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We introduce and analyze univariate, linear, and stationary subdivision schemes for refining
noisy data by fitting local least squares polynomials. This is the first attempt to design
subdivision schemes for noisy data. We present primal schemes, with refinement rules
based on locally fitting linear polynomials to the data, and study their convergence,
smoothness, and basic limit functions. Then, we provide several numerical experiments
that demonstrate the limit functions generated by these schemes from initial noisy data.
The application of an advanced local linear regression method to the same data shows that
the methods are comparable. In addition, several extensions and variants are discussed
and their performance is illustrated by examples. We conclude by applying the schemes to
noisy geometric data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, subdivision schemes have become an important tool in many applications and research areas, including
animation, computer graphics, and computer aided geometric design, just to name a few (Andersson and Stewart, 2010;
Peters and Reif, 2008). A subdivision scheme generates values associated with the vertices of a sequence of nested meshes, 
with a dense union, by repeated application of a set of local refinement rules. These rules determine the values associ-
ated with a refined mesh from the values associated with the coarser mesh. The subdivision scheme is convergent if the 
generated values converge uniformly to the values of a continuous function, for any set of initial values.

The particular class of interpolatory schemes consists of schemes with refinement rules that keep the values associated 
with the coarse mesh and only generate new values related to the additional vertices of the refined mesh. An important 
family of interpolatory schemes is the family of Dubuc–Deslauriers (DD) schemes (Deslauriers and Dubuc, 1989).

Intensive studies have been carried out recently on the generalization of subdivision schemes to more complicated data 
such as manifold valued data (Wallner and Dyn, 2005; Wallner et al., 2007), matrices (Sharon and Itai, 2013), sets (Dyn and 
Farkhi, 2002), curves (Itai and Dyn, 2012), and nets of functions (Conti and Dyn, 2011). In Donoho and Yu (2000) subdivision 
schemes have been used in a multi-resolution fashion to remove heavy-tail noise. In this paper, we propose a way how to 
approximate a function from its noisy samples by subdivision schemes.
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The linear and symmetric refinement rules of the DD schemes and their dual counterparts (Dyn et al., 2005) are based 
on local polynomial interpolation. These schemes are stationary in the sense that the same rules are applied at all localities 
in all subdivision steps, and their approximation order is determined by the degree of the local interpolating polynomials.

In this paper we generalize this approach and propose linear and symmetric refinement rules based on local polynomial 
approximation, where the polynomial is determined by a least squares fit to the data. We call these schemes least squares 
schemes. The least squares schemes are designed to fit noisy data. Indeed, our numerical experiments indicate that in some 
cases these schemes outperform an advanced linear regression method.

A very recent paper (Mustafa et al., 2015) computes refined values by local �1 optimization rather than by local least 
squares. The lack of explicit expressions for the refined values of the �1 optimization enables experimental results only, 
which are compared with the performance of our schemes.

The least squares schemes and their tensor-products can also deal with geometric data, consisting of contaminated 
samples of curves and of surfaces. The performance of such schemes is demonstrated in the last section on two examples 
of curves and two examples of surfaces.

The paper is organized as follows. We start by introducing the simplest case of least squares schemes in Section 2. These 
schemes are based on primal refinement rules and on best fitting linear polynomials to symmetric data points. This is a one 
parameter family of schemes, with the number of data points as the parameter. We prove convergence and smoothness of 
these schemes and investigate properties of their basic limit functions. The construction of least squares schemes based on 
best fitting polynomials of higher degrees and on dual refinement rules is postponed to Section 4. In Section 3 we review 
a statistical model for fitting noisy data, analyze the suitability of the primal least squares schemes of degree 1 for dealing 
with this kind of data, and provide several numerical examples. Further numerical examples for primal schemes based on 
best fitting polynomials of higher degrees are presented in Section 4.4. Section 5 shows the application of the least squares 
schemes and their tensor-product to geometrical data. Throughout this paper we use several well-known properties of least 
squares polynomials. A short survey of these properties and a method for the efficient evaluation of our schemes are given 
in Appendix A.

2. Primal least squares schemes of degree 1

In this paper we consider the univariate setting. We denote by f k = ( f k
i )i∈Z the data at refinement level k ∈ N0. We 

assume that the initial data f 0 = ( f 0
i )i∈Z is given at the integers Z and that f k

i is associated with the dyadic point tk
i = 2−ki. 

The main idea of least squares subdivision is to generate the data at level k + 1 by evaluating a polynomial that locally fits 
the data at level k in a symmetric neighborhood.

In particular, we use polynomials that best fit the data in the least squares sense. That is, for given data y1, . . . , ym at 
nodes x1, . . . , xm , we are interested in the polynomial pd of degree d that minimizes the sum of squared residuals,

m∑
i=1

(pd(xi) − yi)
2. (1)

For d < m this problem has a unique solution and in Appendix A we provide a summary of the relevant theory, which also 
includes the case d ≥ m.

We start by considering the simplest least squares subdivision schemes corresponding to the case d = 1, which we 
denote by Sn for n ≥ 1. Such a scheme generates the data at level k + 1 as follows. On the one hand, the value f k+1

2i , which 
replaces f k

i , is determined by fitting a linear polynomial to the 2n − 1 data values in a symmetric neighborhood around tk
i

and evaluating it at the associated dyadic point tk
i = tk+1

2i . On the other hand, the scheme computes the new value f k+1
2i+1

between f k
i and f k

i+1 by evaluating at tk+1
2i+1 = 1/2(tk

i + tk
i+1) the linear least squares polynomial with respect to the data at 

the nearest 2n nodes. In this construction the parameter n controls the locality of the scheme and we study its effect in 
Section 3.

For the case d = 1 and equidistant nodes xi = a + ih, let p∗
1 be the linear least squares polynomial which minimizes (1). 

The value of p∗
1 at the centre c = (x1 + · · · + xm)/m of the nodes is

p∗
1(c) = (y1 + · · · + ym)/m.

Thus, the refinement rules of Sn turn out to be

f k+1
2i = 1

2n − 1

n−1∑
j=−n+1

f k
i+ j and f k+1

2i+1 = 1

2n

n∑
j=−n+1

f k
i+ j. (2)

Consequently, the symbol (Dyn, 1992) of the scheme is

an(z) = 1

2n

n∑
z2 j−1 + 1

2n − 1

n−1∑
z2 j . (3)
j=−n+1 j=−n+1
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Table 1
Lower bounds ρn on the Hölder regularity of the schemes Sn .

n 2 3 4 5 6 7 8 9 10

ρn 1.649 1.777 1.816 1.794 1.786 1.776 1.771 1.761 1.753

It follows from the symmetry of the nodes determining the linear least squares polynomials, that an(z) = an(1/z), hence 
the scheme is odd symmetric (Dyn et al., 2008). As the data at level k + 1 depends on at most 2n values at level k, we 
conclude that Sn is a primal 2n-point scheme. The masks of the first three schemes are

a1 = [1,2,1] /2,

a2 = [3,4,3,4,3,4,3] /12,

a3 = [5,6,5,6,5,6,5,6,5,6,5] /30.

Note that the scheme S1 is the interpolating 2-point scheme, which generates piecewise linear functions in the limit.

2.1. Convergence and smoothness

Following the usual definition of convergence in Dyn (2002, Chapter 2), we denote the limit of a convergent subdivision 
scheme S for initial data f 0 by S∞ f 0.

Theorem 1. The least squares subdivision scheme Sn is convergent for n ≥ 1.

Proof. The explicit form of the symbol in (3) implies that an(1) = 2 and an(−1) = 0, which are necessary conditions for 
Sn to be convergent (Dyn, 1992, Proposition 2.1). In addition, since the coefficients of the symbol in (3) are all positive, 
and there are at least three such coefficients, it follows from Cavaretta et al. (1991, Theorem 3.3) that the scheme is 
convergent. �

Following the analysis in Dyn (1992), we define

qn(z) = an(z)

1 + z
= 1

2n(2n − 1)

(
n−1∑

j=−n+1

(n − j)z2 j−1 +
n−1∑

j=−n+1

(n + j)z2 j

)
, (4)

which is the symbol of the difference scheme associated with Sn . The norm of this scheme,

∥∥S[qn]
∥∥∞ = max

{
1

2n(2n − 1)

n−1∑
j=−n+1

|n − j|, 1

2n(2n − 1)

n−1∑
j=−n+1

|n + j|
}

= 1

2n(2n − 1)

2n−1∑
j=1

j = 1

2
,

is the least possible, as in the case of the uniform B-spline schemes, indicating “quickest” possible convergence. The structure 
of qn further reveals that the limit functions generated by Sn are C1.

Theorem 2. The least squares subdivision scheme Sn generates C1 limit functions for n ≥ 2.

Proof. It is known (Dyn, 1992, Theorems 3.2 and 3.4) that in order to prove the theorem, it is sufficient to show that the 
scheme with symbol 2qn is convergent. By (4),

2qn(1) = 2 and 2qn(−1) = 0,

hence S[2qn] satisfies the necessary conditions for convergence. As in the proof of Theorem 1 we conclude that the scheme 
S[2qn] , n ≥ 2 is convergent, and therefore Sn , n ≥ 2 generates C1 limit functions. �

The statement in Theorem 2 is confirmed by the numerical results presented in Table 1, which were obtained by using 
16 iterations of the algorithm in Dyn and Levin (2002) to compute lower bounds on the Hölder regularity. In addition, it is 
easy to verify that q′

n(−1) < 0 and therefore (1 + z)2 is not a factor of qn(z) or equivalently that (1 + z)3 is not a factor of 
an(z). Thus, the scheme Sn does not generate C2 limits from any initial data (Dyn et al., 2008).
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Fig. 1. Basic limit functions of the schemes S2, S3, and S4.

2.2. The basic limit function

Let us denote by δ the sequence which is zero everywhere except at 0, where it is 1. The basic limit function of the 
convergent subdivision scheme Sn is then defined as

φn = S∞
n δ. (5)

Some examples of φn for small values of n are shown in Fig. 1.
Many properties of a linear subdivision scheme can be derived from its basic limit function. In particular, due to linearity, 

the limit function generated from the initial data f 0 = ( f 0
i )i∈Z by the scheme Sn has the form

(S∞
n f 0)(x) =

∑
j∈Z

f 0
j φn(x − j). (6)

Our first observation is that the support of φn is [−2n + 1, 2n − 1], because Sn is a primal 2n-point scheme (Deslauriers 
and Dubuc, 1989). Moreover, φn is positive inside its support, because the coefficients of the mask an are positive in the 
mask’s support, and φn has the partition of unity property∑

j∈Z
φn(x − j) = 1, (7)

due to the reproduction of constant polynomials by Sn .
The simple structure of an further allows us to derive several interesting properties regarding the values of the basic 

limit function φn at the integers. These values are of importance, because they constitute the filter which operates on the 
initial data and generates the final values at the integers. Taking into account that φn is continuous and therefore vanishes 
at the end points of its support, we conclude from (6) that the limit at the integers k ∈ Z is

(S∞
n f 0)(k) =

2n−2∑
j=−2n+2

f 0
k− jφn( j). (8)

The non-zero values of φn at the integers constitute an eigenvector v = (
φn(−2n + 2), . . . , φn(2n − 2)

)
corresponding to 

the eigenvalue 1 of the transposed subdivision matrix (Dyn, 1992), which in this case is the (4n − 3) × (4n − 3) column 
stochastic, two-slanted band matrix

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r s 0 0 0 0 0 0
r s r s 0 · · · 0 0 0
r s r s r 0 0 0

...
. . .

...

r s r s r r s 0
r s r s r · · · r s r
0 s r s r r s r

...
. . .

...

0 0 0 0 0 · · · 0 s r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with entries r = 1/(2n − 1) and s = 1/(2n).
The odd symmetry of the mask an guarantees that φn is a symmetric function. Thus, the eigenvector v is also 

symmetric, as indicated by the structure of An . Taking these symmetries into account, we get that the vector ṽ =(
φn(−2n + 2), . . . , φn(0)

)
is an eigenvector corresponding to the eigenvalue 1 of the (2n − 1) × (2n − 1) matrix
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Ãn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r s 0 0 0 0 0 0 0 0
r s r s 0 · · · 0 0 0 0 0
r s r s r 0 0 0 0 0

...
. . .

...

r s r s r r s 0 0 0
r s r s r r s r s 0
r s r s r · · · r s r 2s r
r s r s r r 2s 2r 2s r
r s r s r 2r 2s 2r 2s r

...
. . .

...

r s r 2s 2r 2r 2s 2r 2s r
r 2s 2r 2s 2r · · · 2r 2s 2r 2s r

2r 2s 2r 2s 2r 2r 2s 2r 2s r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The particular structure of Ãn allows us to derive the following observation.

Proposition 3. The values of φn at the non-positive integers in its support are strictly increasing,

0 < φn(−2n + 2) < φn(−2n + 3) < · · · < φn(−1) < φn(0).

Moreover,

φn(−n) = n − 1

2n − 1
φn(0).

Proof. Note that each row of Ãn is equal to the previous row plus at least one positive term. Since ṽ satisfies Ãn ṽ = ṽ and 
its components ṽ i = φn(i − 2n + 1), i = 1, . . . , 2n − 1, are positive, the latter must be strictly increasing.

To establish the second statement, consider the (n − 1)-th and the last row of Ãn ,

α̃n−1 = (r, s, r, s, . . . , r, s,0) and α̃2n−1 = (2r,2s,2r,2s, . . . ,2r,2s, r),

and note that

α̃2n−1 = 2α̃n−1 + (0,0, . . . ,0, r).

Then, since

ṽn−1 = α̃n−1 ṽ

and

ṽ2n−1 = α̃2n−1 ṽ = 2α̃n−1 ṽ + r ṽ2n−1 = 2ṽn−1 + r ṽ2n−1,

the second statement follows directly from the definition of ṽ , because r = 1
2n−1 . �

By the symmetry of φn , the statements of Proposition 3 hold analogously for the values of φn at the non-negative 
integers. As an immediate consequence we have

φn( j) <
1

2
φn(0), | j| ≥ n, (9)

as well as the following bounds on φn(0).

Corollary 4. The value of φn(0) satisfies

1

3n − 2
< φn(0) <

1

n − 1
. (10)

Proof. The upper bound follows from (7) and Proposition 3, because

1 =
∑

φn( j) >
∑

φn( j) > (2n + 1)φn(−n) = (2n + 1)(n − 1)

2n − 1
φn(0).
| j|≤2n−2 | j|≤n
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Using (9), we further have

1 =
∑

n≤| j|≤2n−2

φn( j) +
∑
| j|<n

φn( j) < (2n − 2)
1

2
φn(0) + (2n − 1)φn(0),

leading to the lower bound. �
Proposition 3 and its consequences clarify the properties of φn at the integers, which are confirmed by the examples in 

Fig. 1. A further analysis of φn reveals more details, in particular about the asymptotic behavior for large n as well as an 
improvement in the upper bound in (10).

Theorem 5. The basic limit function φn and its derivative φ′
n converge uniformly to the zero function as n grows. More specifically,

‖φn‖∞ ∼ 1

n

and

‖φ′
n‖∞ ∼ 1

n2
.

Proof. We first observe that the masks corresponding to the refinement rules (2) are positive. Thus, for non-negative data 
such as δ we have ‖Sk1

n (δ)‖∞ ≤ ‖Sk2
n (δ)‖∞ for any integers k1 > k2 > 0. We can therefore bound ‖φn‖∞ from above,

‖φn‖∞ = ‖S∞
n (δ)‖∞ ≤ ‖S1

n(δ)‖∞ = 1

2n − 1
∼ 1

n
. (11)

A similar behavior holds for the derivative φ′
n , which exists since Sn generates C1 limits by Theorem 2. To see this, first 

recall the definition of qn in (4), which implies the relation (Dyn, 1992, Section 2.3)

φ′
n(x) = S∞[2qn](�δ)(x),

where � is the forward difference operator with (�δ)0 = −1, (�δ)−1 = 1, and zero otherwise. This implies ‖φ′
n‖∞ ≤

‖S[2qn]�δ‖∞ . Further note that S[2qn] has a positive mask (2qn) with coefficients

(2qn)2 j−1 = 1

n(2n − 1)
(n − j) and (2qn)2 j = 1

n(2n − 1)
(n + j) (12)

for j = −n + 1, . . . , n − 1 and (2qn)2 j−1 = (2qn)2 j = 0 for | j| ≥ n.
A direct calculation yields

∣∣(S[2qn]�δ) j
∣∣ =

{1/n(2n − 1), if − 2n − 1 < j < 2n − 2,

1/n, if j = −2n − 1 or j = 2n − 2,

0, otherwise.

(13)

From (12) and (13) we then conclude that each summand in

(S2[2qn]�δ)
j
=

∑
i∈Z

(2qn) j−2i(S[2qn]�δ)i (14)

is of order 1/n3, except for at most one summand of order 1/n2. Since there are at most 2n − 1 non-zero terms in the 
sum (14), the order of the sum is 1/n2. Thus, we have ‖φ′

n‖∞ ≤ ‖S2[2qn]�δ‖∞ ∼ 1/n2. �
Proposition 3 and Theorem 5 provide a good understanding of the basic limit function φn , which is supported by our 

numerical tests.

3. The schemes applied to noisy data

The schemes Sn for n > 1 are designed to deal with noisy data, which is confirmed by the following discussions and 
experiments. We first introduce a statistical model and then compare the performance of our schemes and an advanced 
local linear regression method.
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Fig. 2. Plots of the functions ψn for n = 1, . . . ,5. Note the different scale in each plot.

3.1. Statistical considerations

Let f : R →R be a continuous scalar function and suppose we are given a discrete set of noisy samples

yi = f (ih) + εi, i ∈ Z,

where {εi}i∈Z are independent random variables, normally distributed with zero mean and variance σ 2. As an estimator f̂
of f we use the limit (6) of Sn , that is,

f̂ (x) =
∑
j∈Z

y jφn(x − j). (15)

Note that f̂ (x) is a random variable and the estimation quality of f̂ is given by the expectation of the squared error.
With E denoting the expectation operator, the “bias-variance decomposition” (see e.g., Hastie et al., 2009, Chapter 7) of 

the expected squared error for x ∈R is

E
[
( f̂ (x) − f (x))2] = σ 2

∑
j∈Z

φn(x − j)2 +
(∑

j∈Z
f ( jh)φn(x − j) − f (x)

)2

. (16)

The first term in (16) is the product of the variance of the noise σ 2 and the function

ψn(x) =
∑
j∈Z

φn(x − j)2. (17)

The second term is the square of the deterministic approximation error corresponding to data without noise. We first study 
ψn and come back to the second term later.

It follows from (16) that the effect of the noise on the estimator f̂ is small if ψn is small, which motivates us to further 
analyze ψn and establish upper bounds. First note that by (7) and the positivity of φn we have

ψn ≤ 1, (18)

with strict inequality for n > 1, namely for non-interpolatory schemes. For the interpolatory scheme S1, we have ψ1(x) = 1
at x ∈ Z, which matches the common knowledge that interpolation is not appropriate for noisy data. This behavior is 
confirmed by Fig. 2, which presents several numerical evaluations of ψn and indicates that ψn becomes smaller and tends 
to be the constant zero function as n grows. This is indeed the case, as the following summary of properties of ψn shows.

Theorem 6. The function ψn in (17) is positive, symmetric, and periodic with period 1. Moreover,

‖ψn‖∞ ∼ 1

n

and

‖ψ ′
n‖∞ ∼ 1

n2
.
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Fig. 3. Comparison of S3 and LLR for f1. Left: Relative approximation error as a function of the SNR. Right: Reconstruction of f1 from data with 6.5 dB 
noise.

Proof. By definition, ψn is positive, periodic, and finite. The symmetry of φn implies the symmetry of ψn . In addition, we 
have that ψn is symmetric about 1/2 due to the periodicity of ψn .

The first asymptotic bound follows from the definition of ψn in (17) after noting that only 4n − 2 terms in the sum are 
non-zero, and that each term is of order 1/n2 by Theorem 5. The second asymptotic bound follows by similar arguments 
using the chain rule, the explicit bound on φn in (11), and the asymptotic bound on φ′

n in Theorem 5,

|ψ ′
n(x)| ≤ 2

∑
j∈Z

|φn(x − j)φ′
n(x − j)| ≤ 2

2

2n − 1

∑
j∈Z

|φ′
n(x − j)| ∼ 1

n2
. �

The second term of the expected squared error in (16) is the deterministic error or the approximation error. We use 
the approximation order as a standard measure for the quality of the approximation; see for example Dyn and Levin (2002, 
Chapter 7). For the case of schemes based on linear least squares polynomials, the approximation order is h2, where h is the 
distance between the sampled points of the initial data. This observation follows from the polynomial reproduction property 
of our schemes, that is, the reconstruction of any linear polynomial from its samples.

In conclusion, there is a trade-off between the deterministic approximation error and the effect of the noise on the 
expected squared error. In particular, higher values of n decrease the effect of noise but increase the deterministic error due 
to averaging of the values { f i}i∈Z by weights with a large support.

3.2. Numerical examples

We illustrate the performance of some of the schemes by several numerical examples, starting from noisy data. We 
compare their performance with the algorithm of local linear regression (LLR) for local fitting of noisy data. This local 
estimator around a given data point x∗ is obtained by including kernel weights into the least squares minimization problem 
in the neighborhood of x∗ ,

min
α,β

n∑
i=0

(
yi − α − β(xi − x∗)

)2
Ker(xi − x∗).

This approach can be generalized to higher degree polynomials as well; see Härdle et al. (2004, Chapter 4) for more details. 
Although the concept of LLR is rather simple, it is one of the most important statistical approaches used.

We take the LLR variant which is based on the normal kernel with the kernel parameters chosen dynamically, and we 
compare it with the limits of several subdivision schemes with different support sizes, for various types of functions and 
levels of noise. The noise we consider is normally distributed and measured using the signal-to-noise ratio (SNR). The SNR 
is defined as the ratio between the L2 norm of the signal (true function and additional noise) and the L2 norm of the noise. 
Thus, when this ratio tends to one, the noise becomes as significant as the signal itself. The standard unit is decibel (dB) 
which is calculated in a logarithmic scale. We examine the range of (roughly) 1–20 dB and consider 1–5 dB a very high 
level, 5–7 a high level, and 10–12 a low level of noise. Noise levels >12 dB are considered negligible. In each example we 
plot the relative approximation error of LLR and the subdivision scheme, as a function of the noise levels. This relative error 
is defined as the ratio between the norm of the approximation error and the norm of the function.

In the first examples we consider the slowly varying function

f1(x) = sin
x

10
+

(
x

50

)2

and examine the three subdivision schemes S3, S5, and S7. Due to the dynamic implementation of LLR, we can use it as a 
benchmark for all cases. As discussed in Section 3.1, the subdivision scheme S3 with smaller support is more sensitive to the 
variance of the noise than S5 and S7. We observe in Fig. 3 (left) that for all levels of noise, LLR gives a smaller reconstruction 
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Fig. 4. Comparison of S5 and LLR for f1. Left: Relative approximation error as a function of the SNR. Right: Reconstruction of f1 from data with 7 dB noise.

Fig. 5. Comparison of S7 and LLR for f1. Left: Relative approximation error as a function of the SNR. Right: Reconstruction of f1 from data with 7.9 dB 
noise.

error. The difference in the actual function reconstruction for a specific noise level is illustrated in Fig. 3 (right). The same 
presentation is repeated for S5 and S7 in Figs. 4 and 5, respectively. For the slowly varying function f1, the subdivision 
scheme S5 behaves almost identically to LLR, while S7 is even better. These trials match our theory which suggests that as 
the support gets larger, the corresponding function ψn becomes smaller, resulting in a weaker response to noise.

In our second example we sample the oscillatory function

f2(x) = cos
2x

5
+

(
x

40
− 1

)3

and compare LLR with S3 and S5. The results are presented in Figs. 6 and 7 and show that the smaller support of S3 makes 
it more suitable for these type of functions (except for extremely high noise), while S5 provides inferior results for any 
reasonable level of noise.

To conclude, we observe from the numerical examples that there is a range of parameters for which a subdivision scheme 
outperforms LLR. Also, the numerical examples support our understanding about the trade-off between the effect of noise 
and the deterministic approximation error, as discussed in Section 3.1.

4. Extensions and variants

The family of primal least squares schemes of degree 1 can be extended in several ways. We first discuss the extension 
to dual schemes (Section 4.1), as well as minor variations of both primal and dual schemes (Section 4.2). A further extension 
relies on fitting least squares polynomials of higher degree (Section 4.3) and we provide a few numerical examples of such 
schemes (Section 4.4).

4.1. Dual least squares schemes of degree 1

The idea of the schemes Sn in Section 2 is to fit linear least squares polynomials and to evaluate them in a primal way, 
that is, at the points and the midpoints of the current mesh. Another option is to design subdivision schemes based on 
dual evaluation (Dyn et al., 2008). The dual least squares scheme S̄n is obtained by fitting a linear polynomial to the 2n
data values at the points tk

i−n+1, . . . , tk
i+n at level k and evaluating this polynomial at 1/4 and 3/4 between tk

i and tk
i+1 to 

compute the new data f k+1
2i and f k+1

2i+1.
The refinement rules of S̄n are slightly more complicated to derive than those of the primal schemes, but they still have 

a rather simple closed form,

f k+1
2i = 1

2n

n∑ (
1 − 6 j − 3

8n2 − 2

)
f k

i+ j and f k+1
2i+1 = 1

2n

n∑ (
1 + 6 j − 3

8n2 − 2

)
f k

i+ j. (19)

j=−n+1 j=−n+1
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Fig. 6. Comparison of S3 and LLR for f2. Left: Relative approximation error as a function of the SNR. Right: Reconstruction of f2 from data with 6.2 dB 
noise.

Fig. 7. Comparison of S5 and LLR for f2. Left: Relative approximation error as a function of the SNR. Right: Reconstruction of f2 from data with 8 dB noise.

Table 2
Lower bounds ρ̄n on the Hölder regularity of the schemes S̄n .

n 2 3 4 5 6 7 8 9 10

ρ̄n 2.285 2.647 2.729 2.677 2.664 2.633 2.616 2.594 2.577

The corresponding symbol is

ān(z) = 1

2n

n−1∑
j=−n

(
1 + z + 6 j + 3

8n2 − 2
(1 − z)

)
z2 j, (20)

and it is easy to verify that ān(z)z = ān(1/z), which confirms that S̄n is an even symmetric scheme (Dyn et al., 2008). Overall 
we conclude that S̄n is a dual 2n-point scheme and the support of its basic limit function φ̄n is [−2n, 2n − 1]. The masks of 
the first three schemes are

ā1 = [1,3,3,1] /4,

ā2 = [7,13,9,11,11,9,13,7] /40,

ā3 = [55,85,61,79,67,73,73,67,79,61,85,55] /420,

and we recognize S̄1 as Chaikin’s corner cutting scheme (Chaikin, 1974).
The proofs of Theorems 1 and 2 carry over to the dual schemes, and so the limit functions generated by S̄n are at least 

C1 for n ≥ 1. But unlike the primal schemes, the symbols of the dual schemes are divisible by (1 + z)3, and so they may 
potentially generate C2 limits. However, there is no simple proof as for C1 in Theorem 2, because the symbol 4ān(z)/(1 + z)2

has negative coefficients. Table 2 lists lower bounds on the Hölder regularity of the first few schemes, computed using 16
iterations of the algorithm in Dyn and Levin (2002), demonstrating that the limits of S̄n are in fact C2, at least for 2 ≤ n ≤ 10.

4.2. Variants of linear least squares schemes

In addition to the dual 2n-point schemes S̄n , it is also possible to define dual (2n + 1)-point schemes. These schemes fit 
a linear polynomial to the 2n + 1 data values in a symmetric neighborhood around f k

i and evaluate it at 1/4 the distance to 
the left (right) neighbor to define the new data f k+1

2i−1 ( f k+1
2i ). The resulting refinement rules are

f k+1
2i−1 = 1

2n + 1

n∑ (
1 − 3 j

4n(n + 1)

)
f k

i+ j and f k+1
2i = 1

2n + 1

n∑ (
1 + 3 j

4n(n + 1)

)
f k

i+ j,
j=−n j=−n
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and the support of the corresponding basic limit function is [−2n − 1, 2n]. The masks of the first three schemes of this kind 
are

n = 1 : [5,11,8,8,11,5] /24,

n = 2 : [6,10,7,9,8,8,9,7,10,6] /40,

n = 3 : [13,19,14,18,15,17,16,16,17,15,18,14,19,13] /112.

Similarly, we can define primal (2n +1)-point schemes as variants of the primal 2n-point schemes Sn . We simply replace 
the refinement rule for f k+1

2i in (2) by

f k+1
2i = 1

2n + 1

n∑
j=−n

f k
i+ j

and keep the rule for f k+1
2i+1. For these schemes, the support of the basic limit function is [−2n, 2n], and the masks of the 

first three schemes are

n = 1 : [2,3,2,3,2] /6,

n = 2 : [4,5,4,5,4,5,4,5,4] /20,

n = 3 : [6,7,6,7,6,7,6,7,6,7,6,7,6] /42.

Adapting the proofs of Theorems 1 and 2, one can show that both variants generate C1 limit functions, and our numerical 
results demonstrate that the dual (2n + 1)-point schemes are even C2 for 1 ≤ n ≤ 10.

4.3. Least squares schemes of higher degree

The least squares schemes of degree 1 reproduce linear polynomials by construction, but they do not reproduce poly-
nomials of any higher degree. So, their approximation order is only h2, unless the data is being pre-processed (Dyn et al., 
2008). We can improve this by using least squares polynomials of higher degrees d > 1.

To derive the refinement rules at level k, let pd
n,i be the least squares polynomial of degree d for the 2n − 1 data

(tk
i+ j, f k

i+ j), j = −n + 1, . . . ,n − 1

in a symmetric neighborhood of tk+1
2i , and let p̃d

n,i be the polynomial of degree d that fits the 2n data

(tk
i+ j, f k

i+ j), j = −n + 1, . . . ,n

in a symmetric neighborhood of tk+1
2i+1. The polynomials pd

n,i and p̃d
n,i are well-defined for d < 2n −1 and d < 2n, respectively 

(see Appendix A.1).
The primal 2n-point least squares scheme of degree d is then characterized by the refinement rules

f k+1
2i = pd

n,i(t
k
i ) and f k+1

2i+1 = p̃d
n,i

(
(tk

i + tk
i+1)/2

)
, (21)

which simplifies to the rules in (2) for d = 1. The resulting subdivision scheme Sd
n reproduces polynomials of degree d by 

construction, and thus has approximation order hd+1. It is well-defined for d < 2n, even though for d = 2n − 1 the rule for 
f k+1
2i is based on an underdetermined problem. In that case we get f k+1

2i = f k
i (see Remark 9 in Appendix A.1), hence S2n−1

n
is the interpolating Dubuc–Deslauriers 2n-point scheme.

As shown in Remark 12 in Appendix A.3, it is sufficient to consider only primal 2n-point least squares schemes of 
even degree, because S2d

n and S2d+1
n are identical. This also means that the schemes of degree 2d reproduce polynomials 

of one degree more than expected by construction. This is in accordance to the observation in Dyn et al. (2008) that 
the reproduction of odd degree polynomials comes “for free” by the primal symmetry. In particular, this shows that the 
refinement rule of the interpolating 4-point scheme (Dubuc, 1986) for f k+1

2i+1 can be derived not only from fitting a cubic 
polynomial to the data f k

i−1, . . . , f
k
i+2, but also by fitting a quadratic polynomial in the least squares sense to the same data.

We can also generalize the construction in Section 4.1 and define the dual 2n-point least squares scheme of degree d by 
the refinement rules

f k+1
2i = p̃d

n,i

(
(3tk

i + tk
i+1)/4

)
and f k+1

2i+1 = p̃d
n,i

(
(tk

i + 3tk
i+1)/4

)
, (22)

which simplify to the rules in (19) for d = 1. Like Sd
n , the scheme S̄d

n reproduces polynomials of degree d by construction 
and its approximation order is hd+1. Moreover, the scheme S̄2n−1

n is the dual 2n-point scheme (Dyn et al., 2005).
Similar constructions lead to primal and dual (2n +1)-point least squares schemes of degree d, but we omit the details as 

they are straightforward. Apart from the increased approximation order, these schemes also tend to have a higher smooth-
ness. For example, we verified numerically that the schemes S̄3

n generate C3 limit functions for n = 4 and n = 5, but we do 
not recommend using them, because the rules become more complicated and the benefit of using them for reconstructing 
functions from noisy data is marginal, as shown in the next section.
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Table 3
Maxima of ψd

n and its derivative for several values of the degree d and the support size n. Note that scaling these maxima with n and n2, respectively, 
gives approximately constant values, matching the rates in Conjecture 7. More results are shown in Fig. 8.

d,n ‖ψd
n ‖∞ n‖ψd

n ‖∞ ‖(ψd
n )′‖∞ n2‖(ψd

n )′‖∞
1,1 1.0000 1.0000 1.9844 1.9844
1,3 0.1489 0.4468 0.0018 0.0163
1,5 0.0849 0.4249 0.0010 0.0256
1,7 0.0592 0.4144 0.0005 0.0245

3,2 1.0000 2.0000 1.0926 4.3704
3,3 0.4156 1.2469 0.0296 0.2661
3,5 0.2254 1.1273 0.0007 0.0195
3,7 0.1565 1.0957 0.0005 0.0280

5,3 1.0000 3.0000 0.9048 8.1432
5,5 0.3793 1.8968 0.0022 0.0561
5,7 0.2574 1.8020 0.0003 0.0148

Fig. 8. Behavior of n‖ψd
n ‖∞ (left) and n2‖(ψd

n )′‖∞ (right) as a function of n for three values of the degree d. Both quantities become approximately constant 
as n increases, as predicted in Conjecture 7.

Fig. 9. Comparison of ψd
n for several values of the degree d and the support size n. Note how ψd

n increases pointwise with d for fixed n (left) and decreases 
as n increases for fixed d = 3 (right), as predicted by Conjecture 8.

4.4. Numerical examples for the primal least squares schemes of higher degree

The statistical model presented in Section 3.1 is also valid for schemes based on higher degree least squares polynomials, 
due to the linearity of the schemes (see also Appendix A.2), but proving asymptotic bounds for ψd

n becomes difficult, because 
the mask of Sd

n is no longer positive and not given explicitly for d > 1. However, our numerical tests, which are summarized 
in Table 3 and Fig. 8, indicate that the bounds in Theorem 6 for the special case d = 1 also hold for d > 1.

Conjecture 7. Let ψd
n be defined as in (17) for schemes based on least squares polynomials of degree d. Then,

‖ψd
n ‖∞ ∼ 1

n

and

‖(ψd
n )′‖∞ ∼ 1

n2
.

The deterministic error in (16) is strongly related to d. This can be seen by the polynomial reproduction property of our 
schemes, that is, the reconstruction of any polynomial of degree d from its values at the integers by the limit of Sd

n . The 
latter property implies that the approximation order is at least hd+1. Thus, for larger d the contribution of the deterministic 
error decreases, while we conjecture that the effect of the noise increases. This relates to the following predicted behavior
of ψd

n with respect to d and n and is supported by the results shown in Fig. 9.
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Fig. 10. Comparison of S1
5 and S3

5 for f3. Left: Relative approximation error as a function of the SNR. Right: Reconstruction of f3 from data with 8.2 dB 
noise.

Fig. 11. Comparison of S1
5 and S3

5 for f4. Left: Relative approximation error as a function of the SNR. Right: Reconstruction of f4 from data with 7.2 dB 
noise.

Conjecture 8. For any fixed support size n and different degrees d1 and d2 with d1 > d2 ,

ψ
d1
n (x) ≥ ψ

d2
n (x), x ∈ [0,1].

For any fixed degree d and different support size n1 and n2 with n1 < n2 ,

ψd
n1

(x) ≥ ψd
n2

(x), x ∈ [0,1].

To further back up this conjecture, let us consider some numerical experiments, similar to those in Section 3.2. We first 
compare the schemes S1

5 and S3
5, applied to noisy data taken from the slowly varying function

f3(x) = cos
x

10
−

(
x

50
− 1

)3

, (23)

for which the deterministic error is expected to be small. Fig. 10 shows that S1
5, which is based on locally fitting linear poly-

nomials, gives better reconstructions, as long as the noise is significant. However, as the noise decays, the deterministic error 
becomes more relevant and the scheme S3

5, which is based on locally fitting cubic polynomials and therefore has approx-
imation order h4, manages to estimate the function more accurately than S1

5, whose approximation order is only h2. This 
example emphasizes the trade-off between the deterministic approximation error and the effect of noise on the expected 
squared error, and this effect becomes even clearer if we consider the function

f4(x) = cos
2x

5
−

(
x

50
− 4

5

)3

. (24)

Due to the oscillations of this function, the deterministic error is dominant and the results in Fig. 11 confirm that S3
5

outperforms S1
5 for all noise levels.

Finally, we repeat the experiments with the test functions f3 and f4 for the schemes S3
6 and S3

9, which are both based 
on locally fitting cubic polynomials but have different support sizes. Fig. 12 shows that the larger support helps to smooth 
out noise if the deterministic error is small. But if the deterministic error is more relevant than the noise, than the smaller 
support leads to smaller reconstruction errors for all noise levels, as illustrated in Fig. 13.
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Fig. 12. Comparison of S3
6 and S3

9 for f3. Left: Relative approximation error as a function of the SNR. Right: Reconstruction of f3 from data with 8.4 dB 
noise.

Fig. 13. Comparison of S3
6 and S3

9 for f4. Left: Relative approximation error as a function of the SNR. Right: Reconstruction of f4 from data with 9.5 dB 
noise.

Fig. 14. The alpha-like curve (a) from Equation (25) and its sample points (b), contaminated by low level noise of about 17 dB (c) and by high level noise 
of about 4 dB (d).

5. Application to noisy geometric data

We conclude the paper by presenting applications of our least squares subdivision schemes to noisy samples of curves 
and of surfaces. We measure the level of the noise by SNR, although this measure in the geometrical setting is less infor-
mative than in the functional setting, because the significance of the noise also depends highly on the geometry.

5.1. Examples of curves

The parametrization of a curve enables us to apply our univariate subdivision schemes to each of its components. By 
doing so, we can construct an approximation to the curve from its noisy samples. We introduce two such examples.

The first example consists of an alpha-like curve, given by

x(t) = 3t4 + t2 + 1, y(t) = t5 − 2t, (25)

sampled equidistantly over [−1.4, 1.4], that is, with samples taken at ti = −7/5 + ih, where h = 14/145 and i = 0, . . . , 29. 
This curve and its sample points are shown in Figs. 14(a) and 14(b). The first set of noisy samples with a relatively low level 
of noise is shown in Fig. 14(c). We apply S3 and S5 (both based on linear fitting, see Section 2) to these samples, giving 
the limit curves in Figs. 15(a) and 15(b), respectively. The limits of both schemes retain the general shape of the curve, but 
a minor artifact appears on the limit curve generated by S3 since it closely fits the noisy samples. Perturbing the samples 
with high level noise, as seen in Fig. 14(d), reveals an overfitting by the limit curve of S3 in Fig. 15(c), while the limit curve 
generated by S5 in Fig. 15(d) preserves the topology of the original curve.
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Fig. 15. Limits of the two least squares subdivision schemes S3 and S5, applied to noisy samples from the alpha-like curve in Fig. 14(a). The two curves on 
the left (a,b) correspond to the samples with low level noise in Fig. 14(c) and the two curves on the right (c,d) correspond to the samples with high level 
noise in Fig. 14(d).

Fig. 16. The star-shaped curve (a) from Equation (26) and its sample points (b), contaminated by low level noise of about 19 dB (c) and by high level noise 
of about 10 dB (d).

Fig. 17. Limits of four least squares subdivision schemes, applied to noisy samples from the star-shaped curve in Fig. 16(a). The curves in the upper row 
correspond to the samples with low level noise in Fig. 16(c) and the curves in the lower row correspond to the samples with high level noise in Fig. 16(d).

In the second example we apply four different least squares schemes to noisy samples of a star-shaped curve, given by

x(t) = 4 cos(t) + cos(4t), y(t) = 4 sin(t) − sin(4t). (26)

We sample this curve at ti = i/(100π) for i = 0, . . . , 49. This curve and its sample points are shown in Figs. 16(a) and 16(b). 
In this example we compare the performance of four schemes: two schemes based on linear fitting, S3 and S5, and two 
schemes based on cubic fitting, S3

4 and S3
6. As in the first example, we start by investigating the case of low level noise, 

with the samples shown in Fig. 16(c). The limits of all schemes are presented in the upper row of Fig. 17. They all have 
the shape of a star, except for the limit of S5, which is more similar to a pentagon than to a star. By zooming in, it can 
be seen that the limit curve generated by S3

4 suffers from a minor artifact next to its lowest vertex, this being consequence 
of trying to fit the noisy data. For the set of samples with high level noise in Fig. 16(d), the results confirm our previous 
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Fig. 18. The torus surface (a) from Equation (27) and its sample points (b), contaminated by low level noise of about 15 dB (c) and by high level noise of 
about 6 dB (d).

Fig. 19. The limits of two bivariate tensor-product schemes, applied to noisy samples from the torus surface in Fig. 18(a). The two surfaces on the left (a, b) 
are obtained from the samples with low level noise in Fig. 18(c) by S3 ⊗ S3 and S5 ⊗ S5, respectively. The two surfaces on the right (c, d) are obtained 
from the samples with high level noise in Fig. 18(d) by S3 ⊗ S3 and S5 ⊗ S5, respectively.

Fig. 20. The surface of a mechanical element (a) and its sample points (b), contaminated by low level noise of about 24 dB (c) and by high level noise of 
about 18 dB (d).

observation. Namely, both S3 and S3
6 generate reasonable results, while the limit curves generated by S5 and S3

4 suffer from 
geometrical artifacts caused by oversmoothing and overfitting, respectively. These limits are presented in the lower row of 
Fig. 17.

5.2. Examples of surfaces

Equipped with univariate least squares subdivision schemes, we use tensor-product bivariate schemes based on them. 
These bivariate schemes are applied to noisy samples of surfaces, given at vertices of quadrilateral grids. Two examples are 
provided to illustrate the application of these bivariate schemes to noisy data.

The first surface we examine is a torus surface, given by

x(u, v) = cos(u)(10 + 5 cos(v)),

y(u, v) = sin(u)(10 + 5 cos(v)),

z(u, v) = 5 sin(v), (27)

sampled every 15 degrees, that is, at ui = iπ/12 and v j = jπ/12 for i, j = 0, . . . , 23. This surface and its sample points are 
shown in Figs. 18(a) and 18(b). We investigate the limits of the bivariate tensor-product schemes S3 ⊗ S3 and S5 ⊗ S5. First, 
we study the application of these schemes to the samples with low level noise in Fig. 18(c). The limits of both schemes in 
Figs. 19(a) and 19(b) are fairly good. For the samples with high level noise in Fig. 18(d), the limit of S3 ⊗ S3 in Fig. 19(c) 
keeps the general shape but is a poor approximation to the torus, while the limit of S5 ⊗ S5 in Fig. 19(d) provides a better 
approximation.

The surface of the second example is not a mathematical surface but a scan of a mechanical element, parameterized by 
a quadrilateral grid, and given in terms of 49 × 81 = 3969 vertices. Figs. 20(a) and 20(b) show the surface and its sample 
points, respectively. Similarly to the second example in the curve case, we investigate the limit surfaces generated by the 
four tensor product schemes: S3 ⊗ S3, S5 ⊗ S5, S3 ⊗ S3, and S3 ⊗ S3. We compare their limits from a set of samples with a 
4 4 6 6
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Fig. 21. Limits of four bivariate tensor-product schemes, applied to noisy samples from the surface of the mechanical element in Fig. 20(a). The surfaces in 
the upper row correspond to the samples with low level noise in Fig. 20(c) and the surfaces in the lower row correspond to the samples with high level 
noise in Fig. 20(d).

low level of noise and a set of samples with a high level of noise. These sets of samples are given in Figs. 20(c) and 20(d), 
respectively. The limit surfaces for the samples with low level noise, shown in the upper row of Fig. 21, indicate that 
S3 ⊗ S3 and S3

6 ⊗ S3
6 outperform the other two schemes. For the samples with high level noise, the performance of S5 ⊗ S5

is superior to that of the other three, as can be seen in the lower row of Fig. 21.
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Appendix A. Least squares schemes and orthonormal polynomials

In this appendix we derive several properties of least squares polynomials used throughout this paper. Some of the 
properties can be considered common knowledge, but we present them here in order to keep the paper as self-contained 
as possible.

A.1. Least squares polynomials in terms of orthonormal polynomials

Our subdivision schemes are based on least squares polynomial fitting. We denote by �d the space of polynomials of 
degree at most d. Fitting data y1, . . . , ym given at the nodes x1, . . . , xm by a polynomial p ∈ �d with d < m requires finding 
the polynomial p∗ which minimizes the sum of squared errors,

m∑
i=1

(
p(xi) − yi)

)2
, (A.1)

among all p ∈ �d . The coefficients β = (β0, . . . , βd) of p∗(x) = ∑d
j=0 β j x j are typically determined by setting the gradient 

of the functional in (A.1) to zero, resulting in the normal equations

AT Aβ = AT y,

where A is the m × (d + 1) Vandermonde matrix with entries Ai, j = (xi)
j and y = (y1, . . . , ym) is the data vector. The matrix 

AT A is invertible for any set of distinct nodes x1, . . . , xm and the solution of the normal equations is given by

β = A† y, (A.2)

where A† = (AT A)−1 AT is the Moore–Penrose pseudoinverse (Penrose, 1955) of A.

Remark 9. If d = m − 1, then p∗ is the unique interpolating polynomial to the data. Furthermore, this ansatz can also be 
used in the case d ≥ m to pick among all interpolating polynomials the one with the smallest �2-norm of the coefficients β . 
This can be achieved by using A† = (A AT )−1 AT in (A.2), but then the solution depends on the particular basis of �d chosen 
to represent p∗ . However, p∗(xi) = yi , i = 1, . . . , m, independently of that choice.
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Let us now express the solution p∗ which minimizes (A.1) for d < m in terms of orthonormal polynomials. Recall the 
notion of orthonormal polynomials with respect to a discrete inner product. Let X = {x1, . . . , xm} be a set of distinct nodes 
and define for any two functions f , g: R →R the discrete inner product

〈 f , g〉X =
m∑

i=1

f (xi)g(xi). (A.3)

A family L = {L0, . . . , Lk} of k + 1 polynomials in �d with k ≤ d, is orthonormal over X if

〈Li, L j〉X = δi, j, i, j = 0, . . . ,k, (A.4)

where δi, j is the standard Kronecker delta, that is, δi, j = 1 for i = j and δi, j = 0, otherwise. Under the assumption that 
L j ∈ � j , j = 0, . . . , k, there exists a unique family L satisfying (A.4). The coefficients of the least squares solution p∗ with 
respect to this unique family for k = d are simply

γ j = 〈L j(X), y〉 =
m∑

i=1

L j(xi)yi, j = 0, . . . ,d,

that is,

p∗(x) =
d∑

j=0

γ j L
j(x). (A.5)

For more details, see Eisinberg and Fedele (2007) and the references therein.

A.2. The masks in terms of orthonormal polynomials

A naive implementation of the refinement rules in (21) and (22) for the least squares schemes of higher degree is 
computationally expensive, because the solution of each least squares problem is equivalent to the solution of a linear 
system, and it needs to be solved for every new data value f k+1

i . However, it turns out that the subdivision schemes Sd
n and 

S̄d
n for d > 1 are stationary, just like the schemes of degree d = 1, so that

f k+1
i =

∑
j

αi−2 j f k
j , (A.6)

where the coefficients {α�}�∈Z are independent of i and k and only a finite number of these coefficients are non-zero. To 
see this, we first prove that least squares polynomials are invariant under affine transformations.

Proposition 10. Let p∗ be the least squares polynomial of degree d for the data y = (y1, . . . , ym) given at the nodes X = {x1, . . . , xm}
and let ϕ(x) = ax + b with a �= 0 be an affine transformation. Then p̄∗ = p∗ ◦ ϕ−1 is the least squares polynomial of degree d for the 
same data y given at the transformed nodes X̄ = ϕ(X) = {x̄1, . . . , ̄xm} with x̄i = ϕ(xi), i = 1, . . . , m.

Proof. Let L = {L0, . . . , Ld} be the unique family of orthonormal polynomials over X . Then the family of polynomials L̄ =
{L̄0, . . . , ̄Ld} with L̄ j = L j ◦ ϕ−1, j = 0, . . . , d is orthonormal over X̄ , because

〈L̄i, L̄ j〉X̄ =
m∑

k=1

L̄i(x̄k)L̄ j(x̄k) =
m∑

k=1

Li(xk)L j(xk) = 〈Li, L j〉X = δi, j,

according to (A.3) and (A.4). The statement then follows using (A.5), since

p̄∗(x) =
d∑

j=0

m∑
i=1

L̄ j(x̄i)yi L̄
j(x) =

d∑
j=0

m∑
i=1

L j(xi)yi L
j(ϕ−1(x)

) = p∗(ϕ−1(x)
)
. �

For the derivation of the masks of Sd
n we introduce for n ≥ d ≥ 1 two sets of points

Xn = {−2n + 2,−2n + 4, . . . ,2n − 2}, X̂n = {−2n + 1,−2n + 3, . . . ,2n − 1},
and denote the corresponding families of d + 1 orthonormal polynomials by

Ld
n = {L0

n, . . . , Ld
n}, L̂d

n = {L̂0
n, . . . , L̂d

n}.
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Corollary 11. For any n ≥ 1 and d ≥ 1 with d < 2n, the subdivision scheme Sd
n is stationary and the coefficients of its mask 

[α−2n+1, . . . , α2n−1] are

α2i =
d∑

j=0

L j
n(−2i)L j

n(0), i = −n + 1, . . . ,n − 1 (A.7)

and

α2i+1 =
d∑

j=0

L̂ j
n(−2i − 1)L̂ j

n(0), i = −n, . . . ,n − 1.

Proof. Let L0, . . . , Ld be the orthonormal polynomials over {tk
i−n+1, . . . , tk

i+n−1}. Then, by (21) and (A.5),

f k+1
2i =

d∑
j=0

(
n−1∑

l=−n+1

L j(tk
i+l) f k

i+l

)
L j(tk

i ),

Since these nodes relate to the nodes Xn by the affine transformation ϕ(x) = 2−k−1(x +2i), that is, tk
i+ j = ϕ( j), j = −2n +2,

−2n + 4, . . . , 2n − 2, we can apply Proposition 10 to get

f k+1
2i =

d∑
j=0

(
n−1∑

l=−n+1

L j
n(2l) f k

i+l

)
L j

n(0) =
n−1∑

l=−n+1

(
d∑

j=0

L j
n(2l)L j

n(0)

)
f k

i+l.

Substituting l by l − i and comparing terms with f k+1
2i as given in (A.6) we get the coefficients in (A.7). The coefficients with 

odd indices can be found similarly, replacing Xn by X̂n . �
Explicit formulas for the mask coefficients of the dual schemes S̄d

n and the other variants mentioned in Section 4.3 can 
be derived analogously.

A.3. Computation of the masks

Corollary 11 suggests computing the mask coefficients of Sd
n by evaluating the orthonormal polynomials Li

n and L̂i
n , which 

can be derived from the explicit formulae for orthonormal polynomials over equidistant nodes in Eisinberg and Fedele (2007, 
Proposition 2), using Proposition 10 and suitable affine transformations. For example,

L0
n(x) = 1√

2n − 1
, L1

n(x) = x√
(2n − 2)(2n − 1)2n/3

and

L̂0
n(x) = 1√

2n
, L̂1

n(x) = x√
(2n − 1)2n(2n + 1)/3

.

Note that L1
n and L̂1

n are odd polynomials. Therefore, L1
n(0) = L̂1

n(0) = 0, and Corollary 11 confirms that the coefficients of 
the least squares schemes of degree d = 1 are α2i = 1/(2n − 1) and α2i−1 = 1/(2n), as stated in (2).

Remark 12. More generally, it follows from the formula in Eisinberg and Fedele (2007) that Li
n and L̂i

n are odd polynomials 
for odd i and even polynomials otherwise. Thus, L2i+1

n (0) = L̂2i+1
n (0) = 0, and so by Corollary 11 the coefficients of the 

schemes S2d
n and S2d+1

n are identical.

However, a direct algorithm for computing the mask coefficients of Sd
n , independent of the orthonormal polynomials, is 

given by the following observation.

Proposition 13. For any n ≥ 1 and d ≥ 1 with d < 2n, let A and Ã be the Vandermonde matrices with d + 1 columns for the nodes 
Xn and X̂n, respectively. Further let A†

1,• and Â†
1,• be the first rows of the pseudo-inverses A† and Â† . The mask coefficients of the 

subdivision scheme Sd
n are then given by

(α2n−2,α2n−4, . . . ,α−2n+2) = A†
1,• and (α2n−1,α2n−3, . . . ,α−2n+1) = Â†

1,•.
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Proof. For any i ∈ {−n + 1, . . . , n − 1}, observe that by (A.5) the least squares polynomial over Xn for the data yi =
(yi−n+1, . . . , y

i
n−1) with yi

j = δi, j is of the form

�i
n(x) =

d∑
j=0

L j
n(2i)L j

n(x) =
d∑

j=0

β i
j x

j,

where according to (A.2) β i = (β i
0, . . . , β

i
d) = A† yi . The statement on the coefficients with even indices then follows 

from (A.7), because

α2i = �−i
n (0) = β−i

0 = A†
1,n−i .

The statement regarding the coefficients with odd indices can be derived analogously. �
Overall, this means that the main cost for computing the mask of Sd

n is the inversion of the two (d +1) × (d +1) matrices 
AT A and ÂT Â. The masks of the dual schemes S̄d

n and the other variants mentioned in Section 4.3 can be computed 
similarly.
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