one of the mesh models is too coarse or too irregular. In addition, at this stage, we need to interactively specify 
parts in which pose learning is incomplete. It is desirable to automatically detecting and segmenting those parts. Besides, 
triangulation quality of cages is also a significant factor impacting on the transferring results. Adaptively refining cages 
may be a good choice to control the degree of freedom. Finally, how to automatically choose the weights in Eq. (12) is an 
important issue we need to tackle in the next step.
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Appendix A. Express local transformations of Laplacian operators with position coordinates

The formulation by Sorkine et al. (2004) is employed in our method to represent the parameters of the transformation 
matrices in terms of vertices for preserving Laplacian coordinates up to a rotation for cages. We list the derivation in this 
appendix for completeness.

http://www.mpi-inf.mpg.de/resources/scandb/


92 M. Yin et al. / Computer Aided Geometric Design 35–36 (2015) 82–94
According to Sorkine et al. (2004), the transformation of the vertex i deforming cage C to C̃ has the following simplified 
form:

Ri(C̃) =
⎛
⎝ s −c b

c s −a
−b a s

⎞
⎠ ,

where s is scale factor, and entries a, b, c determine the rotation. Parameters of Ri(C̃) can be expressed in terms of vertices 
of C̃ by solving the following optimization:

min
Ri(C̃)

(‖Ri(C̃)vi − ṽ i‖2 +
∑
j∈Ni

‖Ri(C̃)v j − ṽ j‖2), (13)

where ṽ i and ṽ j are the vertices of C̃ and Ni is the set of neighbors of vertex i.
Denoting the 3D coordinates of vi as (vi(x), vi(y), vi(z)), we have

Ri(C̃)vi =
⎛
⎝ s −c b

c s −a
−b a s

⎞
⎠

⎛
⎝ vi(x)

vi(y)

vi(z)

⎞
⎠

=
⎛
⎝ vi(x) 0 vi(z) −vi(y)

vi(y) −vi(z) 0 vi(x)
vi(z) vi(y) −vi(x) 0

⎞
⎠

⎛
⎜⎜⎝

s
a
b
c

⎞
⎟⎟⎠ .

Let

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎝

...

vkx 0 vkz −vky

vky −vkz 0 vkx

vkz vky −vkx 0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

, Bi =

⎛
⎜⎜⎜⎜⎜⎜⎝

...

ṽk(x)
ṽk(y)

ṽk(z)
...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where vertical ellipsis dots means all k ∈ {i} ⋃Ni are collected. Eq. (13) can be converted into the following minimization:

min‖Ai(s a b c)T − Bi‖2.

It follows⎛
⎜⎜⎝

s
a
b
c

⎞
⎟⎟⎠ = (AT

i Ai)
−1 AT

i Bi = U Bi =

⎛
⎜⎜⎝

U0
U1
U2
U3

⎞
⎟⎟⎠ Bi,

Ri(C̃) =
⎛
⎝ U0 Bi −U3 Bi U2 Bi

U3 Bi U0 Bi −U1 Bi
−U2 Bi U1 Bi U0 Bi

⎞
⎠ .

It is easy to see that the scale factor s = U0 Bi , and this is used in the scale constraint in Eq. (11).

Appendix B. A brief explanation to minimization of Eq. (12)

It is not difficult to know that all energies in Eq. (12) are quadratic function of coordinates of cage C̃ . Particularly,

EC
LC =

|C |−1∑
i=0

‖Ri(C̃)δC
i − δ̃C̃

i ‖2

=
|C |−1∑

i=0

∣∣∣∣∣∣
∣∣∣∣∣∣
⎛
⎝ U0 Bi −U3 Bi U2 Bi

U3 Bi U0 Bi −U1 Bi
−U2 Bi U1 Bi U0 Bi

⎞
⎠ δC

i − δ̃C̃
i

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
|C |−1∑

i=0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
⎛
⎜⎝

U0δ
x
i Bi − U3δ

y
i Bi + U2δ

z
i Bi

U3δ
x
i Bi + U0δ

y
i Bi − U1δ

z
i Bi

−U δx B + U δ
y B + U δz B

⎞
⎟⎠ −

⎛
⎜⎝

δ̃x
i

δ̃
y
i

δ̃z

⎞
⎟⎠

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2 i i 1 i i 0 i i i
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=
|C |−1∑

i=0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
⎛
⎜⎝

U0δ
x
i − U3δ

y
i + U2δ

z
i

U3δ
x
i + U0δ

y
i − U1δ

z
i

−U2δ
x
i + U1δ

y
i + U0δ

z
i

⎞
⎟⎠ Bi −

⎛
⎜⎝

δ̃x
i

δ̃
y
i

δ̃z
i

⎞
⎟⎠

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= ‖O C̃ − LC̃‖2 = ‖(O − L)C̃‖2,

where L is the Laplacian matrix of cage C , δC
i = (

δx
i , δ

y
i , δz

i

)T
and δ̃C̃

i = (
δ̃x

i , δ̃
y
i , δ̃z

i

)T
are the Laplacian coordinates of 

C and C̃ , respectively. Since 	 and φi can be computed in advance, optimizing Eq. (12) reduces to a linear least-squares 
problem.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cagd.2015.03.016.
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