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We consider a C1 cubic spline space defined over a triangulation with Powell–Sabin 
refinement. The space has some local C2 super-smoothness and can be seen as a close 
extension of the classical cubic Clough–Tocher spline space. In addition, we construct a
suitable normalized B-spline representation for this spline space. The basis functions have
a local support, they are nonnegative, and they form a partition of unity. We also show
how to compute the Bézier control net of such a spline in a stable way.
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1. Introduction

Smooth (finite element) spline spaces defined over triangulations have been studied extensively and applied in different
contexts (see, e.g., Lai and Schumaker, 2007; Nürnberger and Zeilfelder, 2000, and the references quoted therein). Typically, 
such spline spaces provide good approximation properties and possess a small dimension which can be expressed in terms 
of geometrically interesting characteristics of the triangulation (like the number of vertices, edges and/or triangles). In 
addition, a stable basis representation is often required for practical purposes.

For the construction of smooth splines with a low polynomial degree, one often considers triangulations with a particular 
macro-structure. Each triangle in the triangulation is then split into a number of subtriangles. The Clough–Tocher split (into 
three subtriangles) and the Powell–Sabin split (into six subtriangles) are commonly used splits. Splines defined on such 
refined triangulations are referred to as Clough–Tocher splines and Powell–Sabin splines, respectively.

Dierckx (1997) has developed an interesting normalized B-spline representation for C1 quadratic Powell–Sabin splines. 
These splines have been introduced by Powell and Sabin (1977) with the aim of drawing contour lines of bivariate functions. 
The B-spline representation consists of a set of locally supported basis functions which form a convex partition of unity 
(i.e., they are nonnegative and sum up to one). The spline coefficients in this representation possess an intuitive geometric 
interpretation involving tangent control triangles. This normalized B-spline representation has been effective in a wide range 
of application areas, for example, surface modeling and compression (Dierckx, 1997; Maes and Bultheel, 2006; Speleers et 
al., 2009), scattered data interpolation and approximation (Manni and Sablonnière, 2007; Sbibih et al., 2009, 2015), the 
numerical solution of differential problems (Speleers et al., 2006, 2012). Recently, basis functions with similar properties 
have been constructed for certain Powell–Sabin spline spaces of higher degree and smoothness. In particular, we mention 
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C1 cubics (Lamnii et al., 2014), C2 quintics (Speleers, 2010a), and a family of splines of smoothness r and polynomial degree 
3r − 1 (Speleers, 2013a). Local super-smoothness has been imposed in order to simplify their construction and to reduce 
their number of degrees of freedom while maintaining the full approximation order. The quadratic Powell–Sabin spline case 
has also been extended to the trivariate setting (Sbibih et al., 2012) and the general multivariate setting (Speleers, 2013b).

On the other hand, the construction of a normalized B-spline representation for Clough–Tocher splines is a challenging 
task. Originally, C1 cubic Clough–Tocher splines (CT3-splines) have been developed by Clough and Tocher (1965) as a tool for 
the finite element method. Later on, they were also applied in the area of scattered data interpolation (see, e.g., Farin, 1985;
Kashyap, 1996; Mann, 1999). A normalized B-spline basis has been constructed by Speleers (2010b) for a certain subspace 
of the CT3-spline space. Yet, it is still an open question whether or not it is possible to construct a normalized B-spline basis 
for the full CT3-spline space. In this paper, we do not answer this question, but we provide a normalized B-spline basis for a 
slightly enlarged space, so every CT3-spline can be represented with it. We consider a C1 cubic spline space defined over a 
triangulation endowed with a Powell–Sabin refinement. The space has specific local C2 super-smoothness to mimic closely 
the CT3-spline space.

The paper is organized as follows. In Section 2 we review some general concepts of polynomials on triangles, we give 
the definition of our cubic spline space and point out its relation with the classical Clough–Tocher spline space. Section 3
covers the construction of a normalized B-spline basis and gives a geometric interpretation: we are looking for a set of 
triangles that contain a specific set of points. In Section 4 we consider spline surfaces and describe how control points 
can be defined. We also present a stable way to compute the Bézier ordinates of such a spline. Section 5 discusses some 
strategies to reduce the number of degrees of freedom in the proposed spline space. In particular, we detail the relation 
with the reduced CT3-splines developed by Speleers (2010b). Finally, in Section 6 we end with some concluding remarks.

2. C 1 cubic splines

In this section we introduce our C1 cubic spline space. To this end, we first recall some preliminary concepts of bivariate 
polynomials in Bernstein–Bézier form defined on triangles.

2.1. Bivariate polynomials in Bernstein–Bézier representation

Let T (V 1, V 2, V 3) be a non-degenerate triangle. Any point P in the plane of the triangle can be uniquely expressed in 
terms of the barycentric coordinates τ = (τ1, τ2, τ3) with respect to T , such that

P =
3∑

i=1

τi V i, and τ1 + τ2 + τ3 = 1. (2.1)

Let Pd denote the linear space of bivariate polynomials of total degree less than or equal to d. Any polynomial pd ∈ Pd
defined over the triangle T has a unique Bernstein–Bézier representation

pd(τ ) =
∑

i+ j+k=d

bijk Bd
i jk(τ ), (2.2)

with

Bd
ijk(τ ) = d!

i! j!k!τ1
iτ2

jτ3
k (2.3)

the Bernstein polynomials of degree d, which form a convex partition of unity on T . The coefficients bijk are called Bézier 
ordinates, and the Bézier domain points ξi jk are defined as the points with barycentric coordinates 

( i
d , j

d , kd
)
. The Bernstein–

Bézier representation is often visualized in a schematic way by associating each Bézier ordinate bijk with the Bézier domain 
point ξi jk . The piecewise linear interpolant of the Bézier control points, defined as bi jk = (ξi jk, bijk), is called the Bézier 
control net. This control net is tangent to the polynomial surface at the three vertices. Polynomials in their Bernstein–Bézier 
form can be evaluated in a stable way using the de Casteljau algorithm. This algorithm can also be used to derive smooth-
ness conditions between (the Bézier ordinates of) polynomials defined over adjacent triangles. More details can be found in 
the works by Farin (1986), Lai and Schumaker (2007).

The disk Dr of radius r around vertex V 1 of T is the set of domain points defined by

Dr(V 1) = {ξi1i2i3 : i1 ≥ d − r}. (2.4)

The row Er at distance r parallel to edge ε12 = 〈V 1, V 2〉 in T is the set of domain points defined by

Er(ε12) = {ξi1i2i3 : i3 = r}.
Given a triangulation �, the disk Dr(V 1) in � is defined as the set of all domain points in (2.4) for each triangle in �
having V 1 as a vertex. A row in � is defined in a similar way. Hereinafter, if we refer to a Bézier ordinate in a disk or on a 
row, then we actually mean a Bézier ordinate whose corresponding domain point is in that location.
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Fig. 1. Left: A Clough–Tocher split of a triangle T (V 1, V 2, V 3). Right: Bézier domain points and schematic representation of the inherent smoothness 
conditions (shaded regions) for S1

3(�CT ).

Fig. 2. Left: A Powell–Sabin split of a triangle T (V 1, V 2, V 3). Right: Bézier domain points and schematic representation of the inherent smoothness condi-
tions (shaded regions) for ̂S1

3(�PS).

2.2. The PS3-spline space

Let � be a closed polygonal domain in R2 and let � be a triangulation of �. We denote by nv , nt and ne the number of 
vertices, triangles and edges in �, respectively. The vertices V i , i = 1, . . . , nv , in � have as Cartesian coordinates (xi, yi).

A Clough–Tocher (CT-) refinement �CT of � partitions all triangles in � into three smaller triangles (Clough and Tocher, 
1965). For each triangle T , a split point Z is chosen in the interior of T and it is connected to the three vertices of T by 
straight lines (see Fig. 1(left)). The space of piecewise cubic polynomials on �CT with global C1-continuity will be referred 
to as the cubic Clough–Tocher (CT3-) spline space, i.e.,

S
1
3(�CT) =

{
s ∈ C1(�) : s|TCT ∈ P3, TCT ∈ �CT

}
. (2.5)

The dimension of this space is equal to 3nv + ne . Given a single macro-triangle T (V 1, V 2, V 3) in �, on each of the three 
subtriangles the CT3-spline is a cubic polynomial that can be represented in its Bernstein–Bézier form, i.e., with d = 3 in 
equations (2.2) and (2.3). Fig. 1(right) shows the regions inside a macro-triangle where the corresponding Bézier ordinates 
of a CT3-spline are related by the inherent smoothness conditions. Note that CT3-splines possess a C2 super-smoothness at 
the split points (see, e.g., Farin, 1986).

A Powell–Sabin (PS-) refinement �PS of � is the refined triangulation obtained by subdividing each triangle of � into 
six subtriangles as follows (Powell and Sabin, 1977).

1. Select a split point Z j inside each triangle T j ∈ � and connect it to the three vertices of T j by straight lines.
2. For each pair of triangles Ti and T j with a common edge, connect the two points Zi and Z j . If T j is a boundary triangle, 

then also connect Z j to an arbitrary point on each of the boundary edges.

These triangle split points must be chosen so that each constructed line segment 〈Zi , Z j〉 intersects the common edge of 
Ti and T j . Such a choice is always possible: for instance, one can take Z j as the incenter (i.e., the center of the inscribed 
circle) of T j . The obtained split points on the edges εk , k = 1, . . . , ne are denoted by Rk as illustrated in Fig. 2(left).

The space of piecewise cubic polynomials on �PS with global C1-continuity is denoted by

S
1
3(�PS) =

{
s ∈ C1(�) : s|TPS ∈ P3, TPS ∈ �PS

}
. (2.6)

In this paper we focus on a particular subspace of S1
3(�PS) with additional smoothness around some vertices and edges. 

Imposing local super-smoothness is an interesting way to reduce the dimension of the space, while maintaining the full 
approximation order. Let ZPS = {Zi}nt

i=1 be the set of triangle split points in �PS , and let EPS be the set of all edges in �PS

that connect a triangle split point Zi to an edge split point Rk . The space ̂S1
3(�PS) of super-smooth splines on �PS is defined 

by
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Ŝ
1
3(�PS) =

{
s ∈ S

1
3(�PS) : s ∈ C2(Z), Z ∈ ZPS; s ∈ C2(ε), ε ∈ EPS

}
. (2.7)

Here, Cμ(Z) means that the polynomials on triangles in �PS sharing the vertex Z have common derivatives up to order 
μ at that vertex. Analogously, Cμ(ε) means that the polynomials on triangles in �PS sharing the edge ε have common 
derivatives up to order μ along that edge. The space Ŝ1

3(�PS) will be referred to as the cubic Powell–Sabin (PS3-) spline 
space. Fig. 2(right) shows the regions inside a macro-triangle where the corresponding Bézier ordinates of a PS3-spline are 
related by the inherent smoothness conditions. A spline s ∈ Ŝ

1
3(�PS) can be characterized by means of the following Hermite 

interpolation problem.

Theorem 1. For each edge εm in �, let νm be any unit vector that is not parallel to the edge. There exists a unique spline s(x, y) ∈
Ŝ

1
3(�PS) satisfying

s(Vl) = fl,
∂s

∂x
(Vl) = fx,l,

∂s

∂ y
(Vl) = f y,l, l = 1, . . . ,nv , (2.8a)

and

s(Rm) = gm,
∂s

∂νm
(Rm) = gν,m, m = 1, . . . ,ne, (2.8b)

for a given set of ( fl, fx,l, f y,l)-values and (gm, gν,m)-values. Hence, a PS3-spline is uniquely defined by means of its function value 
and first derivatives at the nv vertices Vl in � and by means of its function value and νm-derivative at the ne edge split points Rm

in �PS.

Proof. We focus on a single macro-triangle T (V 1, V 2, V 3) in �, as shown in Fig. 2. On each of the six subtriangles, the 
PS3-spline s is a cubic polynomial that can be represented in its Bernstein–Bézier form. We will check that the interpolation 
conditions in (2.8) uniquely specify all the Bézier ordinates of s on the macro-triangle. The conditions (2.8a) determine the 
Bézier ordinates in the disks D1(V 1), D1(V 2) and D1(V 3). Because of the C2-smoothness across the edge 〈Z , R3〉 and the 
conditions (2.8b) at the split point R3 on the edge ε3 = 〈V 1, V 2〉, the remaining Bézier ordinates on the rows Er(ε3), r = 0, 1
are also uniquely defined. The same argument holds for the Bézier ordinates on the rows related to the edges ε1 = 〈V 2, V 3〉
and ε2 = 〈V 3, V 1〉. Finally, the C2 smoothness at the split point Z specifies the remaining Bézier ordinates in the disk 
D2(Z). �

From Theorem 1 it follows that the dimension of ̂S1
3(�PS) is equal to 3nv + 2ne .

In the next theorem we show that the CT3-spline space is a subspace of the PS3-spline space. We say that the partitions 
�CT and �PS of the same triangulation � are compatible if the triangle split points Zi , i = 1, . . . , nt coincide in both 
partitions.

Theorem 2. If the partitions �CT and �PS are compatible, then

S
1
3(�CT) ⊂ Ŝ

1
3(�PS).

Proof. It is easy to see that ̃S1
3(�PS) ⊂ Ŝ

1
3(�PS), where

S̃
1
3(�PS) =

{
s ∈ S

1
3(�PS) : s ∈ C2(Z), Z ∈ ZPS; s ∈ C3(ε), ε ∈ EPS

}
.

We now show that S̃1
3(�PS) = S

1
3(�CT) when the partitions �CT and �PS are compatible. As already mentioned before, 

the CT3-splines possess a C2 super-smoothness at the split points Z ∈ ZPS . Moreover, when a cubic spline is C3 across an 
interior edge ε ∈ EPS , it is a single cubic polynomial over the two adjacent subtriangles. This completes the proof. �

Since the CT3-spline space is a subspace of the PS3-spline space, the latter space also contains cubic polynomials, and 
consequently has an optimal approximation order.

Another cubic subspace of S1
3(�PS) with local C2 super-smoothness has been considered by Chen and Liu (2008); Lamnii 

et al. (2014). However, that space is not so attractive as (2.7), because the corresponding Hermite interpolation scheme 
involves second order derivatives and the CT3-spline space is not a subspace. Many other spline spaces with a higher order 
of smoothness defined on a triangulation with PS-refinement or CT-refinement can be found in the literature (see, e.g., Alfeld 
and Schumaker, 2002a, 2002b; Laghchim-Lahlou and Sablonnière, 1994; Lai and Schumaker, 2001, 2003, 2007; Sablonnière, 
1985; Speleers, 2013a).
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Fig. 3. Schematic representation of the Bézier ordinates of a B-spline with respect to an edge.

3. A normalized B-spline representation for PS3-splines

In this section we look for a suitable B-spline representation of s(x, y) ∈ Ŝ
1
3(�PS),

s(x, y) =
nv∑

i=1

3∑
j=1

cv
i, j B v

i, j(x, y) +
ne∑

k=1

2∑
j=1

ce
k, j Be

k, j(x, y), (3.1)

in which the basis functions B v
i, j(x, y) and Be

k, j(x, y) have a local support and form a convex partition of unity. We will 
refer to B v

i, j(x, y) and Be
k, j(x, y) as a B-spline with respect to the vertex V i and the edge εk , respectively.

3.1. A B-spline with respect to an edge

We define the B-spline Be
k, j(x, y) with respect to the edge εk as the unique solution of the interpolation problem (2.8)

with all ( fl, fx,l, f y,l) = (0, 0, 0) and with all (gm, gν,m) = (0, 0), except for m = k, where (gk, gν,k) �= (0, 0). It is easy to 
prove that such a spline vanishes outside the union of the two macro-triangles adjacent to the edge εk .

We now focus on the macro-triangle T (V 1, V 2, V 3), as shown in Fig. 2(left), and we assume that the points indicated in 
the figure have the following barycentric coordinates:

V 1 = (1,0,0), V 2 = (0,1,0), V 3 = (0,0,1), Z = (z1, z2, z3),

R1 = (0, λ23, λ32), R2 = (λ13,0, λ31), R3 = (λ12, λ21,0). (3.2)

In order to specify completely the B-spline Be
k, j(x, y) related to the edge ε3 = 〈V 1, V 2〉 (k = 3), i.e., determining the values 

(gk, gν,k), we make use of the Bernstein–Bézier representation. The corresponding Bézier ordinates are schematically repre-
sented in Fig. 3. From the definition of the B-spline it follows that many of these ordinates are zero, as can be seen in the 
figure. Because of the C2-continuity across the edge 〈Z , R3〉, the Bézier ordinates de

1, de
2, de

3 can be regarded as ordinates 
after subdivision of a single (univariate) quadratic polynomial pe

2 defined on the edge segment 〈P1, P2〉 given by

P1 = 2

3
V 1 + 1

3
R3, P2 = 2

3
V 2 + 1

3
R3. (3.3)

This quadratic polynomial pe
2 can be chosen to have the values 0, βk, j, 0 as its three Bézier ordinates, for some parameter 

βk, j . Then, we get

de
1 = λ21βk, j, de

2 = 2λ12λ21βk, j, de
3 = λ12βk, j . (3.4)

In a similar way, we obtain

de
4 = λ21γk, j, de

5 = 2λ12λ21γk, j, de
6 = λ12γk, j, (3.5)

for some parameter γk, j . The remaining ordinates are determined by the C2-smoothness at the split point Z , i.e.,

de
7 = z2γk, j, de

8 = (z2λ12 + z1λ21)γk, j, de
9 = z1γk, j,

de
10 = z2λ13γk, j, de

11 = 2z1z2γk, j, de
12 = z1λ23γk, j. (3.6)

In order to ensure nonnegativity, it suffices to impose that all Bézier ordinates of the B-spline Be
k, j(x, y) are nonnegative. 

Looking at (3.4)–(3.6), this is the case when

βk, j ≥ 0, γk, j ≥ 0. (3.7)
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Fig. 4. Schematic representation of the Bézier ordinates of a B-spline with respect to a vertex.

The conditions in (3.7) are also necessary conditions for nonnegativity, because Be
k, j(Rk) = de

2 = 2λ12λ21βk, j and Be
k, j(Z) =

de
11 = 2z1z2γk, j . Hence, we need to choose two couples of parameters (βk,1, γk,1) and (βk,2, γk,2) satisfying (3.7) in order 

to define two nonnegative basis functions related to the edge εk . Depending on the type of the edge εk , we choose these 
parameters as follows.

1. If εk is a boundary edge:

(βk,1, γk,1) = (0,1), and (βk,2, γk,2) = (1,0). (3.8a)

2. If εk is an interior edge, so that there is another adjacent macro-triangle T̃ and the line through the split points Z and 
Z̃ intersects the edge in Rk:

(βk,1, γk,1) =
(‖Rk − Z̃‖

‖Z − Z̃‖ ,1

)
, and (βk,2, γk,2) =

(‖Z − Rk‖
‖Z − Z̃‖ ,0

)
. (3.8b)

Note that in both cases

βk,1 + βk,2 = 1, γk,1 + γk,2 = 1.

3.2. A B-spline with respect to a vertex

The molecule (also called 1-ring) Mi of the vertex V i is defined as the union of all triangles in the triangulation that con-
tain V i . The B-spline B v

i, j(x, y) with respect to the vertex V i is defined as the unique solution of the interpolation problem 
(2.8) with all ( fl, fx,l, f y,l) = (0, 0, 0), except for l = i, where ( f i, fx,i, f y,i) = (αi, j, αx

i, j, α
y
i, j), and with all (gm, gν,m) = (0, 0), 

except for any m such that εm is an edge with V i as endpoint, where (gm, gν,m) �= (0, 0). Such a spline is zero outside the 
molecule of V i .

We consider again the macro-triangle T (V 1, V 2, V 3) depicted in Fig. 2(left); the barycentric coordinates of the points 
in the figure are given in (3.2). Without loss of generality, we look at the Bernstein–Bézier representation of the B-spline 
B v

1, j(x, y) related to the vertex V 1 (i = 1), in order to specify the values (gm, gν,m) assuming the triplet (α1, j, αx
1, j, α

y
1, j)

is given. The corresponding Bézier ordinates are schematically represented in Fig. 4. In view of the C1-smoothness at the 
vertex V 1, the Bézier ordinates in the neighborhood of V 1 are found as

dv
1 = α1, j, (3.9a)

dv
2 = α1, j + λ21

3

(
αx

1, j(x2 − x1) + α
y
1, j(y2 − y1)

)
, (3.9b)

dv
3 = α1, j + z2

3

(
αx

1, j(x2 − x1) + α
y
1, j(y2 − y1)

)
+ z3

3

(
αx

1, j(x3 − x1) + α
y
1, j(y3 − y1)

)
, (3.9c)

dv
4 = α1, j + λ31

3

(
αx

1, j(x3 − x1) + α
y
1, j(y3 − y1)

)
. (3.9d)

In a similar way we can compute the Bézier ordinates in the neighborhood of the vertices V 2 and V 3. In order to satisfy 
the C2-continuity across the edge 〈Z , R3〉, we take

dv
5 = λ12dv

2 , dv
6 = λ12dv

3 , dv
10 = λ12

2dv
2 , dv

11 = λ12
2dv

3 . (3.10)

Note that the ordinates dv
2 , dv

5 , dv
10 can be regarded as ordinates after subdivision of a single (univariate) quadratic poly-

nomial pv defined on the edge segment 〈P1, P2〉, see (3.3). This quadratic polynomial pv has the values dv , 0, 0 as its 
2 2 2
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three Bézier ordinates. A similar reasoning holds for the ordinates dv
3 , dv

6 , dv
11. In the same way, in order to satisfy the 

C2-continuity across the edge 〈Z , R2〉, we take

dv
9 = λ13dv

4 , dv
8 = λ13dv

3 , dv
16 = λ13

2dv
4 , dv

15 = λ13
2dv

3 . (3.11)

The remaining Bézier ordinates are then specified by the C2-smoothness at the split point Z , i.e.,

dv
7 = z1dv

3 , dv
12 = z1λ12dv

3 , dv
13 = z1

2dv
3 , dv

14 = z1λ13dv
3 . (3.12)

From the Bernstein–Bézier representation depicted in Fig. 4 we notice that the B-spline B v
1, j(x, y) is C2-continuous across 

the edge 〈V 2, V 3〉.
In order to ensure nonnegativity of B v

1, j(x, y), we impose that all its Bézier ordinates are nonnegative. It is clear from 
(3.9)–(3.12), that this is the case when

dv
1 ≥ 0, dv

2 ≥ 0, dv
3 ≥ 0, dv

4 ≥ 0. (3.13)

This is not only a sufficient condition, but also a necessary condition for nonnegativity. Indeed, we have B v
1, j(V i) = dv

1 , 
B v

1, j(R3) = dv
10 = λ12

2dv
2 , B v

1, j(R2) = dv
16 = λ13

2dv
4 , and B v

1, j(Z) = dv
13 = z1

2dv
3 . If the molecule of V 1 has more than one 

triangle, then we have to impose conditions similar to (3.13) for each of these triangles. These conditions are always feasible 
and there is an infinite number of solutions. This can be proved following the same geometric construction as developed by 
Dierckx (1997); the details are given in the next subsection.

3.3. A geometric approach to form a convex partition of unity

In this subsection we investigate for which choices of the parameters (αi, j, αx
i, j, α

y
i, j) the basis functions form a convex 

partition of unity. From the definition of the B-splines (related to both the vertices and the edges) it follows that only three 
basis functions have a nonzero function and derivative value at the vertex V i . Hence, we need to satisfy

αi,1 + αi,2 + αi,3 = 1, (3.14a)

αx
i,1 + αx

i,2 + αx
i,3 = 0, (3.14b)

α
y
i,1 + α

y
i,2 + α

y
i,3 = 0, (3.14c)

for i = 1, . . . , nv . By taking into account the construction of the B-splines and the choices for the edge parameters in (3.8), 
we easily find that the conditions (3.14) are necessary and sufficient to form a partition of unity.

We now focus on the nonnegativity of the basis functions. For each vertex V i we define three points Q v
i, j = (X v

i, j, Y
v
i, j), 

j = 1, 2, 3, and for each edge εk we define two points Q e
k, j = (Xe

k, j, Y
e
k, j), j = 1, 2, such that

nv∑
i=1

3∑
j=1

X v
i, j B v

i, j(x, y) +
ne∑

k=1

2∑
j=1

Xe
k, j Be

k, j(x, y) = x, (3.15a)

nv∑
i=1

3∑
j=1

Y v
i, j B v

i, j(x, y) +
ne∑

k=1

2∑
j=1

Y e
k, j Be

k, j(x, y) = y, (3.15b)

for any (x, y) ∈ �. Hence, the points Q v
i, j and Q e

k, j are the Greville points for our B-spline representation. By using the 
interpolation problem (2.8) and the definition of the B-splines, the Cartesian coordinates of the points Q v

i, j can be obtained 
as the solution of the systems

αi,1 X v
i,1 + αi,2 X v

i,2 + αi,3 X v
i,3 = xi, (3.16a)

αx
i,1 X v

i,1 + αx
i,2 X v

i,2 + αx
i,3 X v

i,3 = 1, (3.16b)

α
y
i,1 X v

i,1 + α
y
i,2 X v

i,2 + α
y
i,3 X v

i,3 = 0, (3.16c)

and

αi,1 Y v
i,1 + αi,2 Y v

i,2 + αi,3 Y v
i,3 = yi, (3.17a)

αx
i,1 Y v

i,1 + αx
i,2 Y v

i,2 + αx
i,3 Y v

i,3 = 0, (3.17b)

α
y
i,1 Y v

i,1 + α
y
i,2 Y v

i,2 + α
y
i,3 Y v

i,3 = 1. (3.17c)
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Fig. 5. A PS-refined triangulation with a set of optimal PS3-triangles (red) and PS3-lines (blue). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

We can compactly write (3.14), (3.16) and (3.17) in the following matrix notation⎡
⎢⎣

αi,1 αi,2 αi,3

αx
i,1 αx

i,2 αx
i,3

α
y
i,1 α

y
i,2 α

y
i,3

⎤
⎥⎦

⎡
⎢⎣

X v
i,1 Y v

i,1 1

X v
i,2 Y v

i,2 1

X v
i,3 Y v

i,3 1

⎤
⎥⎦ =

⎡
⎢⎣

xi yi 1

1 0 0

0 1 0

⎤
⎥⎦ . (3.18)

The triangle ti(Q v
i,1, Q

v
i,2, Q

v
i,3) will be called the PS3-triangle with respect to the vertex V i .

Following the same arguments as for quadratic Powell–Sabin B-splines (Dierckx, 1997), it can be easily shown that the 
constraints (3.13) related to the macro-triangle T (V 1, V 2, V 3) are equivalent to the request that the following set of points 
are inside the triangle t1:

V 1, S1 = 2

3
V 1 + 1

3
Z , S2 = 2

3
V 1 + 1

3
R2, S3 = 2

3
V 1 + 1

3
R3. (3.19)

These points are the Bézier domain points in the disk D1(V 1) in �PS , and they will be called PS3-points with respect to the 
vertex V 1. Summarizing, we can state the following theorem.

Theorem 3. The set of B-splines B v
i, j(x, y) and Be

k, j(x, y) are nonnegative and form a partition of unity, if the parameters 
(αi, j, αx

i, j, α
y
i, j) and (βk, j, γk, j) in their definitions are constructed as follows.

1. For each vertex V i in �, the parameters (αi, j, αx
i, j, α

y
i, j), j = 1, 2, 3, are determined by the relation (3.18), given a PS3-triangle 

ti(Q v
i,1, Q

v
i,2, Q

v
i,3) that contains all the corresponding PS3-points, i.e., the Bézier domain points in the disk D1(V i) in �PS.

2. For each edge εk in �, the parameters (βk, j, γk, j), j = 1, 2, are given by (3.8).

There are many triangles that contain all PS3-points. An appropriate choice for such triangles, as suggested by Dierckx
(1997) and Speleers (2010b), is to calculate triangles of minimal area, the so-called optimal triangles. In Fig. 5 we illustrate 
the PS3-points (black bullets) and a set of optimal PS3-triangles (red triangles) for a triangulation taken from Dierckx et al.
(1992). Note that such PS3-triangles are much smaller than the ones needed for quadratic Powell–Sabin B-splines and for 
reduced Clough–Tocher B-splines; we refer to Speleers (2010b, Fig. 5 and Fig. 6) for a comparison on the same triangulation.

Given the position of the points Q v
i, j , the triplets (αi, j, αx

i, j, α
y
i, j) can be computed as follows. Referring to (2.1) and 

(3.18), the values (αi,1, αi,2, αi,3) can be interpreted as the barycentric coordinates of the vertex V i with respect to 
ti(Q v

i,1, Q
v
i,2, Q

v
i,3). From (3.18) we obtain that

αx
i,1 = Yi,2 − Yi,3

F
, αx

i,2 = Yi,3 − Yi,1

F
, αx

i,3 = Yi,1 − Yi,2

F
,

α
y
i,1 = Xi,3 − Xi,2

F
, α

y
i,2 = Xi,1 − Xi,3

F
, α

y
i,3 = Xi,2 − Xi,1

F
,

with
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F =

∣∣∣∣∣∣∣
Xi,1 Yi,1 1

Xi,2 Yi,2 1

Xi,3 Yi,3 1

∣∣∣∣∣∣∣ .
The triplets (αx

i,1, α
x
i,2, α

x
i,3) and (α y

i,1, α
y
i,2, α

y
i,3) can be seen as the barycentric coordinates of the x- and y-direction with 

respect to ti .
Finally, we provide an expression for the points Q e

k, j , j = 1, 2, related to the edges εk , k = 1, . . . , ne . By exploiting the 
Bernstein–Bézier representation of the B-splines and the parameter choices in (3.8), we deduce that

Q e
k,1 = 1

2

(
2

3
V 1 + 1

3
Z

)
+ 1

2

(
2

3
V 2 + 1

3
Z

)
= 1

3
(V 1 + V 2 + Z),

for an edge εk = 〈V 1, V 2〉 belonging to the macro-triangle T which has the split point Z . A similar reasoning can be used 
for Q e

k,2, and we arrive at the following expressions.

1. If εk = 〈V 1, V 2〉 is a boundary edge, having the split point Rk and belonging to the macro-triangle T which has the 
split point Z :

Q e
k,1 = 1

3
(V 1 + V 2 + Z), and Q e

k,2 = 1

3
(V 1 + V 2 + Rk). (3.20a)

2. If εk = 〈V 1, V 2〉 is an interior edge, shared between the two macro-triangles T and T̃ having the split points Z and Z̃ , 
respectively:

Q e
k,1 = 1

3
(V 1 + V 2 + Z), and Q e

k,2 = 1

3
(V 1 + V 2 + Z̃). (3.20b)

The line segment k(Q e
k,1, Q

e
k,2) will be called the PS3-line with respect to the edge εk . Fig. 5 depicts the PS3-lines (blue 

lines) for the given PS-refined triangulation.

4. PS3-spline surfaces

In this section we describe how to define control points and we provide a stable computation of the Bézier ordinates of 
a spline in the form (3.1). We assume that we are dealing with B-splines that are constructed as in Theorem 3.

4.1. Control points

Referring to the PS3-spline representation (3.1) and the definition of the points Q v
i, j and Q e

k, j in (3.15), we may define 
control points as

cv
i, j = (X v

i, j, Y v
i, j, cv

i, j), j = 1,2,3, and ce
k, j = (Xe

k, j, Y e
k, j, ce

k, j), j = 1,2, (4.1)

for i = 1, . . . , nv and k = 1, . . . , ne . We recall that the points Q v
i, j form the vertices of the PS3-triangles, whereas the expres-

sions of the points Q e
k, j are given in (3.20). Since the PS3-spline basis forms a convex partition of unity, it follows that the 

graph of a spline in the form (3.1) lies inside the convex hull of the control points (4.1). The first set of control points can 
be considered as vertices of the triangles Ti(cv

i,1, c
v
i,2, c

v
i,3), i = 1, . . . , nv , which are called control triangles; the second set 

as vertices of the line segments Lk(ce
k,1, c

e
k,2), k = 1, . . . , ne , which are called control lines.

From the definition of the B-splines we know that

s(V i) = αi,1 cv
i,1 + αi,2 cv

i,2 + αi,3 cv
i,3, (4.2a)

∂s

∂x
(V i) = αx

i,1 cv
i,1 + αx

i,2 cv
i,2 + αx

i,3 cv
i,3, (4.2b)

∂s

∂ y
(V i) = α

y
i,1 cv

i,1 + α
y
i,2 cv

i,2 + α
y
i,3 cv

i,3. (4.2c)

Inverting the system (4.2), and using (3.18), we find after some elementary calculations that

cv
i,1 = s(V i) + (X v

i,1 − xi)
∂s

∂x
(V i) + (Y v

i,1 − yi)
∂s

∂ y
(V i),

cv
i,2 = s(V i) + (X v

i,2 − xi)
∂s

∂x
(V i) + (Y v

i,2 − yi)
∂s

∂ y
(V i),

cv
i,3 = s(V i) + (X v

i,3 − xi)
∂s

(V i) + (Y v
i,3 − yi)

∂s
(V i).
∂x ∂ y
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Fig. 6. Schematic representation of the Bézier ordinates of a PS3-spline.

It follows that the three control points cv
i, j , j = 1, 2, 3, belong to the plane tangent to the spline surface z = s(x, y) at 

vertex V i . Thus, the control triangle Ti is tangent to the spline surface at V i . There is no similar tangent property for the 
control lines.

4.2. Bézier ordinates of a PS3-spline

The Bézier ordinates of a PS3-spline in the form (3.1) can be computed in a stable way from its B-spline coefficients 
cv

i, j and ce
k, j . We illustrate this procedure on the macro-triangle T (V 1, V 2, V 3) shown in Fig. 2(left), and the corresponding 

Bézier ordinates are depicted in Fig. 6. The barycentric coordinates of the points in the macro-triangle are given in (3.2).
By combining the formulas (3.9) and (4.2), we derive that the Bézier ordinates in the disk D1(V 1) only depend on the 

three coefficients cv
1, j with j = 1, 2, 3:

d1 = α1,1 cv
1,1 + α1,2 cv

1,2 + α1,3 cv
1,3, d2 = σ3,1 cv

1,1 + σ3,2 cv
1,2 + σ3,3 cv

1,3,

d3 = σ1,1 cv
1,1 + σ1,2 cv

1,2 + σ1,3 cv
1,3, d4 = σ2,1 cv

1,1 + σ2,2 cv
1,2 + σ2,3 cv

1,3, (4.3)

where (α1,1, α1,2, α1,3), (σ1,1, σ1,2, σ1,3), (σ2,1, σ2,2, σ2,3) and (σ3,1, σ3,2, σ3,3) are the barycentric coordinates of the 
PS3-points V 1, S1, S2 and S3, respectively, with respect to the PS3-triangle t1(Q v

1,1, Q
v
1,2, Q

v
1,3), see (3.19). The expres-

sions in (4.3) are convex combinations since the PS3-points are required to be inside the PS3-triangle. In a similar way we 
can compute (d5, d6, d7, d8) and (d9, d10, d11, d12) from the B-spline coefficients cv

2, j and cv
3, j , respectively.

The values of the Bézier ordinates d13, d14, d15 are computed from the C2-smoothness conditions of the PS3-spline 
across the edge 〈Z , R3〉. As we have already mentioned before, they can be regarded as ordinates after subdivision of a 
single (univariate) quadratic polynomial p2 defined on the edge segment 〈P1, P2〉, see (3.3). This quadratic polynomial p2
has the values d2, β, d8 as its three Bézier ordinates, where the value of β depends on the type of the edge ε3.

1. If εk (k = 3) is a boundary edge, then

β = ce
k,2, (4.4a)

following the B-spline ordering as in (3.8a).
2. If εk (k = 3) is an interior edge, then

β = ‖Rk − Z̃‖
‖Z − Z̃‖ ce

k,1 + ‖Z − Rk‖
‖Z − Z̃‖ ce

k,2, (4.4b)

following the same notation as in (3.8b).

Then, we find that

d13 = λ12d2 + λ21β, d15 = λ12β + λ21d8, d14 = λ12d13 + λ21d15. (4.5)

Similar expressions can be obtained for the Bézier ordinates d16, . . . , d21.
Finally, the Bézier ordinates d22, . . . , d37 can be computed by exploiting the C2-smoothness at the split point Z . They can 

be regarded as ordinates after subdivision of a single (bivariate) quadratic polynomial p̂2 defined on the triangle spanned 
by the points

P̂1 = 2

3
V 1 + 1

3
Z , P̂2 = 2

3
V 2 + 1

3
Z , P̂3 = 2

3
V 3 + 1

3
Z .



52 H. Speleers / Computer Aided Geometric Design 37 (2015) 42–56
Fig. 7. Left: A PS3-spline surface together with the triangular mesh lines related to the triangulation in Fig. 5. Right: The corresponding Bézier control net.

The Bézier ordinates of this quadratic polynomial p̂2 are given by

b200 = d3, b020 = d7, b002 = d11, b110 = ce
3,1, b011 = ce

1,1, b101 = ce
2,1.

This results in

d31 = z1d3 + z2ce
3,1 + z3ce

2,1, d33 = z1ce
3,1 + z2d7 + z3ce

1,1,

d35 = z1ce
2,1 + z2ce

1,1 + z3d11, d37 = z1d31 + z2d33 + z3d35, (4.6)

and

d22 = λ12d3 + λ21ce
3,1, d24 = λ12ce

3,1 + λ21d7,

d23 = λ12d22 + λ21d24, d32 = λ12d31 + λ21d33, (4.7)

and similar expressions for the remaining ordinates.
Only convex combinations are needed in the above computation of all Bézier ordinates of the PS3-spline in the form 

(3.1) starting from its spline coefficients. Evaluation or differentiation of the PS3-spline within each of the six subtriangles 
can then further be performed using the de Casteljau algorithm (see, e.g., Farin, 1986; Lai and Schumaker, 2007). This gives 
us a stable procedure to manipulate PS3-splines in its normalized B-spline representation.

More generally, if we apply the convex combinations (4.3), (4.5), (4.6) and (4.7) to the control points defined in (4.1), 
then we get directly the Bézier control points of the PS3-spline surface.

Fig. 7(left) shows a PS3-spline surface obtained as a discrete least-squares fit to the function f (x, y) =(
exp

(
(x − 0.52)2 + (y − 0.48)2

) − 0.95
)−1

on the domain � = [−1, 1] × [−1, 1]. The spline has been defined on the tri-
angulation given in Fig. 5, and its Bézier control net is depicted in Fig. 7(right).

5. Some reduced spline spaces

In this section we provide some strategies to reduce the number of degrees of freedom in the PS3-spline space, i.e., 
3nv + 2ne . First, we describe the relation with the reduced Clough–Tocher (RCT3-) spline space considered by Speleers
(2010b). Then, we provide a condensation strategy that maintains the full approximation order.

5.1. The relation with RCT3-splines

In Theorem 2 we have shown that the CT3-spline space is a subspace of the PS3-spline space. In particular, the 
RCT3-spline space considered by Speleers (2010b) is a subspace, so we can represent all its elements in terms of the 
PS3-spline basis. In this subsection we investigate how we can convert an RCT3-spline in its B-spline form into the 
PS3-spline form (3.1). We refer to Speleers (2010b) for more details on RCT3-splines and their properties.

Let sRCT be an RCT3-spline in its B-spline form defined on the mesh �CT , i.e.,

sRCT(x, y) =
nv∑

i=1

3∑
j=1

cRCT
i, j BRCT

i, j (x, y). (5.1)

For the conversion into the corresponding PS3-spline form, we assume that the partitions �CT and �PS are compatible, so 
that S1(�CT) ⊂ Ŝ

1(�PS).
3 3
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First, we set the PS3-triangles identical to the RCT3-triangles (see Speleers, 2010b, for details). From their construction 
it is clear that RCT3-triangles are always valid PS3-triangles. Indeed, focusing on the macro-triangle T (V 1, V 2, V 3) in �, 
the RCT3-triangle related to the vertex V 1 contains the points V 1, (2V 1 + V 2)/3 and (2V 1 + V 3)/3. Since both spline 
representations satisfy the same relations like (3.18) and (4.2), it follows that

cv
i, j = cRCT

i, j , i = 1, . . . ,nv , j = 1,2,3. (5.2)

Let us now concentrate on the edge εk = 〈V 1, V 2〉 of the macro-triangle T (V 1, V 2, V 3). The RCT3-spline sRCT is a (single) 
cubic polynomial along this edge. Moreover, the directional derivative of sRCT in a certain direction νk (not parallel to εk) is 
constrained to be a linear polynomial along the edge εk , i.e.,

∂sRCT

∂νk
(Rk) = λ12

∂sRCT

∂νk
(V 1) + λ21

∂sRCT

∂νk
(V 2). (5.3)

These two constraints will determine the values of the coefficients ce
k, j , j = 1, 2.

A PS3-spline is a (single) cubic polynomial along the edge εk when we impose an additional C3 super-smoothness across 
the edge 〈Z , Rk〉 with Z the split point of the macro-triangle T . This is achieved when the parameter β , used in the 
construction of the Bernstein–Bézier representation of the PS3-spline (see (4.5)), satisfies

β = λ12

λ21
(d2 − λ12d1) + λ21

λ12
(d8 − λ21d5),

or, equivalently,

β = λ12

(
sRCT(V 1) + ‖V 2 − V 1‖

3

∂sRCT

∂εk
(V 1)

)
+ λ21

(
sRCT(V 2) − ‖V 2 − V 1‖

3

∂sRCT

∂εk
(V 2)

)
. (5.4)

We now address the constraint (5.3). For the sake of simplicity of the presentation, we will focus on a particular case of 
interest (see Speleers, 2010b, Example 2.2), where

νk = Rk − Z

‖Rk − Z‖ .

It has been explained by Speleers (2010b) that this choice is favorable because the B-spline construction involves a less 
restrictive geometric constraint on the CT-refined triangulation. With this choice, we have

∂sRCT

∂νk
(Rk) = 3(d14 − d23)

‖Rk − Z‖ ,
∂sRCT

∂νk
(V 1) = 3(d2 − d3)

‖Rk − Z‖ ,
∂sRCT

∂νk
(V 2) = 3(d8 − d7)

‖Rk − Z‖ ,

using the same notation for the Bézier ordinates as in Section 4.2. The constraint (5.3) implies

d14 − d23 = λ12(d2 − d3) + λ21(d8 − d7).

On the other hand, by the smoothness of the PS3-spline and by the relations (4.5)–(4.7), we get

d14 − d23 = λ12(d13 − d22) + λ21(d15 − d24)

= λ12(λ12(d2 − d3) + λ21(β − ce
k,1)) + λ21(λ12(β − ce

k,1) + λ21(d8 − d7))

= λ12
2(d2 − d3) + 2λ12λ21(β − ce

k,1) + λ21
2(d8 − d7).

Taking into account that λ21 = 1 − λ12, we obtain

β − ce
k,1 = 1

2
((d2 − d3) + (d8 − d7)) = ‖Rk − Z‖

6

(
∂sRCT

∂νk
(V 1) + ∂sRCT

∂νk
(V 2)

)
.

Hence,

ce
k,1 = β − ‖Rk − Z‖

3
βν, with βν = 1

2

(
∂sRCT

∂νk
(V 1) + ∂sRCT

∂νk
(V 2)

)
. (5.5)

From the definition of β in (4.4) we can compute the value of ce
k,2, which depends on the type of the edge εk .

1. If εk is a boundary edge, then

ce
k,2 = β. (5.6a)
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2. If εk is an interior edge, then

ce
k,2 = ‖Z − Z̃‖

‖Z − Rk‖ β − ‖Rk − Z̃‖
‖Z − Rk‖ ce

k,1 = β + ‖Rk − Z̃‖
3

βν. (5.6b)

The coefficients in (5.2) and (5.5)–(5.6) with β given in (5.4) constitute the PS3-spline representation (3.1) of the 
RCT3-spline sRCT in (5.1).

5.2. Full approximation with less degrees of freedom

In the previous subsection we have detailed a strategy to reduce the number of degrees of freedom to 3nv . Indeed, by 
choosing the edge coefficients ce

k, j as in (5.5)–(5.6) with β given in (5.4), we only keep the vertex coefficients cv
i, j as degrees 

of freedom. Unfortunately, it is known that this choice has a negative impact on the approximation order (the order is 
decreased by one).

We now discuss how we can reduce the number of degrees of freedom, while maintaining the full approximation order. 
Instead of the RCT3-spline space, we could consider the (complete) CT3-spline space. We have seen in Theorem 2 that 
the CT3-spline space is also a subspace of the PS3-spline space. This subspace has optimal approximation order, while its 
dimension is smaller, namely 3nv + ne . A CT3-spline is obtained by imposing an additional C3 super-smoothness along each 
edge in �. From Section 5.1 we know that this is achieved by requiring the condition (5.4) for each edge ek , k = 1, . . . , ne .

Alternatively, inspired by Kashyap (1996) and Mann (1999), the edge coefficients could be determined from the vertex 
coefficients by means of the following local two-step strategy, in case ek is an interior edge of �.

1. Use the Hermite data at the vertices (provided by the vertex coefficients cv
i, j , see (4.2)) of the two triangles sharing 

the edge ek to compute a cubic polynomial by least-squares fitting (or any other approximation method with cubic 
precision).

2. Compute the coefficients ce
k, j related to the edge ek based on this cubic polynomial such that the resulting spline has 

cubic precision.

The second step can be implemented as follows. Let us denote by q the cubic polynomial obtained after fitting the Hermite 
data at the vertices V 1, V 2, V 3, V 4. Then, suppose that the Bernstein–Bézier form of q over the triangle T (V 1, V 2, V 3) is 
given by the Bézier ordinates bijk , i + j + k = 3. Moreover, suppose that the Bernstein–Bézier form of q over the adjacent 
triangle T̃ (V 1, V 2, V 4) is given by the Bézier ordinates b̃i jk , i + j + k = 3. Then, we may choose

ce
k,1 = z1b210 + z2b120 + z3b111,

ce
k,2 = z̃1b̃210 + z̃2b̃120 + z̃3b̃111,

where (z1, z2, z3) are the barycentric coordinates of the split point Z with respect to T , and (z̃1, ̃z2, ̃z3) are the barycentric 
coordinates of the split point Z̃ with respect to T̃ . One can verify that this choice will reproduce cubic polynomials, and so 
maintain the optimal approximation order.

6. Concluding remarks

In this paper we have presented a new C1 cubic spline space defined over a triangulation endowed with a PS-refinement. 
Thanks to the locally imposed C2 super-smoothness, the proposed PS3-spline space has a simple dimension formula, namely 
3nv +2ne , and the space is a close extension of the classical CT3-spline space. In addition, we have constructed a normalized 
B-spline basis for this space. The basis functions have a local support, they are nonnegative, and they form a partition of 
unity. We have also described how to compute from the control points of a PS3-spline its corresponding Bézier control net 
in a stable way.

In the literature one finds few other normalized B-spline representations for C1 cubic splines on triangulations with a 
macro-structure. For example, such a representation exists for RCT3-splines (Speleers, 2010b) and for cubic PS-splines with 
a different super-smoothness (Lamnii et al., 2014). For the sake of convenience, the latter splines will be referred to as 
PS3�-splines in the following. The proposed new cubic B-spline representation has some favorable properties with respect 
to the other ones.

• The full space of cubic polynomials belongs to the PS3-spline space. This is also the case for the PS3�-spline space, 
whereas the RCT3-spline space only contains the full space of quadratic polynomials. This implies that PS3-splines and 
PS3�-splines possess full approximation power but RCT3-splines do not.

• CT3-splines (and RCT3-splines) are in the PS3-spline space (on condition that the partitions are compatible, see Theo-
rem 2), so they can be represented in the PS3-spline form (3.1). This is not the case for the PS3�-spline space.
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• The PS3 Hermite interpolation problem (see Theorem 1) only involves first derivatives, and not second derivatives 
like in the PS3�-spline case. The use of higher order derivatives is not so appealing in approximation. In addition, 
it might simplify the construction of quasi-interpolation schemes (see, e.g., Lamnii et al., 2014; Sbibih et al., 2014;
Speleers, 2015).

• The construction of the PS3-spline basis involves the use of PS3-triangles. These triangles are required to contain a 
specific set of PS3-points (see Theorem 3). Because this constraint is less restrictive, the PS3-triangles can be chosen 
smaller than the corresponding triangles for RCT3-splines and PS3�-splines. This implies that the PS3 control points 
will be closer to the PS3-spline surface.

We now make a comparison with the spaces S1
3(�CT) and S1

3(�PS), defined in (2.5) and (2.6), respectively, and we give 
an outlook on the construction of a normalized B-spline basis for them.

• The space S1
3(�PS) is an extension of the PS3-spline space, so it shares the full approximation power but it has a larger 

dimension, namely 3nv + 4ne . A normalized B-spline basis can be constructed for this space by adopting the techniques 
from Dierckx (1997) and Speleers (2010a, 2013a).

• The space S1
3(�CT) is contained in the PS3-spline space (see one of the previous items). It is known that it has full 

approximation power, but it is not clear whether a normalized B-spline basis can be constructed or not for this space 
in general. Since its dimension is 3nv + ne , it is natural to associate three basis functions with each vertex and one 
basis function with each edge. For the construction of the vertex basis functions, one could follow the approach from 
Speleers (2010b) for RCT3-splines. It seems impossible, however, to construct a nonnegative basis function related to an 
interior edge with support on two macro-triangles (the triangles adjacent to the edge). This would imply that possible 
edge basis functions must have larger support.

Finally, in Section 5, we have provided some strategies to reduce the number of degrees of freedom in the PS3-spline 
space. In particular, we have shown that we can easily convert an RCT3-spline in its B-spline form (5.1) into the PS3-spline 
form (3.1). Note that only the condition (5.4) is required to obtain a general CT3-spline in the PS3-spline form.

Acknowledgements

This work was supported by the MIUR ‘Futuro in Ricerca 2013’ Programme through the project DREAMS and by the 
‘Uncovering Excellence’ Programme of the University of Rome ‘Tor Vergata’ through the project DEXTEROUS.

References

Alfeld, P., Schumaker, L.L., 2002a. Smooth macro-elements based on Clough–Tocher triangle splits. Numer. Math. 90, 597–616.
Alfeld, P., Schumaker, L.L., 2002b. Smooth macro-elements based on Powell–Sabin triangle splits. Adv. Comput. Math. 16, 29–46.
Chen, S.K., Liu, H.W., 2008. A bivariate C1 cubic super spline space on Powell–Sabin triangulation. Comput. Math. Appl. 56, 1395–1401.
Clough, R.W., Tocher, J.L., 1965. Finite element stiffness matrices for analysis of plates in bending. In: Conf. on Matrix Methods in Structural Mechanics. 

Wright Patterson Air Force Base, Ohio, pp. 515–545.
Dierckx, P., 1997. On calculating normalized Powell–Sabin B-splines. Comput. Aided Geom. Des. 15, 61–78.
Dierckx, P., Van Leemput, S., Vermeire, T., 1992. Algorithms for surface fitting using Powell–Sabin splines. IMA J. Numer. Anal. 12, 271–299.
Farin, G., 1985. A modified Clough–Tocher interpolant. Comput. Aided Geom. Des. 2, 19–27.
Farin, G., 1986. Triangular Bernstein–Bézier patches. Comput. Aided Geom. Des. 3, 83–127.
Kashyap, P., 1996. Improving Clough–Tocher interpolants. Comput. Aided Geom. Des. 13, 629–651.
Laghchim-Lahlou, M., Sablonnière, P., 1994. Triangular finite elements of HCT type and class Cρ . Adv. Comput. Math. 2, 101–122.
Lai, M.J., Schumaker, L.L., 2001. Macro-elements and stable local bases for splines on Clough–Tocher triangulations. Numer. Math. 88, 105–119.
Lai, M.J., Schumaker, L.L., 2003. Macro-elements and stable local bases for splines on Powell–Sabin triangulations. Math. Comput. 72, 335–354.
Lai, M.J., Schumaker, L.L., 2007. Spline Functions on Triangulations. Cambridge University Press.
Lamnii, M., Mraoui, H., Tijini, A., Zidna, A., 2014. A normalized basis for C1 cubic super spline space on Powell–Sabin triangulation. Math. Comput. Simul. 99, 

108–124.
Maes, J., Bultheel, A., 2006. Stable multiresolution analysis on triangles for surface compression. Electron. Trans. Numer. Anal. 25, 224–258.
Mann, S., 1999. Cubic precision Clough–Tocher interpolation. Comput. Aided Geom. Des. 16, 85–88.
Manni, C., Sablonnière, P., 2007. Quadratic spline quasi-interpolants on Powell–Sabin partitions. Adv. Comput. Math. 26, 283–304.
Nürnberger, G., Zeilfelder, F., 2000. Developments in bivariate spline interpolation. J. Comput. Appl. Math. 121, 125–152.
Powell, M.J.D., Sabin, M.A., 1977. Piecewise quadratic approximations on triangles. ACM Trans. Math. Softw. 3, 316–325.
Sablonnière, P., 1985. Composite finite elements of class Ck . J. Comput. Appl. Math. 12&13, 541–550.
Sbibih, D., Serghini, A., Tijini, A., 2009. Polar forms and quadratic spline quasi-interpolants on Powell–Sabin partitions. Appl. Numer. Math. 59, 938–958.
Sbibih, D., Serghini, A., Tijini, A., 2012. Normalized trivariate B-splines on Worsey–Piper split and quasi-interpolants. BIT Numer. Math. 52, 221–249.
Sbibih, D., Serghini, A., Tijini, A., 2015. Superconvergent quadratic spline quasi-interpolants on Powell–Sabin partitions. Appl. Numer. Math. 87, 74–86.
Sbibih, D., Serghini, A., Tijini, A., Zidna, A., 2014. Superconvergent C1 cubic spline quasi-interpolants on Powell–Sabin partitions. BIT Numer. Math. 

http://dx.doi.org/10.1007/s10543-014-0523-z. In press.
Speleers, H., 2010a. A normalized basis for quintic Powell–Sabin splines. Comput. Aided Geom. Des. 27, 438–457.
Speleers, H., 2010b. A normalized basis for reduced Clough–Tocher splines. Comput. Aided Geom. Des. 27, 700–712.
Speleers, H., 2013a. Construction of normalized B-splines for a family of smooth spline spaces over Powell–Sabin triangulations. Constr. Approx. 37, 41–72.
Speleers, H., 2013b. Multivariate normalized Powell–Sabin B-splines and quasi-interpolants. Comput. Aided Geom. Des. 30, 2–19.
Speleers, H., 2015. A family of smooth quasi-interpolants defined over Powell–Sabin triangulations. Constr. Approx. 41, 297–324.

http://refhub.elsevier.com/S0167-8396(15)00078-3/bib416C66656C6430323A62s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib416C66656C6430323A61s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib4368656E3038s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib436C6F7567683635s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib436C6F7567683635s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib44696572636B783937s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib44696572636B783932s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib466172696E3835s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib466172696E3836s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib4B6173687961703936s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib4C6167686368696D3934s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib4C61693031s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib4C61693033s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib4C61693037s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib4C616D6E69693133s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib4C616D6E69693133s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib4D6165733036s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib4D616E6E3939s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib4D616E6E693037s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib4E75726E6265726765723030s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib506F77656C6C3737s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5361626C6F6E6E696572653835s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5362696269683038s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5362696269683132s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5362696269683135s1
http://dx.doi.org/10.1007/s10543-014-0523-z
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5370656C6565727331303A61s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5370656C6565727331303A62s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5370656C6565727331333A61s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5370656C6565727331333A62s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5370656C656572733134s1


56 H. Speleers / Computer Aided Geometric Design 37 (2015) 42–56
Speleers, H., Dierckx, P., Vandewalle, S., 2006. Numerical solution of partial differential equations with Powell–Sabin splines. J. Comput. Appl. Math. 189, 
643–659.

Speleers, H., Dierckx, P., Vandewalle, S., 2009. Quasi-hierarchical Powell–Sabin B-splines. Comput. Aided Geom. Des. 26, 174–191.
Speleers, H., Manni, C., Pelosi, F., Sampoli, M.L., 2012. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems. Comput. 

Methods Appl. Mech. Eng. 221–222, 132–148.

http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5370656C656572733036s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5370656C656572733036s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5370656C656572733039s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5370656C656572733132s1
http://refhub.elsevier.com/S0167-8396(15)00078-3/bib5370656C656572733132s1

	A new B-spline representation for cubic splines over Powell-Sabin triangulations
	1 Introduction
	2 C1 cubic splines
	2.1 Bivariate polynomials in Bernstein-Bézier representation
	2.2 The PS3-spline space

	3 A normalized B-spline representation for PS3-splines
	3.1 A B-spline with respect to an edge
	3.2 A B-spline with respect to a vertex
	3.3 A geometric approach to form a convex partition of unity

	4 PS3-spline surfaces
	4.1 Control points
	4.2 Bézier ordinates of a PS3-spline

	5 Some reduced spline spaces
	5.1 The relation with RCT3-splines
	5.2 Full approximation with less degrees of freedom

	6 Concluding remarks
	Acknowledgements
	References


