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The registration of two geometric surfaces is typically addressed using variants of the 
Iterative Closest Point (ICP) algorithm. The Sparse ICP method formulates the problem using 
sparsity-inducing norms, significantly improving the resilience of the registration process to 
large amounts of noise and outliers, but introduces a significant performance degradation. 
In this paper we first identify the reasons for this performance degradation and propose 
a hybrid optimization system that combines a Simulated Annealing search along with the 
standard Sparse ICP, in order to solve the underlying optimization problem more efficiently. 
We also provide several insights on how to further improve the overall efficiency by using a 
combination of approximate distance queries, parallel execution and uniform subsampling. 
The resulting method provides cumulative performance gain of more than one order of 
magnitude, as demonstrated through the registration of partially overlapping scans with 
various degrees of noise and outliers.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Geometric registration methods search for the transformation that optimally aligns two or more surfaces. In this paper, 
we focus on the pairwise registration of a source surface to a target one, using a rigid transformation that consists of a 
rotation and a translation.

Solving this registration problem is essential to many applications: the limited range of 3D object acquisition devices in 
conjunction with the self-occlusion of physical objects, requires the reconstruction of digital surfaces from individual over-
lapping partial scans, initially available at different coordinate systems. Furthermore, in quality inspection of manufactured 
objects, a cloud of measured points must be aligned with the reference CAD model from which the physical object has been 
manufactured. With this procedure, manufacturing errors can be detected, measured and visualized. Registration algorithms 
can also be used for the reassembly of fractured objects. In this case, two matching fragments often share a common contact 
surface. Therefore, finding the transformation that aligns these fragments can be seen as a registration task that optimally 
aligns the contact surfaces (Papaioannou et al., 2001; Huang et al., 2006). In robotics, registration algorithms can be used to 
determine the exact location and orientation of a mobile autonomous agent in the environment (Segal et al., 2009). Finally, 
rigid registration methods are often used as an initialization step for non-rigid registration techniques (Pauly et al., 2005;
Cheng et al., 2010) and can be also used to detect symmetries in geometric objects (Gelfand et al., 2005; Jiang et al., 2013).

Pairwise rigid registration is often handled with the well-known Iterative Closest Point (ICP) algorithm (Besl and 
McKay, 1992; Chen and Medioni, 1992) or one of its variants. This algorithm effectively performs a local search for the 
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Fig. 1. Rigid registration of two partially overlapping scans of a cultural heritage object. In this challenging registration problem, outliers inherently occur 
due to the partial overlap of the scans, especially at the edges of the scanner’s field of view. Furthermore, reflected light on polished surfaces is misread by 
the sensor, introducing additional outliers. Left: The input scans in their initial pose. Middle: Pairwise registration using Sparse ICP. The optimizer in this 
case is trapped in a local minimum, failing to align the book at the middle of the scene. Right: Pairwise registration using our method provides the desired 
alignment. The 3D dataset was provided by Breuckmann GmbH.

Fig. 2. Overview of our pairwise rigid registration method. We combine Simulated Annealing that can quickly approach near the solution, with an ADMM 
optimizer that is used to guarantee convergence to an optimal solution. To further improve the efficiency, our hybrid coarse-to-fine approach uses approxi-
mate distance queries at the first stage.

optimal alignment, and is often combined with global registration methods (Gelfand et al., 2005; Aiger et al., 2008;
Mellado et al., 2014), which provide a coarse approximation of the globally optimal solution. The problem becomes sig-
nificantly more challenging, when noise and outliers are introduced to the input data set, due to the partial overlap of 
the registered surfaces, missing regions of data due to self-occlusion or imprecise measurements, when low-accuracy 3D 
acquisition methods are used. Furthermore, even in the case of high-accuracy measurements, outliers occur when scanning 
reflective surfaces, such as metals, or at the edges of the scanner’s field of view, as shown in Fig. 1, creating the need for 
robust alignment algorithms.

Bouaziz et al. (2013) demonstrated that the registration problem can be formulated as an �p -norm minimization of 
a vector of residual errors, for p ∈ [0, 1], and proposed the Sparse ICP method to find a locally optimal solution to this 
problem. The parameter p controls the influence of outliers to the solution, and as it tends towards zero, the robustness of 
the method increases. However, at the same time the efficiency of the method is negatively affected, because the Alternating 
Direction Method of Multipliers (ADMM) optimizer, which is used to solve the underlying optimization problem, is forced to 
take smaller steps in the parameter space and the convergence rate of the method is significantly reduced. The design of a 
more efficient optimizer for this non-convex problem is the main contribution of our work.

1.1. Overview and contributions

In this paper, after identifying the reasons for the low efficiency of the original Sparse ICP approach (Section 4), we 
propose a registration pipeline that, similarly to Sparse ICP, formulates the problem using robust sparsity-inducing norms 
and significantly improves the convergence rate of the method by using a more efficient hybrid optimization strategy (Sec-
tion 5). In particular, our method combines a randomized Simulated Annealing search, which allows the optimizer to take 
large steps in the parameter space and quickly approach the solution, with an ADMM-based optimizer that guarantees the 
convergence to the final optimal solution. Furthermore, we provide several insights on how to further increase the efficiency 
of our approach by using a combination of approximate distance queries, subsampling and parallel execution (Section 6). 
Fig. 2 provides an overview of the proposed alignment scheme.

We evaluate our method on the registration of partially overlapping scans with various degrees of noise and outliers and 
we demonstrate a performance improvement of more than one order of magnitude over the original Sparse ICP method 
for sufficiently low values of the parameter p. Furthermore, our experiments indicate a significant improvement in the 
robustness of the method to noise and outliers.

2. Related work

Since surface registration is fundamental in many domains, various methods have been proposed in the bibliography to 
address this problem. In this section we review the ones that are mostly related to our work. For a more comprehensive 
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overview of both rigid and non-rigid registration methods, the interested reader is referred to a recent survey by Tam et al.
(2013).

Registration methods can be roughly classified into two general categories, voting schemes and correspondence de-
termination methods. Voting methods take advantage of the low dimensionality (6DoF) of the rigid registration prob-
lem and directly search the global parameter space for the optimal transformation. This transformation can be defined 
by two sets of matching points with cardinality of at least three. Then a voting scheme is used to find the sets of 
points that define the optimal alignment, transforming the continuous surface alignment problem into a discrete one. 
Popular methods include the Generalized Hough Transform (Hecker and Bolle, 1994), Geometric Hashing (Wolfson and 
Rigoutsos, 1997) and several RANSAC-based methods (Irani and Raghavan, 1999; Chen et al., 1999; Aiger et al., 2008;
Mellado et al., 2014). The methods in this category search for a globally optimal alignment, but due to the discretization of 
the search space, the computed solution is often coarse and requires a local refinement in order to provide a highly accurate 
alignment.

The second category of registration methods is based on the observation that computing the optimal alignment between 
the source and the target surface is equivalent to finding, for each point on the source surface, the corresponding point 
at the target one. Given this set of corresponding points, closed-form solutions exist to compute the optimal alignment 
(Umeyama, 1991; Eggert et al., 1997). The Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992; Chen and Medioni, 
1992) assumes a closest-point correspondence between the points of the source and the target surface. The algorithm 
iteratively alternates between a first step, consisting of closest-point calculations that establish correspondences, and a 
second step that computes and applies the rigid transformation that optimally aligns the corresponding points that were 
selected in the first step. However, the method is effective only when the initial pose of the input shapes is close to the 
globally optimal alignment, as the method converges to a local minimum, which is not necessarily the global one.

Many variants of this algorithm have been proposed in the bibliography. Rusinkiewicz and Levoy (2001) present an 
excellent survey of ICP variants with comparisons. In the remainder of this section we present some later advancements 
in the field that are related to our work. Notably, Mitra et al. (2004) use quadratic approximations of the squared distance 
function that are precomputed and stored in a hierarchical data structure. GoICP (Yang et al., 2013) combines the local 
search of ICP with a branch-and-bound search of the global parameter space to guarantee a globally optimal alignment 
under the l2-norm, regardless of the initial pose of the two models. However the exhaustive nature of the search significantly 
increases the computation time and makes the method impractical for large datasets. All these ICP variants are based on the 
squared Euclidean norm, which is highly sensitive to outliers. Re-weighting (Trucco et al., 1999; Fitzgibbon, 2003), pruning 
or trimming (Chetverikov et al., 2002) heuristics can be used to provide a reliable registration for data with outliers, but 
these heuristics or weighting functions are often difficult to tune, parameters often depend on the dataset and the specific 
application. Furthermore, pruning heuristics can also drastically increase the number of unwanted local minima in the 
solution space, as demonstrated by Bouaziz et al. (2013).

Instead of relying on the �2-norm and several heuristics to improve the robustness, it is more preferable to use a norm 
that is known to be inherently more robust, such as the �1-norm (Flöry and Hofer, 2010) or the general �p-norm (Bouaziz 
et al., 2013), as mentioned in the introduction. Both of these variants significantly improve the resilience of the ICP method 
to large amounts of noise and outliers, without using any difficult-to-tune reweighting heuristics and without introducing 
unwanted local minima in the solution space, as is the case with pruning and trimming heuristics.

The robustness of these methods increases as the parameter p of the �p-norm approaches zero. However, at the same 
time the problem becomes increasingly non-smooth and non-convex, making the design of an efficient optimizer difficult 
and negatively affects the performance of the Sparse ICP method. In this paper we propose a more efficient optimization 
approach for this problem.

Aside from the ICP method, general optimization algorithms, such as Levenberg–Marquardt (LM-ICP) (Fitzgibbon, 2003), 
Simulated Annealing (Blais and Levine, 1995) and Particle Swarm Optimization (Oikonomidis et al., 2012), have been used 
to solve alignment and tracking problems. However, unlike our approach, these techniques do not use an inherently ro-
bust �p -norm formulation, making the optimization sensitive to noise and outliers or requiring the use of difficult to tune 
robustness weights.

3. Mathematical formulation

Most registration algorithms try to minimize a distance metric between two surfaces X , Y . This problem can be formu-
lated as

arg min
R,t

∫

x∈X
φ(Rx + t,Y) + ISO(3)(R), (1)

where R ∈ R
3×3 denotes the rotation matrix and t ∈ R

3 the translation vector of the alignment transformation. The matrix 
R is restricted to the special orthogonal group SO(3) using the indicator function ISO(3)(X), which evaluates to zero when 
X ∈ SO(3) and to +∞ otherwise, enforcing the rigidity of the transformation. The function φ(x, Y) measures the distance 
of an arbitrary point x ∈R

3 to the surface Y and is defined as
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Fig. 3. Left: �p -norms reduce the penalty associated with large distances (outliers). Right: The accuracy of our registration procedure for different �p-norms 
on a synthetic registration problem with a well-defined ground truth solution. When the �2-norm is used, the optimizer will skew the solution in order to 
avoid the large penalty associated with outliers, as shown in the blown-up area. �p-norms avoid this problem for sufficiently small values of the parameter 
p (0 ≤ p ≤ 1). For p = 0.1 the overlapping parts of the two models match so closely that we observe z-fighting during the visualization. The error is 
measured as the root mean square distance in Euclidean space from the ground truth alignment. The error for the �1.0 and �0.6-norms is 3.2 × 10−3 and 
1.3 × 10−4 respectively. The Owl model is from Bouaziz et al. (2013).

φ(x,Y) = min
y∈Y φ(x,y), (2)

where the metric φ(x, y) measures the distance between two points in space. This equation is often referred to as the 
distance transform or the distance field of surface Y .

In most applications we often deal with discretized surfaces, represented by a set of points xi ∈ X , i = 1 . . .n. In this 
case, we can define the vector of residual distances z ∈R

n , whose elements are defined as:

zi(R, t) = φ(Rxi + t,Y) + ISO(3)(R), i = 1, . . . ,n. (3)

Using this definition, Eq. (1) can be rewritten as:

arg min
R,t

n∑
i=1

zi(R, t). (4)

Many methods use the squared Euclidean norm as the distance metric and optimize Eq. (4) in a least squares manner. 
However, in the presence of outliers, an optimizer will skew the solution in order to reduce the large penalty associated 
with distant points. To avoid this problem, similar to recent work in the field (Bouaziz et al., 2013), we define the distance 
metric in Eq. (2) as:

φ(x,y) = μp(‖x − y‖2), μp(x) = |x|p . (5)

This sparsity inducing �p -norm formulation of the problem, for p ∈ [0, 1], imposes a lower penalty to large distances 
than other norms, making the optimizer resilient to outliers, as shown in Fig. 3. In practice, this metric aims to maximize 
the number of zero distances between the corresponding points, thus maximizing the contact area of the two surfaces. 
Please note that the distances zi in the residual vector z are computed using the Euclidean norm. The �p -norm is applied 
on vector z in order to compute a single scalar residual value from these distances.

Eq. (5) defines the well-known point-to-point distance metric in �p space. However, this metric is not very accurate in 
the surface’s near-field, as it corresponds to a zeroth-order Taylor expansion of the surfaces distance-field. We can obtain a 
better approximation using a first-order Taylor expansion. In this case, we define the metric φ(x, y) = μp(nT (x − y)), where 
n is the normal of the point y. This equation defines the well-known point-to-plane distance metric in �p space.

4. Sparse ICP convergence properties

One method to solve the optimization problem that we have described in the previous section is to use the Sparse 
ICP algorithm. At each iteration of ICP, the total energy (residual distance) weakly decreases, thus the algorithm provides 
a guaranteed convergence to a local minima (Besl and McKay, 1992). However, the actual convergence rate depends of the 
norm used during the optimization. As shown in Fig. 3, problems with many outliers require the use of �p norms with 
a sufficiently low value of p. In these cases, since the penalty induced by the outliers becomes smaller, the slope of the 
objective function is reduced and the optimizer is forced to perform smaller steps. This is clearly shown in Fig. 5, where the 
convergence rate of both Sparse ICP and our method is shown. In the case of Sparse ICP, we observe that decreasing the 
value of p significantly reduces the convergence rate of the method.
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Fig. 4. The distance field of the target surface (shown as a red line) is discretized over a 3D grid, truncated at a distance dtrunc and stored using the 
hierarchical VDB data structure. The color variations represent the distance from the surface. For clarity only the last two levels of the hierarchy are shown. 
The target surface can be either a triangle mesh or a point cloud. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

5. Hybrid optimizer

After the analysis of the previous section, it is clear that in order to improve the overall efficiency of the method, we 
should aim to improve the convergence rate for low values of p. To this end, we propose a two-level hybrid optimizer, as 
shown in Fig. 2. The optimization begins with a general Simulated Annealing search that is able to perform large random 
jumps in the parameter space and thus can approach faster to the solution, but with low accuracy. When the optimizer is 
close enough to the solution, we switch to the ADMM-based optimizer of the Sparse ICP, in order to guarantee a convergence 
to the optimal solution.

For the Simulated Annealing process, the alignment problem is parameterized with three continuous variables for the 
translation and three continuous variables (Euler angles) for the rotation. Many simulated annealing variants require that 
the range of these continuous variables to be bounded. To this end, two of the Euler angles are bounded in the [−π, π ]
range and the third one in the [−π/2, π/2]. The translation range is bounded by the extends of the target point cloud.

Our implementation is based on the Enhanced Simulated Annealing (Siarry et al., 1997) method. In this Simulated Anneal-
ing variant, for a problem with n continuous variables, the original Metropolis iterative random search, which takes place 
in Rn space, is replaced by another similar exploration, performed within a succession of Rp spaces, with p � n. In our 
experiments, we have found that using single dimensional sub-spaces (p = 1) provides faster and more reliable convergence 
for our problem. This configuration also outperformed a number of other Simulated Annealing variants that we have tested, 
but not necessarily with a large margin.

The annealing process at each iteration generates a candidate transform and then directly evaluates the objective function 
(Eq. (1)). Unlike ICP variants, this process does not involve any closest-point correspondence determination. After we switch 
to the ADMM-based optimization, we alternate between a closest-point correspondence determination step and a rigid 
motion determination step, similar to the original Sparse ICP method.

It is worth noting that the annealing is a stochastic process, and sometimes it gets trapped to local minima. When no 
improvement is detected after several iterations, we restart the stochastic search with a higher temperature, which allows 
larger jumps, in order to escape from the local minima. The maximum number of restarts is limited by a user parameter, 
which was fixed to five in our experiments.

6. Additional efficiency improvements

The overall efficiency of the proposed method can be further increased by reducing the cost of each Simulated Annealing 
iteration. This cost is governed by the evaluation of the objective function. To reduce this cost, we use a combination of 
approximate distance queries, parallel evaluation and uniform subsampling of the source mesh.

6.1. Approximate distance queries

The evaluation of the objective function requires multiple closest point queries (Eq. (2)). To minimize the cost associated 
with this operation, we use a data structure that allows fast approximate distance queries. To this end, we use a discretized 
version of the target surface’s distance field. In particular, the distance function is discretely sampled on a 3D grid that 
extends over the narrow band of the target surface Y (see Fig. 4) and is stored using a sparse hierarchical volumetric data 
structure, the VDB (Museth, 2013). This truncated distance field directly encodes the approximate distance of a point in space 
x to the closest point on a surface Y . For points beyond the narrow band of the surface, the maximum encoded distance 
dtrunc (truncation threshold) is returned. This truncation can be beneficial, since it reduces the influence of very distant 
outliers, but most importantly, also reduces the memory and processing requirements for the distance field data structure. 
After creating the discretized distance field, subsequent distance queries involve fetching a precomputed value from the 
data structure, thus the efficiency is increased. The initial precomputation cost for the discretization of distance field, which 
is higher than typical alternative approaches, can be amortized over multiple alignment queries in problems that involve 
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Fig. 5. The table on the upper-right shows the total computation time in seconds for our registration approach compared to Sparse ICP (S-ICP) for similar 
accuracy, for various �p -norms. The lower diagram shows the convergence rate of the algorithms. Since the convergence of S-ICP is much slower than our 
method, the upper diagram shows a zoomed-in area of the lower one, focusing only on the first seconds of the optimization process. The RMS error is 
measured in Euclidean space for all the norms against a ground truth solution. The error in some iterations increases, since the optimizers minimize the 
error in �p space, but here we measure it in Euclidean space, in order to perform meaningful comparisons. In contrast to Sparce ICP, the convergence rate 
of our method is widely unaffected by the value of the parameter p. Registration problems that involve partial overlap or large amounts of outliers require 
sufficiently small values of p, making our approach preferable in these cases. The preprocessing time for VDB or ANN data structures can be seen in Table 1
and is not included in these measurements.

multiple surfaces. When this is not the case, our system uses a data structure for Approximate Nearest Neighbor (ANN) queries 
(Arya et al., 1998).

It is worth noting that both the ANN and VDB structures encode distances in the Euclidean space. Our method works in 
�p space, but since the μp(x) function in Eq. (5) is non-decreasing and both μ(‖.‖2) and ‖.‖2 achieve a minimum value at 
the same points, we can use existing well-known data structures and algorithms for the computation of distance fields in 
the Euclidean space, and then transform the values to �p space, by applying the function μp(x). These approximate queries 
are only used during the Simulated Annealing search. The ADMM-based ICP optimizer always uses accurate queries, to avoid 
compromising the quality of the final registration.

6.2. Parallel evaluation

From mobile devices to desktop workstations, multicore processors are omnipresent in the modern computing land-
scape. For this reason, algorithms should be designed to be parallelizable, in order to take advantage of all the available 
computational resources. In our method, the evaluation of the objective function is trivially parallelizable over N threads, by 
dividing the sum in Eq. (1) into N equal-sized workloads that are computed independently by each thread. Then, a parallel 
reduction combines the results. It is worth noting that the ADMM optimizer in Sparse ICP is based on a series of linear 
algebra operations that are more difficult to parallelize efficiently. The simulated annealing approach is better suited for 
parallel computation.

An alternative approach would be to divide the global parameter space to N equal sized blocks and perform N indepen-
dent annealing searches in parallel. However, this approach is suboptimal, since it will waste a lot of computational effort 
searching on blocks of the parameter space that do not contain an optimal solution. In contrast, our approach can quickly 
focus on the parts of the parameter space that are near to a solution.

6.3. Uniform subsampling

Digitally acquired surfaces typically consist of very dense point clouds. Large efficiency improvements can be obtained 
by using only a uniformly sampled subset of these points during the evaluation of the objective function. The final ADMM-
based optimization uses the complete set of points, to avoid compromising the quality of the final registration. In all cases, 
only the source point cloud is subsampled and not the target one.

7. Evaluation

In this section we evaluate the robustness and the efficiency of our method. The number of possible experiments that 
can be performed is very large. Here, we focus on datasets with partial overlap and large amounts of noise and outliers, 
since these are the most challenging alignment problems, and we limit our analysis on a set of experiments that better 
demonstrate the unique properties of our approach.

Throughout the paper, unless otherwise noted, we have employed the �0.4 norm and the point-to-plane distance metric 
is used when normals are available or can be easily computed. On noisy points clouds (Fig. 6), where normals cannot be 
reliably estimated, the point-to-point metric was used. Unless otherwise specified, our algorithm uses the VDB data structure 
with a voxel size of three units. This results in hierarchical volumes that consume roughly from 30 MB to 90 MBytes 
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Fig. 6. Registration of two point clouds with a large number of synthetically generated outliers. Both the source and the target point clouds are contaminated 
with outliers. Left: Initial position of the two surfaces. Middle: The original Sparse ICP method is known to be robust only to source outliers and in the 
presence of destination outliers the optimizer gets stuck to a suboptimal local minimum solution. Right: Our approach successfully aligns the two datasets, 
avoiding undesired local minima. The Coati model is from Weise et al. (2007).

of memory, depending on the physical size of the object. All experiments were performed on an Intel Core i7-3820 CPU 
at 3.6 GHz with 4 cores and when possible, all algorithms use 8 threads to take advantage of hyper-threading. For our 
comparisons with the original Sparse ICP we have used the implementation from Bouaziz et al. (2013). For the comparison 
with Super4PCS we have used the implementation from Mellado et al. (2014).

Our method is designed to work on general unstructured point clouds, without requiring the existence of any triangle 
connectivity information. However, to better visualize the resulting alignments, we triangulate the test datasets after per-
forming the registration. On datasets with large amounts of outliers, such as the one in Fig. 6, we directly visualize the 
point cloud, since the computation of triangle connectivity is unreliable and requires further filtering algorithms.

Fig. 5 compares our method against Sparse ICP in terms of total computation time and convergence rate for various 
values of the parameter p. This parameter controls the tradeoff between robustness and performance. Problems with large 
amounts of outliers require sufficiently small values of p and in these cases, our method significantly outperforms Sparse 
ICP. In fact, the performance advantage gets larger as the parameter p gets lower and for p = 0.1, our method is more than 
two orders of magnitude faster. These measurements indicate that our approach enables the use of very low values for the 
parameter p, something that was not practical with previous methods. Therefore, the overall robustness of the registration 
is increased, while the computational cost is reduced.

For small values of the parameter p, the alignment problem becomes increasingly non-convex and non-smooth, nega-
tively affecting the performance of the ADMM optimizer in Sparse ICP. In fact, any gradient-based optimizer would be forced 
to make smaller steps in the parameter space, as the slope of the objective function will decrease, negatively affecting the 
convergence rate. For this reason, in our approach we have opted for an optimization method that is not based on the 
gradient of the objective function, and thus, the convergence rate of the method is not significantly affected by the value of 
the parameter p, as the measurements in Fig. 5 indicate.

In Fig. 3 we evaluate the accuracy of the alignment with relation to the parameter p, when aligning two synthetically 
generated, partially overlapping scans of an Owl model. For this experiment, we have used synthetic scans from a previously 
digitized model, since in real-world alignment scenarios, it is often difficult or impossible to properly define a ground truth 
solution. As expected, the accuracy of the registration, measured as the Root Mean Square Error with relation to the ground 
truth, increases as the parameter p decreases. The difference with the Sparse ICP is that in our case, due to the improved 
efficiency, the use of small values for p is now viable. It is worth noting that the parameter p does not require any tuning, 
a value of p as close to zero as possible should be used, depending on the performance requirements of an application. The 
RMS error is always measured and reported in the Euclidean space, although the residual distance during the optimization 
is always measured in �p space.

Fig. 6 demonstrates the alignment of two data sets with large amounts of synthetically generated outliers. In this ex-
periment, the outliers exist in both the source and the target data set. When outliers exist in the target data set, the 
optimization in Sparse ICP is very easily driven towards a bad local minimum, since the whole registration algorithm is 
based on closest-point correspondences, which are very unreliable in this case, as also noted by Bouaziz et al. (2013). In 
contrast, the alignment in the initial stage of our algorithm is not based on closest-point correspondences and our search 
strategy better explores the global parameter space, using the Simulated Annealing method, and successfully aligns the two 
surfaces, avoiding undesired local minima.

Our measurements in Table 1 indicate that the use of a precomputed distance field offers large efficiency gains over the 
more traditional kd-tree or Approximate Nearest Neighbor (ANN) data structures. In this test, ANN was configured to provide 
roughly the same accuracy as the VDB structure. As expected, the gain from the use of a more efficient data structure 
becomes larger as the number of source surface points increases. For the largest dataset in this test, VDB is more than 3 
times faster than ANN and 30 times faster than a k-D tree. In practice, when subsampling is used, the actual speed-up is 
lower (close to 33%), since even for dense point clouds only a subset of uniform points is used for the objective function 
evaluation. Still, in all cases the VDB has a performance advantage. It is worth noting that one of the fastest available ANN 
implementations was used in our comparisons (nanoflann). However, the time required for the creation of the discretized 
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Table 1
Average alignment time when using the discretized distance field (VDB), Approximate Nearest Neighbor (ANN) and a standard k-D tree, with relation to the 
number of source surface points. T p : precomputation time of the corresponding data structure for the largest dataset tested (155K target points). All times 
are in seconds.

Data structure T p 154K 77K 38K 9K

VDB 1.9 25.5 9.3 4.1 1.8
ANN 0.01 78.4 22.8 9.1 2.4
k-D tree 0.01 890.6 236.8 67.6 8.5

Table 2
The accuracy of the registration results with relation to the accuracy of the distance queries (voxel size) before (RMS1) and after (RMS2) the ADMM-based 
refinement for the dataset of Fig. 3. The final alignment remains always highly accurate, even for large voxel sizes. This is to be expected, since the final 
stage of the registration always uses accurate distance queries.

3.0 2.0 1.5 1.0

RMS1 7.8 × 10−1 5.0 × 10−1 6.1 × 10−1 2.6 × 10−1

RMS2 3.5 × 10−5 2.7 × 10−5 6.2 × 10−5 3.6 × 10−5

Fig. 7. Reconstruction of an ancient oil lamp from partially overlapping scans. Left: Two of the input scans in their initial pose. Middle: Registration results 
with our method for the two scans on the left. In this dataset, our method computes the alignment in 11 seconds, which is 31 times faster than Sparse ICP 
for similar accuracy on the same dataset. Right. Reconstruction of the oil lamp model from multiple scans. The 3D dataset was provided by Breuckmann 
GmbH.

distance field is higher than other data structures. This cost can be amortized over many alignment queries, which is typical 
for problems involving more than two surfaces. When this is not the case, the ANN data structure might be preferable.

Aside from the main parameter p that controls the �p -norm, our method introduces a new parameter that controls 
the accuracy of the distance queries in the Simulated Annealing method. In Table 2 we examine how the accuracy of the 
registration is affected when changing the accuracy of the distance queries during the Simulated Annealing search. For this 
experiment we have used the synthetic dataset of Fig. 3 and we compare the results with the ground truth alignment. 
Our measurements indicate that the final alignment is not significantly influenced by the accuracy of the distance queries. 
This is to be expected, as the final ADMM-based S-ICP optimization is always performed using accurate distance queries. 
Therefore, there is no need to tune this additional parameter and it is reasonable to keep it constant in all experiments. The 
measurements in Table 2 were performed with the VDB data structure, while measurements with the ANN data structure 
lead to exactly the same conclusions.

Figs. 1 and 7 demonstrate the reconstruction of two cultural heritage objects from partially overlapping scans. In these 
two cases, the initial coarse alignment is computed with a few iterations of the RANSAC-based 4-PCS method (Aiger et al., 
2008). The partial scans in these examples are densely sampled and consist of 450K to 808K points. The dataset of Fig. 1
poses several challenges to an alignment algorithm. First, the metallic chain (beside the book) reflects the incoming light 
from the scanner and creates a number of outliers. Furthermore, the background of this scene was not removed and many 
outliers are inherently created at the edges of the scanner’s field of view. Even in this challenging case, our algorithm pro-
vides a very precise alignment. In contrast, the optimizer in the original Sparse ICP method is trapped in a local minimum.

To better demonstrate our method in realistic real-world applications, Fig. 7 also includes alignment of multiple partial 
scans. For the multi-part registration, similar to Huber (2002), we construct a graph, where each fragment corresponds to 
a node, and each pairwise match to an edge between two nodes. The optimal set of pairwise connections is computed by 
finding the Minimum Spanning Tree of this graph. The multi-part results do not include any global error relaxation (bundle 
adjustment), in order to better demonstrate the quality of the pairwise registration. Fig. 8 demonstrates additional alignment 
results in challenging registration problems that involve small overlap, holes or many local minima. In all cases our method 
provides a highly reliable registration.

The coarse Simulated Annealing search in our method can be replaced with other global registration methods. A potential 
candidate is Super4PCS (Mellado et al., 2014), a RANSAC variant which is known to be optimal in terms of computational 
complexity for a single core. In Table 3 we compare the performance of our approach with Super4PCS for similar registration 
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Fig. 8. Rigid registration of various datasets computed with our method. Left: Registration of two partial scans with small overlap. Dataset is taken from 
Mellado et al. (2014). Middle: A registration problem with many local minima, due to the rotational symmetry of the pottery object. Right: Registration of 
two partially overlapping scans of an axe. The insets show the initial position of the objects. The axe 3D dataset is courtesy of Breuckmann GmbH.

Table 3
Comparison of our method with Super4PCS for similar registration accuracy on various datasets shown in this paper. All times are in seconds and do not 
include any local ICP refinement. While Super4PCS performs a very smart exploration of the global search space, our algorithm is based on a more efficient 
data structure (VDB over ANN) and can take advantage of multiple processing cores (here 4), making our approach largely more efficient in practice.

Oil lamp Owl Coati Hippo Pot Axe

# points 367K 154K 36.7K 21K 7.9K 84.6K
Super4PCS 36.6 173.1 58.6 5.4 2.5 59.1
Ours – 1 core 18.2 9.1 22.2 10.6 4.0 35.8
Ours – 4 cores 4.7 2.6 6.0 4.5 1.3 13.9

Fig. 9. A challenging alignment problem that involves a closing palm. Since the palm is deforming, rigid registration cannot fully align the two models. 
The result of the rigid registration, shown at the middle, is used for the initialization of a non-rigid deformation that successfully aligns the two meshes. 
The holes in the target point cloud, which appear as uniform yellow regions in the resulting non-rigid registration, were synthetically generated to make the 
alignment problem more challenging. Dataset is taken from Weise et al. (2007). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

accuracy on various datasets. Since both methods require a local ICP refinement, we only measure the global registration 
time in this test. The measurements indicate that our method is largely more efficient. While Super4PCS explores the global 
parameter space in a very efficient way, by aligning congruent sets of four points from the two point clouds, the large 
performance advantage of our method can be attributed to the use of a more efficient data structure for distance queries 
(VDB over ANN), which is very important for large datasets, as shown in Table 1. Furthermore, Super4PCS is designed for 
a single core, making this algorithm suboptimal for multi-core processors. In particular, the authors of this algorithm note 
that a parallel implementation might be possible, but it is left as a future work. In contrast, parallelization of our approach 
is rather trivial (Section 6.2). Finally, it is worth noting that our approach does not require an a priori estimation of the 
amount of overlap in the two surfaces, as required by Super4PCS or Trimmed-ICP (Chetverikov et al., 2002).

While the main focus of this work is the rigid registration problem, many practical alignment problems require non-
rigid registration. This is the case when the object being scanned deforms between subsequent partial scans, such as the 
closing palm in Fig. 9. In such challenging problems, our rigid registration approach can be extended to include a non-rigid 
deformation step after the rigid alignment. In this case, the quality of the rigid registration is still very important, since it is 
used as the initial pose for the subsequent non-rigid deformation. To better evaluate our method in this scenario, we have 
extended our algorithm with the non-rigid deformation model described by Pauly et al. (2005). The deformation is based 
on two metrics. The first metric measures the Euclidean distance between the two models and the second one measures 
distortion of the deforming point cloud. The two measures are linearly combined on a single objective function with the 
rigidity parameter and this function is minimized using a least-squares optimizer. In order to improve the quality of the 
closest-point correspondences and to avoid unwanted local minima, we use an iterative rigidity relaxation scheme, where 
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the desired deformation is computed over multiple iterations, starting with a high rigidity value, which is relaxed in the 
subsequent iterations.

8. Conclusions and future work

We have presented an efficient variation of the Sparse ICP algorithm that is based on a new hybrid optimization which 
starts with a general Simulated Annealing search and then switches to ADMM-based ICP, to ensure convergence to an 
optimal solution. We have also provided several insights on how to further improve the efficiency of our method using 
a combination of approximate distance queries, parallel execution and uniform subsampling. The cumulative performance 
increase over the original Sparse ICP is more than one order of magnitude when tested on the registration of partially 
overlapping scans. At the same time, we have demonstrated that the hybrid optimization approach in our method avoids 
undesired local minima, increasing the robustness of the registration process in very challenging alignment problems that 
involve a large number of outliers and partially overlapping surfaces.

An interesting direction of research for the future is the adaptation of our hybrid optimization strategy and the un-
derlying data structures to GPUs and similar massively parallel architectures, in order to achieve further performance 
improvements. Additionally, it would be interesting to explore possible extensions of our method that use salient features 
in order to further improve the reliability of the alignment.
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