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We study low-order reconstruction operators on polyhedral meshes, providing a unified 
framework for degrees of freedom attached to vertices, edges, faces, and cells. We present 
two equivalent sets of design properties and draw links with the literature. In particular, 
the two-level construction based on a P0-consistent and a stabilization part provides 
a systematic way of designing these operators. We present a simple example of piecewise 
constant reconstruction in each mesh cell, relying on geometric identities to fulfill the 
design properties on polyhedral meshes. Finally, we use these reconstruction operators to 
define a Hodge inner product and build Compatible Discrete Operator schemes, and we 
test the influence of the reconstruction operators in terms of accuracy and computational 
efficiency on an anisotropic diffusion problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reconstruction (or lifting) operators map degrees of freedom (DoFs) to functions living in a finite-dimensional space. DoFs 
are generally attached to some geometric entities of an underlying three-dimensional mesh, e.g., vertices, edges, faces, and 
cells. Reconstruction operators provide a right inverse of the de Rham (or reduction) operators which classically map fields 
(referred to as potentials, circulations, fluxes, and densities – or k-forms with k ∈ {0, 1, 2, 3} in the language of differential 
geometry) to DoFs attached to vertices, edges, faces, and cells, respectively. A reconstruction operator composed with the 
corresponding de Rham operator yields an interpolation operator. The reconstruction operator is said to be of low-order 
when this interpolation operator leaves cell-wise constant fields invariant.

Reconstruction operators are found in many applications. Our main focus here is the construction of discrete Hodge 
operators in the context of the numerical approximation of partial differential equations (PDEs). The discrete Hodge operator 
is the cornerstone of many compatible discretization schemes aiming at preserving properties of the PDE at the discrete 
level; see, e.g., Auchmann and Kurz (2006), Bochev and Hyman (2005), Bonelle (2014), Bonelle and Ern (2014), Bossavit
(1988), Desbrun et al. (2005), Gerritsma (2012), Gillette and Bajaj (2011), Hiptmair (2001), Tarhasaari et al. (1999), Teixeira
(2001) and references therein. Many of these discretizations draw links between vector calculus, differential geometry, and 
algebraic topology. Reconstruction operators also constitute a powerful tool to analyze numerical schemes and to derive 
improved error estimates in different norms; see for instance Bonelle and Ern (2014), Brezzi et al. (2005), Di Pietro and 
Lemaire (2015). One recent example is provided by the Compatible Discrete Operator (CDO) schemes for diffusive PDEs 
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and the Stokes equations (Bonelle, 2014; Bonelle and Ern, 2014; Bonelle and Ern, in press). To some extent, CDO schemes 
can be seen as an extension of Discrete Exterior Calculus (DEC) schemes (Desbrun et al., 2005; Hirani, 2003) to polyhedral 
meshes. We observe that reconstruction operators on polyhedral meshes have a broader applicability than the construction 
of Hodge operators. Examples of alternative usages include the reconstruction of vector fields for postprocessing and imaging 
purposes.

Reconstruction operators have been devised in the Finite Element (FE) literature for specific shapes of mesh cells (tetra-
hedron, hexahedron, pyramid. . . ). The most famous examples are Whitney reconstruction functions on simplices (Whitney, 
1957). These reconstruction functions are built using the Courant hat functions for potentials, the (lowest-order) Nédélec 
shape functions for circulations, and the (lowest-order) Raviart–Thomas–Nédélec shape functions for fluxes. A typical way 
to extend the reconstruction of potentials to polyhedral meshes is to use the concept of generalized barycentric coordinates; 
see Floater et al. (2005), Gillette and Bajaj (2011), Gillette et al. (2012), Hormann and Sukumar (2008), Wachspress (1975), 
Warren et al. (2007) and references therein.

A generic way of building reconstruction operators for any type of DoFs on polyhedral meshes has been proposed 
in Brezzi et al. (2014), Christiansen (2008), Gillette et al. (2014). The reconstruction operators are built locally in each mesh 
cell in such a way that suitable matching conditions are satisfied at mesh interfaces. Specifically, reconstructed potentials 
are continuous across interfaces, the tangential component of circulations is continuous, and so is the normal component 
of fluxes. Such matching conditions ensure the conformity of the reconstruction, in the sense that the operator maps to the 
appropriate Sobolev space such as H1(�), H(curl; �), or H(div; �), where � is the computational domain discretized by 
the three-dimensional polyhedral mesh. The conformity of the reconstruction then plays a central role in the analysis of the 
numerical scheme.

An alternative viewpoint, not aiming at conformity, has been developed in the context of other discretization meth-
ods such as, e.g., the Hybrid Finite Volume (HFV) scheme (Eymard et al., 2010), the Discrete Geometric Approach 
(DGA) (Codecasa et al., 2010), and, more recently, the CDO schemes (Bonelle, 2014; Bonelle and Ern, 2014; Bonelle and 
Ern, in press), the generalized Crouzeix–Raviart method (Di Pietro and Lemaire, 2015), and the Hybrid High-Order (HHO) 
methods (Di Pietro and Ern, 2015; Di Pietro et al., 2014) (which also include the possibility to increase the approximation 
order). For the low-order schemes, the reconstruction operators typically map onto piecewise constant functions on a sub-
mesh (thereby discarding local conformity), while their composition with the de Rham operator remains single-valued. In 
this context, the analysis of the numerical schemes generally hinges on a novel property of the reconstruction, to which we 
refer as dual consistency.

Our contribution is twofold. Firstly, we devise low-order reconstruction operators on polyhedral meshes within a generic 
framework for DoFs attached to vertices, edges, faces, and cells. This framework provides a systematic construction principle 
relying on only one user-defined design parameter. Secondly, we identify a small set of design principles that reconstruction 
operators have to verify so that the resulting discrete Hodge operator satisfies P0-consistency and stability properties, which 
in turn ensure the convergence of the numerical scheme.

The novelty is that the proposed framework unifies two design strategies (hereafter called one-level and two-level) and 
encompasses several low-order nonconforming reconstruction operators already considered in the literature. Specifically, we 
establish the equivalence between the one-level design strategy of the reconstruction operator as considered in Bonelle and 
Ern (2014), Codecasa et al. (2010) and the two-level design strategy as considered in Brezzi et al. (2007), Eymard et al.
(2010), Di Pietro and Ern (2013). This second strategy decomposes the reconstruction operator into the sum of a consistent 
part and a stabilization part. The consistent part is fixed, while the stabilization part depends on the user-defined parameter 
related to the weighting of a least-squares penalty. Additionally, the reconstruction operators built with the value 1

d (d is the 
space dimension) for the user-defined parameter correspond to those proposed in Codecasa et al. (2010) for DoFs attached 
to edges and faces, while the values 1√

d
and 1 lead, respectively, to the reconstruction operator for the gradient devised 

in Eymard et al. (2010) and the generalized Crouzeix–Raviart functions of Di Pietro and Lemaire (2015).
As an illustration, we present piecewise constant reconstruction operators in each mesh cell for all types of DoFs and 

study the impact of the stabilization parameter in terms of accuracy and computational cost for the numerical approximation 
of anisotropic diffusion problems on polyhedral meshes.

This paper is organized as follows. In Section 2, we introduce the different geometric entities. In Section 3, we briefly 
present the CDO framework. A detailed presentation of this subject can be found in Bonelle (2014). In Section 4, we state the 
design properties of reconstruction operators on polyhedral cells, and show that the one- and two-level design principles 
are equivalent. In Section 5, we design a family of reconstruction operators which are piecewise constant on each mesh cell 
and which fulfill the design properties stated in Section 4. Finally, in Section 6, we present an application to CDO schemes 
for the approximation of anisotropic diffusion problems on polyhedral meshes.

2. Geometric objects

2.1. Mesh and geometric entities

The starting point is a discretization of the geometric domain � ⊂ R
3 by a (primal) mesh M := {V, E, F, C} where V

collects vertices (or 0-cells), E edges (or 1-cells), F faces (or 2-cells), and C cells (or 3-cells). A generic element of V (resp. 
E, F, C) is a vertex denoted by v (resp. an edge e, a face f, a cell c); see Fig. 1. The mesh M has the structure of a cellular 
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Fig. 1. Example of primal mesh M highlighting a vertex v ∈ V, an edge e ∈ E, a face f ∈ F, and a cell c ∈ C.

complex, in the sense that the boundary of a k-cell in M, 1 ≤ k ≤ 3, can be decomposed into (k − 1)-cells belonging to M
(see Christiansen, 2008).

Let A be any set among V, E, F, or C. If x is a geometric entity of M of dimension larger than that of the elements of A, 
we denote by Ax the subset defined by

Ax := {a ∈ A |a ⊂ ∂x}, (1)

otherwise,

Ax := {a ∈ A |x ⊂ ∂a}. (2)

For instance, Ec := {e ∈ E | e ⊂ ∂c} collects the edges of c and Ce := {c ∈ C | e ⊂ ∂c} collects the cells of which e is an edge. 
In what follows, design properties are stated on each cell c ∈ C. Therefore, the sets Vc, Ec, and Fc play a key role (note that 
Cc = {c}).

We often denote by X any set such as V, E, F, or C and by x any geometric entity such as v, e, f, or c. The cardinality of 
the set X is denoted by #X.

Definition 1 (Measure). |x| represents the measure of the entity x. For a vertex v ∈ V, |v| = 1 by convention, |e| is the length 
of the edge e, |f| is the area of the face f, and |c| is the volume of the cell c.

Definition 2 (Barycenter). The barycenters of an edge e ∈ E and of a face f ∈ F are defined, respectively, as follows:

xe := 1

|e|
∫
e

x and xf := 1

|f|
∫
f

x. (3)

To each edge e ∈ E, we assign a fixed unit tangent vector τ e and to each face f a fixed unit normal vector νf . Moreover, 
we define for all edges e ∈ E and all faces f ∈ F the vectors

e :=
∫
e

τ e, f :=
∫
f

νf. (4)

Mesh assumption We assume that all primal faces are planar and that each face f ∈ F is star-shaped with respect to its 
barycenter. Moreover, we assume that each cell c ∈ C is star-shaped with respect to a point xc ∈ c (not necessarily the 
barycenter of c). In what follows, we denote by (MB) this set of assumptions.

2.2. Geometric maps

For the remaining part of the paper, we consider an arbitrary cell c ∈ C and state definitions and properties for this cell.

Definition 3 (Primal geometric map). We introduce a primal geometric map gXc : Xc → EX, where EX corresponds to R if 
X ∈ {V, C} and to R3 if X ∈ {E, F}, such that

gVc(v) := 1, ∀v ∈ Vc, (5a)

gEc(e) := e, ∀e ∈ Ec, (5b)

gFc(f) := f, ∀f ∈ Fc, (5c)

gCc(c) := |c|. (5d)



30 J. Bonelle et al. / Computer Aided Geometric Design 35–36 (2015) 27–41
Fig. 2. Example of a prismatic cell. Left: the elementary tetrahedron s(v, e, f,c) is highlighted; Middle: the elementary triangle s(e, f,c) is highlighted; 
Right: the elementary segment s(f, c) is highlighted.

Fig. 3. Example on a prismatic cell of the dual geometric map attached to a vertex v (left) and to an edge e (right).

Definition 4 (Simplex). For all 1 ≤ k ≤ 3, given (k + 1) points {x0, . . . , xk}, s(0, . . . , k) denotes the convex hull of these points 
(yielding, up to degenerate cases, a segment for k = 1, a triangle for k = 2, and a tetrahedron for k = 3); see Fig. 2.

Definition 5 (Dual geometric map). We introduce a dual geometric map g̃Xc : Xc → EX defined as follows:

g̃Vc(v) :=
∑

e∈Ev∩Ec

∑
f∈Fe∩Fc

|s(v,e, f, c)|, ∀v ∈ Vc, (6a)

g̃Ec(e) :=
∑

f∈Fe∩Fc

|s(e, f, c)|νs(e,f,c), ∀e ∈ Ec, (6b)

g̃Fc(f) := |s(f, c)|τ s(f,c), ∀f ∈ Fc, (6c)

g̃Cc(c) := 1, (6d)

where νs(e,f,c) is the unit normal vector to the triangle s(e, f, c) oriented according to τ e for all faces f ∈ Fe and τ s(f,c) is 
the unit tangent vector to the segment s(f, c) oriented according to νf; see Figs. 2 and 3.

Remark 1 (Dual mesh). The quantities specified in Definition 5 naturally appear when one considers a barycentric dual mesh. 
Namely, g̃Vc (v) is the volume in c of the dual cell associated with the vertex v ∈ Vc, g̃Ec(e) is the vector area in c of the dual 
face associated with the edge e ∈ Ec, and g̃Fc (f) is the vector length in c of the dual edge associated with the face f ∈ Fc.

Proposition 1 (Magic formula). Assume (MB). Then, the following identity holds:∑
x∈Xc

g̃Xc(x) ⊗ gXc(x) = |c|IdX. (7)

If X ∈ {V, C}, IdX is equal to 1 and ⊗ is simply a multiplication. If X ∈ {E, F}, IdX is the 3 × 3 identity tensor and ⊗ is the tensor product.

Proof. The case X ∈ {V, C} is straightforward. The proof for the case X ∈ {E, F} is given in Bonelle (2014, Proposition 5.24); 
see also Codecasa and Trevisan (2007). �

The exact representation of constant fields by the reconstruction operators devised in this paper hinges on the iden-
tity (7).
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3. Overview of the CDO framework

A detailed presentation of the CDO framework can be found in Bonelle (2014). In what follows, we only present the 
main ideas.

3.1. Degrees of freedom

Following the seminal ideas of Tonti (1975) and Bossavit (1999–2000), DoFs are defined using de Rham maps, and their 
localization results from the physical nature of the fields. For a cell c ∈ C, the (local) finite-dimensional space of DoFs related 
to discrete potentials is denoted by Vc and collects the values of scalar fields at vertices,

RVc(p)|v := p(xv), ∀v ∈ Vc, (8a)

that related to discrete circulations is denoted by Ec and collects the integrals of the tangential component of vector fields 
along edges,

REc(g)|e :=
∫
e

g · τ e, ∀e ∈ Ec, (8b)

that related to discrete fluxes is denoted by Fc and collects the integrals of the normal component of vector fields across 
faces,

RFc(φ)|f :=
∫
f

φ · νf, ∀f ∈ Fc, (8c)

and that related to discrete densities is denoted by Cc and collects the integral of scalar fields over the cell,

RCc(s)|c :=
∫
c

s. (8d)

Let Xc ∈ {Vc, Ec, Fc, Cc}. De Rham maps RXc : SX (c) → Xc act on sufficiently smooth fields so that DoFs are single valued. 
The domain of the de Rham maps can be taken to be, for instance, SV (c) = H

3
2 +δ(c), SE (c) = H1+δ(c), SF (c) = H

1
2 +δ(c), 

and SC(c) = L2(c) with δ > 0. Moreover, a ∈ Xc can be viewed as an array of size #Xc since Xc is isomorphic to R#Xc . The 
value of the DoF attached to the entity x ∈ Xc is denoted by ax ∈R.

Remark 2 (Link with algebraic topology). Elements of Vc (resp. Ec, Fc, Cc) are 0-cochains (resp. 1-, 2-, 3-cochains).

3.2. Reconstruction operators

Definition 6 (Local reconstruction operator). Let c ∈ C. The local reconstruction operator LXc :Xc → PX (c) is defined in terms 
of a family of #Xc linearly-independent reconstruction functions {�x,c}x∈Xc spanning the finite-dimensional space PX (c), 
called the approximation space, so that the reconstructed field LXc (a) is defined by

LXc(a)(x) :=
∑
x∈Xc

ax�x,c(x), ∀a ∈ Xc, ∀x ∈ c.

The reconstruction functions �x,c take values in EX (scalar-valued for potential and density reconstructions, vector-valued 
for circulation and flux reconstructions). Whenever needed, we underline vector-valued functions and the corresponding 
reconstruction operators. The finite-dimensional space PX (c) is for instance spanned by piecewise EX-valued polynomials. 
We assume that the functions in PX (c) are in the domain of the local de Rham map RXc , i.e. PX (c) ⊂ SX (c).

3.3. Discrete Hodge operators

The name “Hodge operator” stems from a concept of differential geometry called the Hodge-star operator [see Frankel, 
1997, Chapter 14, for instance]. The Hodge operator embeds a metric (usually induced by a phenomenological parameter) 
and connects spaces in duality (k-forms and (d − k)-forms where d is the space dimension and k an integer such that 
0 ≤ k ≤ d). So, there are four distinct Hodge operators in a three-dimensional space. As its continuous analogue, a discrete 
Hodge operator is a metric operator since its definition relies on geometric quantities (lengths, areas, volumes. . . ) and on 
the evaluation of a material property.
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Hodge inner product A discrete Hodge operator can be classically associated with a bilinear form which we call Hodge inner 
product in what follows.

Definition 7 (Local Hodge inner product). Let Xc ∈ {Vc, Ec, Fc, Cc}. Let α denote a material property assumed to be cellwise 
constant, taking values in EX ⊗EX (scalar-valued for potentials and densities and tensor-valued for circulations and fluxes), 
and symmetric positive definite. A local reconstruction operator LXc or, equivalently, a set of local reconstruction functions 
{�x,c}x∈Xc defines a local Hodge inner product as follows:

HXc
α (a1, a2) :=

∫
c

LXc(a1) · α · LXc(a2), ∀a1,a2 ∈ Xc. (9)

As previously noticed by Bossavit (1999–2000) with the concept of Galerkin Hodge based on Whitney reconstruction 
functions, the algebraic realization of the Hodge inner product defined by (9) is the mass matrix of the local reconstruction 
functions weighted by the material property α. Thus, the link between the CDO approach and the FE approach appears 
naturally since FE shape functions can be used to build reconstruction operators.

Design strategies Discrete Hodge operators are the cornerstone of the CDO approach. Well-posedness, convergence and error 
estimates hinge on the properties satisfied by this operator [see Bonelle and Ern, 2014, Bonelle and Ern, in press, for elliptic 
and Stokes problems respectively]. In the CDO framework, the crucial point is thus the design of the discrete Hodge operator 
or, equivalently, the Hodge inner product. Each definition leads to a different scheme.

In the specific case of Cartesian or Delaunay–Voronoï meshes and an isotropic material property, a diagonal discrete 
Hodge operator can be built as in the DEC (Desbrun et al., 2008) or covolume (Nicolaides, 1992) schemes. In more general 
situations, it is possible to design a discrete Hodge operator whose algebraic realization is a sparse and symmetric positive 
definite (SPD) matrix. There are two main design strategies. Either one directly sets the entries of the matrix as in Mimetic 
Finite Difference (MFD) schemes (Brezzi et al., 2005, 2009) or one relies on Definition 7 using reconstruction functions. In 
this paper, we focus on this second strategy.

Local design properties Since a (global) Hodge inner product results from a cellwise assembly process, the design proper-
ties are stated locally, i.e. in each mesh cell. The design of the (local) Hodge inner product hinges on the two following 
properties:

(H1) Stability. There is a real number ηα > 0 possibly depending on α but uniform with respect to c such that for all a ∈Xc

ηα |||a|||2Xc
≤ HXc

α (a, a) ≤ η−1
α |||a|||2Xc

, (10)

where | | |a| | |2Xc
:= ∑

x∈Xc
|px,c| 

( |ax|
|x|

)2
and px,c is a subvolume related to a partition of the cell (cf. Section 5.1 and Fig. 4). 

For analysis purposes, |px,c| may be replaced by any equivalent volume (e.g. |c|) assuming some reasonable local mesh 
regularity. The only consequence is a modification of the value of ηα .

(H2) P0-consistency. For any constant field K ∈ EX, the following identity holds for all a ∈ Xc:

HXc
α (RXc(K ), a) = K · α ·

⎛
⎝∑

x∈Xc

axg̃Xc(x)

⎞
⎠ . (11)

4. Design properties of reconstruction operators

The design of reconstruction operators aims at recovering the two local properties (H1) and (H2) of the Hodge inner 
product. There are two equivalent approaches, hereafter called one-level and two-level approach. The one-level approach 
directly requires properties on the reconstruction operators (or functions), while the two-level approach considers a decom-
position of the reconstruction operators (or functions) into a consistent and a stabilization part.

4.1. One-level approach

This approach is considered by Codecasa et al. (2010) (except for (R1), see Bonelle and Ern, 2014). We require that:

(R1) Stability. There exists a real number ηX > 0 uniform with respect to c such that for all a ∈ Xc,

ηX |||a|||2Xc
≤ ‖LXc(a)‖2

L2(c) ≤ η−1
X |||a|||2Xc

.

(R2) Partition of unity. For any constant field K ∈ EX, the following identity holds:

LXc RXc(K ) = K .



J. Bonelle et al. / Computer Aided Geometric Design 35–36 (2015) 27–41 33
(R3) Dual consistency. The mean-value of LXc satisfies the following identity:∫
c

LXc(a) =
∑
x∈Xc

axg̃Xc(x), ∀a ∈ Xc.

(R4) Unisolvence. LXc is a right inverse of RXc , i.e.

RXcLXc(a) = a, ∀a ∈ Xc.

Proposition 2. If the Hodge inner product is built using (9), then the properties (R1)–(R3) imply (H1)–(H2).

Proof. The stability property (H1) results from (R1) and (9) together with the positive-definiteness of α. Let K ∈ EX. Recall 
that α is constant in c. For all a ∈ Xc, (H2) results from

HXc
α (RXc(K ), a) =

∫
c

LXc RXc(K ) · α · LXc(a) by (9),

=
∫
c

K · α · LXc(a) by (R2),

= K · α ·
∑
x∈Xc

axg̃Xc(x) by (R3). �

Therefore, every discrete Hodge operator built from (9) with a reconstruction operator verifying the three properties 
(R1)–(R3) inherits the properties (H1) and (H2), so that the theoretical results derived in Bonelle (2014, Chapter 6)
and Bonelle and Ern (2014) hold.

Remark 3 (Unisolvence). Observe that the unisolvence property (R4) is not needed to satisfy (H1) and (H2).

Local design properties on reconstruction functions We now rewrite the properties (R2)–(R4) in terms of reconstruction func-
tions for each type of DoFs. We only state the results since the proofs are straightforward.

Proposition 3 (Potential reconstruction functions).

(R2) ⇐⇒
∑
v∈Vc

�v,c(x) = 1, ∀x ∈ c, (12a)

(R3) ⇐⇒
∫
c

�v,c = g̃Vc(v), ∀v ∈ Vc, (12b)

(R4) ⇐⇒ �v,c(xv′) = δv,v′ , ∀v,v′ ∈ Vc, (12c)

where δ•,• is the Kronecker symbol.

Proposition 4 (Circulation reconstruction functions).

(R2) ⇐⇒
∑
e∈Ec

�e,c(x) ⊗ e = Id, ∀x ∈ c, (13a)

(R3) ⇐⇒
∫
c

�e,c = g̃Ec(e), ∀e ∈ Ec, (13b)

(R4) ⇐⇒
∫
e′

�e,c · τ e′ = δe,e′ , ∀e,e′ ∈ Ec. (13c)

Proposition 5 (Flux reconstruction functions).

(R2) ⇐⇒
∑
f∈Fc

�f,c(x) ⊗ f = Id, ∀x ∈ c, (14a)

(R3) ⇐⇒
∫

�f,c = g̃Fc(f), ∀f ∈ Fc, (14b)
c



34 J. Bonelle et al. / Computer Aided Geometric Design 35–36 (2015) 27–41
(R4) ⇐⇒
∫
f′

�f,c · νf′ = δf,f′ , ∀f, f′ ∈ Fc. (14c)

Remark 4 (Density reconstruction). LCc is derived from a single reconstruction function �c since #Cc = 1. From property (R2), 
we infer that

�c(x) = 1

|c| , ∀x ∈ c. (15)

We easily verify that this definition is in agreement with (R3) (since 
∫

c LCc(a) = ac
∫

c �c = ac) and (R4) (since 
∫

c �c = 1).

In the remaining part of this paper, we focus on the case X ∈ {V, E, F}, the case X = C being straightforward.

Remark 5 (Physical dimension). Observe that the reconstruction functions �v,c are dimensionless, �e,c scale as the reciprocal 
of a length, �f,c scale as the reciprocal of a surface, and �c as the reciprocal of a volume.

Remark 6 (P1-consistency). Whenever the linear completeness property∑
v∈Vc

xv�v,c(x) = x, ∀x ∈ c, (16)

holds along with (R2), this induces a P1-consistency property i.e., any affine field A in c verifies LVc RVc (A) = A. Indeed, 
the field A can be written as A(x) := A(xc) + G · (x − xc) with G constant in c, so that LVc RVc (A(x)) = ∑

v∈Vc
A(xv)�v,c(x) =

A(xc) + G · (x − xc) = A(x).

4.2. Two-level approach

The second approach operates a decomposition of the reconstruction operator LXc into a consistent part CXc and a 
stabilization part SXc , so that

LXc := CXc + SXc , (17)

with consistent part CXc taking a constant value in EX defined as follows:

CXc(a) := 1

|c|
∑
x∈Xc

axg̃Xc(x), ∀a ∈ Xc, (18)

and a stabilization part SXc : Xc → PX (c) which is the only user-dependent part in the reconstruction operators. Observe 
that definition (18) implies

CXc RXc(K ) = K , ∀K ∈ EX, (19)

owing to (7). Similar decompositions to (17) have been considered in the context of MFD schemes (Brezzi et al., 2005, 
2007), for the reconstruction of gradients in the context of HFV schemes (Eymard et al., 2010) (cf. also Agélas et al., 2010, 
Section 3.3) and of the generalized Crouzeix–Raviart method of Di Pietro and Lemaire (2015), and for the reconstruction of 
gradients and fluxes in the context of HHO schemes (Di Pietro and Ern, 2013, 2015; Di Pietro et al., 2014).

Local design properties Since the consistent part of the reconstruction operator is defined by (18), the design properties are 
stated on SXc for all c ∈ C. In addition to (R1) and (R4), we require that:

(R2∗) For any constant field K ∈ EX,

SXc RXc(K ) = 0. (20)

(R3∗) For all a ∈Xc,∫
c

SXc(a) = 0. (21)

In terms of reconstruction functions, the translation of (17) is

�x,c(x) := �Co
x,c(x) + �St

x,c(x), ∀x ∈ Xc, ∀x ∈ c, (22)

where �Co
x,c and �St

x,c are respectively the consistent and stabilization part of the reconstruction function. We infer from (18)
that

�Co
x,c(x) := g̃Xc(x)

, ∀x ∈ Xc, ∀x ∈ c. (23)
|c|
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Moreover, (R2∗) and (R3∗) are equivalent to

(R2∗) ⇐⇒
∑
x∈Xc

gXc(x) · �St
x,c(x) = 0, (24a)

(R3∗) ⇐⇒
∫
c

�St
x,c = 0, ∀x ∈ Xc. (24b)

Proposition 6 (Link between the two sets of properties). Let LXc = CXc + SXc with CXc defined by (18). Then, (R2∗) is equivalent to 
(R2) and (R3∗) to (R3).

Proof. (R2) readily results from (R2∗) and (19). Moreover, (R3∗) yields 
∫

c LXc (a) = ∫
c CXc (a) = ∑

x∈Xc
axg̃Xc(x), so that (R3)

holds. The converse statement is proven with similar arguments. �
A straightforward consequence of Proposition 6 is that every Hodge inner product built using reconstruction operators 

such that (R1) holds, the consistent part being defined by (18) and the stabilization part satisfying properties (R2∗) and 
(R3∗), inherits the properties (H1) and (H2).

Proposition 7 (Orthogonal decomposition). A reconstruction operator built using (17) yields a Hodge inner product verifying for all 
a1, a2 ∈Xc ,

HXc
α (a1, a2) :=

∫
c

CXc(a1) · α · CXc(a2) +
∫
c

SXc(a1) · α · SXc(a2).

Proof. This is a consequence of (R3∗) and the fact that CXc maps onto constant fields in EX. �
The consistent part of the Hodge inner product is identical for all choices of the reconstruction operator and is equal, for 

all a1, a2 ∈Xc, to

1

|c|
∑
x∈Xc

∑
x′∈Xc

a1,xa2,x′ g̃Xc(x) · α · g̃Xc(x′).

5. Piecewise-constant reconstruction operators

The goal of this section is to give an example of reconstruction operators on polyhedral meshes. We reconstruct potential 
(resp. circulation, flux) fields from DoFs attached to vertices (resp. edges, faces) using a piecewise constant approximation 
in each mesh cell. LV , LE , and LF are nonconforming reconstruction operators which embrace as particular cases, the 
DGA (Codecasa et al., 2010) and HFV (Eymard et al., 2010) reconstruction operators. This class of reconstruction operators 
is attractive from an implementation viewpoint since reconstruction operators are explicitly defined, i.e. they are not the 
numerical solutions of local problems.

5.1. Cell partitions

We first define three partitions of a cell based on the simplicial subdivision introduced in Section 2.

Definition 8 (Partitions of a cell). We set:

pv,c :=
⋃

e∈Ev∩Ec

⋃
f∈Fe∩Fc

s(v,e, f, c), ∀v ∈ Vc, (25a)

pe,c :=
⋃

f∈Fe∩Fc

⋃
v∈Ve

s(v,e, f, c), ∀e ∈ Ec, (25b)

pf,c :=
⋃
e∈Ef

⋃
v∈Vf

s(v,e, f, c), ∀f ∈ Fc. (25c)

The vertex-based partition is denoted by Pv,c := {pv,c}v∈Vc , the edge-based partition by Pe,c := {pe,c}e∈Ec , and the face-based 
partition by Pf,c := {pf,c}f∈Fc ; see Fig. 4.

Remark 7 (Case X = C). Applying the same rationale as in Definition 8 leads to pc,c := c.
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Fig. 4. Examples of an element of Pf,c (left), Pe,c (middle), and Pv,c (right) in a hexahedral cell.

Remark 8 (Link between pv,c and g̃Vc (v)). By definition, |pv,c| = g̃Vc(v) for each vertex v ∈ Vc.

We readily verify that 
∑

x∈Xc
|px,c| = |c| for each cell c ∈ C. Observe also that the followings identities hold:

|pv,c| = g̃Vc(v), ∀v ∈ Vc, (26a)

|pe,c| = 1

d
gEc(e) · g̃Ec(e), ∀e ∈ Ec, (26b)

|pf,c| = 1

d
gFc(f) · g̃Fc(f), ∀f ∈ Fc. (26c)

5.2. Generic definition

Definition 9 (Piecewise constant reconstructions). We set LXc = CXc +SXc with CXc defined by (18) and SXc :Xc → P0(PX,c)

(the space spanned by EX-valued constant fields in each px,c) defined for all a ∈ Xc as follows:

SXc(a) := ŜXc

(
a − RXcCXc(a)

)
, (27)

where for all b ∈Xc,

ŜXc(b)|px,c := β
g̃Xc(x)

|px,c| bx, ∀x ∈ Xc. (28)

β > 0 is a free-parameter related to the stabilization.

In terms of reconstruction functions, the stabilization part corresponding to Definition 9 is defined as follows:

�St
x,c|px′,c := β

g̃Xc(x)

|px′,c|
(

δx,x′ − g̃Xc(x′) ⊗ gXc(x′)
|c|

)
(29)

The circulation and flux reconstruction operators proposed in DGA schemes correspond to the choice β = 1
d , while the 

circulation reconstruction operator proposed in HFV schemes corresponds to the choice β = 1√
d

.

Proposition 8. Assume (MB). Then, SXc specified in Definition 9 verifies properties (R2∗) and (R3∗).

Proof. (R2∗) is a straightforward consequence of (19) and (27). Let us now verify (R3∗). Starting from (29), we infer that ∫
c �St

x,c = ∑
x′∈Xc

∫
px′,c

�x,c|px′,c = βg̃Xc (x) − β
g̃Xc (x)

|c|
∑

x′∈Xc
g̃Xc(x′) ⊗ gXc(x′) = 0, owing to (7) for the last identity. �

5.3. Specific definitions

Potential reconstruction operators LVc : Vc → P0(Pv,c) is defined for all p ∈ Vc from the two following contributions:

CVc(p) := 1

|c|
∑
v∈Vc

g̃Vc(v)pv, (30a)

and, for all v′ ∈ Vc,

SVc(p)|pv′,c = β

|c|
∑

g̃Vc(v) (pv′ − pv) . (30b)

v∈Vc
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In terms of reconstruction functions, (30) yields

�Co
v,c := g̃Vc(v)

|c| , ∀v ∈ Vc, (31a)

�St
v,c|pv′,c = β

g̃Vc(v)

|c| (δv,v′ − 1), ∀v,v′ ∈ Vc. (31b)

We observe that the value of these functions is not necessarily continuous across the faces of the partition (induced by 
Pv,c) lying inside c, so that, in general, LVc does not map into H1(c).

Circulation reconstruction operator LEc
: Ec → [P0(Pe,c)]3 is defined for all u ∈ Ec from the two following contributions:

CEc
(u) := 1

|c|
∑
e∈Ec

ueg̃Ec(e), (32a)

and, for all e′ ∈ Ec,

SEc
(u)|pe′,c := β

g̃Ec(e′)
|pe′,c|

(
ue′ − gEc(e′) · CEc

(u)
)
. (32b)

In terms of reconstruction functions, (32) yields

�Co
e,c := g̃Ec(e)

|c| , ∀e ∈ Ec, (33a)

and, for all e, e′ ∈ Ec,

�St
e,c|pe′,c = β

(
δe,e′ − g̃Ec(e′) ⊗ gEc(e′)

|c|
)
g̃Ec(e)

|pe′,c| . (33b)

We observe that the tangential component of these functions is not necessarily continuous across the faces of the submesh 
(induced by Pe,c) lying inside c, so that, in general, LEc

does not map into H(curl; c).

Flux reconstruction operator LFc
:Fc → [P0(Pf,c)]3 is defined for all φ ∈Fc from the two following contributions:

CFc
(φ) := 1

|c|
∑
f∈Fc

φfg̃Fc(f), (34a)

and, for all f′ ∈ Fc,

SFc
(φ)|pf′,c := β

g̃Fc(f′)
|pf′,c|

(
φf′ − gFc(f′) · CFc

(φ)
)
. (34b)

In terms of reconstruction functions, (34) yields

�Co
f,c := g̃Fc(f)

|c| , ∀f ∈ Fc, (35a)

and, for all f, f′ ∈ Fc,

�St
f,c|pf′,c = β

(
δf,f′ − g̃Fc(f′) ⊗ gFc(f′)

|c|
)
g̃Fc(f)

|pf′,c| . (35b)

We observe that the normal component of these functions is not necessarily continuous across the faces of the submesh 
(induced by Pf,c) lying inside c, so that, in general, LFc

does not map into H(div; c).

Proposition 9 (Unisolvence). LXc defined from Definition 9 verifies (R4) if and only if

β = 1 if Xc = Vc and β = 1

d
if Xc ∈ {Ec,Fc}.

Proof. The case Xc = Vc is readily verified starting from (31). The case Xc = Ec stems from (26b). For all edges e ∈ Ec, the 
following identity holds:∫

e

�e,c · τ e = g̃Ec(e) · g̃Ec(e)

(
1

|c| + β

|pe,c| − βg̃Ec(e) · g̃Ec(e)

|pe,c||c|
)

= 1 + (βd − 1)(1 − d|pe,c|
|c| ),

and the right-hand side equals 1 if and only if β = 1
d . The proof for the case Xc =Fc follows the same lines. �
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Fig. 5. Two examples of polyhedral meshes. Left: prismatic mesh with polygonal basis; Right: checkerboard mesh with hanging nodes.

Remark 9. The choice β = 1√
d

adopted in HFV schemes has the practical advantage to yield a diagonal discrete Hodge 
operator when the material property is isotropic and the mesh is superadmissible see Eymard et al., (2010, Lemma 2.1). On 
the other hand, adapting the arguments of Generalized Crouzeix–Raviart schemes (Di Pietro and Lemaire, 2015, Lemma 8), 
the choice β = 1 allows one to devise a piecewise affine potential reconstruction on the pyramidal submesh 

⋃
c∈C Pf,c with 

continuous mean values at interfaces of the submesh.

6. Application

6.1. CDO schemes for diffusion problems

In this section, we focus on CDO vertex-based schemes for elliptic problems as introduced in Bonelle and Ern (2014). 
The model problem is

−div(κgrad(p)) = s in �, (36)

where p is termed the potential, κ the conductivity tensor (assumed to be symmetric with eigenvalues uniformly bounded 
from above and from below away from zero), and s the source term. We consider Dirichlet boundary conditions. The discrete 
system is: Find p ∈ V such that, for all q ∈ V ,

HE
κ (GRAD(p), GRAD(q)) =

∫
�

sL0
V (q). (37)

L0
V is defined as the piecewise constant reconstruction detailed in (30) with the choice β = 1. The global Hodge inner prod-

uct is simply defined by collecting the local contributions HE
κ (u, v) := ∑

c∈C HEc
κ (uc, vc) where uc and vc are the restriction 

of the global DoFs to the cell c ∈ C, i.e. uc, vc ∈ Ec. The discrete gradient operator GRAD : V → E is defined as follows:

GRAD(p)|e =
∑
v∈Ve

ιv,epv, ∀e ∈ E, (38)

where the incidence number is such that ιv,e = 1 if τ e points towards v, ιv,e = −1 otherwise.

6.2. Numerical results

We consider an adaptation of the first test case of the FVCA benchmark (Eymard et al., 2011). The domain � is the unit 
cube [0,1]3, and the exact potential and the conductivity are

p(x, y, z) := 1 + sin(πx) sin
(
π

(
y + 1

2

))
sin

(
π

(
z + 1

3

))
,

κ :=
[ 0.1 0.25 0

0.25 1 0.5
0 0.5 10

]
. (39)

The source term and the Dirichlet boundary conditions are set according to (39). Since the global linear system is SPD 
by construction, it can be efficiently solved using a preconditioned Conjugate Gradient method. Two sequences of three-
dimensional polyhedral meshes are tested, each family consisting of successive uniform refinements of an initial mesh. The 
first mesh sequence, hereafter denoted by PrG, contains prismatic cells with polygonal basis, and the second one, here-
after denoted by CB, checkerboard cells with hanging nodes; see Fig. 5. The finest mesh of the PrG sequence contains 
approximately 150,000 vertices and 350,000 edges and that of the CB sequence 250,000 vertices and 700,000 edges.
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Fig. 6. Discrete error on the potential (left) and discrete error on the gradient (right) for different values of β and the two mesh sequences. Dashed (resp. 
dotted) line indicating second-order (resp. first-order) convergence rates are included.

Table 1
Labels associated with each case (β , mesh sequence).

β 1
d3

1
d

1√
d

d

PrG
CB

Fig. 7. Error ErE (g) as a function of β for each mesh of the PrG sequence (left) and the CB sequence (right).

Accuracy We perform a comparative study of the reconstruction operators by computing a discrete error on the potential 
ErV (p) and a discrete energy error on the gradient ErE (g) defined as follows:

ErV (p) := |||RV (p) − p|||V
|||RV (p)|||V , (40)

ErE (g) :=
√

HE
κ (RE (g) − g, RE (g) − g)

HE
κ (RE (g),RE (g))

, (41)

where | | |a| | |2V := ∑
c∈C

∑
v∈Vc

|pv,c|a2
v , g := grad(p) and g := GRAD(p). We plot the errors ErV (p), and ErE (g) in Fig. 6. Four 

values of the stabilization parameter β are considered: an under-penalized value ( 1
d3 ) the one used in DGA ( 1

d ), the one 
used in HFV ( 1√

d
), and an over-penalized value (d). Labels associated with each case are collected in Table 1. We observe 

that the over-penalized scheme produces a larger error. We also notice a super-convergence in the energy norm for PrG
meshes, as already observed in Bonelle and Ern (2014).

In Fig. 7, we plot the error ErE (g) for a large set of values of β and for the two mesh sequences. Values of β around 1√
d

yield the most accurate results for the present test case.

Cost In order to compare the efficiency to solve the linear systems produced by the different reconstruction operators, we 
define the computational cost χ := nnz × nIte, where nnz is the number of nonzero entries of the matrix to invert and nIte
is the number of iterations performed by the iterative solver to reduce the Euclidean norm of the residual below a tolerance 
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Fig. 8. Computational cost χ as a function of β for each mesh of the PrG sequence (left) and the CB sequence (right).

Table 2
Synthesis of results related to the discrete min./max. principle.

Mesh β 1
d4

1
d3

1
d

1√
d

d d2

PrG min N N Y Y Y Y
max N N Y Y Y Y

CB min N N N Y Y Y
max N N N Y Y Y

set to 10−10. χ provides a reasonable estimate of the computational cost to solve the linear system since the most costly 
operation in an iterative solver such as the Conjugate Gradient method is the matrix–vector product. In Fig. 8, we plot the 
computational cost χ for a large set of values of β and for the two mesh sequences. The computational cost is higher for 
the schemes with an over-penalized value of β , and it is also slightly higher for an under-penalized value.

Preservation of bounds Finally, we investigate numerically the discrete minimum/maximum principle (DMP). Setting pmin :=
minv∈V pv and pmax := maxv∈V pv, we consider that the discrete minimum (resp. maximum) principle is numerically satisfied 
if pmin ≥ minx∈� p(x) (resp. pmax ≤ maxx∈� p(x)). Results are collected in Table 2. Y indicates that the DMP is satisfied 
(minimum or maximum) for all the meshes of the sequence and N indicates that at least one mesh in the sequence does 
not respect the criterion. Using an under-penalized value of β negatively impacts the DMP.

7. Conclusion

In this work, we have studied low-order reconstruction operators for polyhedral meshes in a unified framework for de-
grees of freedom attached to vertices, edges, faces, and cells. These reconstruction operators provide a systematic way of 
building a Hodge inner product which is a key concept for the compatible numerical approximation of PDEs. We have pre-
sented two equivalent sets of design properties. Moreover, a simple example of piecewise constant reconstruction operators 
depending on a single stabilization parameter has been detailed, and the influence of this parameter on accuracy and com-
putational costs has been investigated numerically on an anisotropic diffusion problem using CDO vertex-based schemes. 
Under- and over-penalized values of the stabilization parameter have a negative impact, on the preservation of bounds and 
on accuracy and costs, respectively. For the problem considered, appropriate choices are values closed to those proposed in 
DGA and HFV schemes. These conclusions are to be confirmed by further numerical tests.
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