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We describe a construction of LR-spaces whose bases are composed of locally linearly 
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to given refinement requirements associated to subdomains. In contrast to the original LR-
paper (Dokken et al., 2013) and similarly to the hierarchical B-spline framework (Forsey 
and Bartels, 1988) the construction of the mesh is based on a priori choice of a sequence 
of nested tensor B-spline spaces.
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1. Introduction

In the last decade the use of spline spaces has spread from the field of applied geometry, in particular Computer Aided 
Design (CAD), to that of numerical analysis of Partial Differential Equations (PDEs). This is largely due to the influence of the 
seminal paper by Hughes et al. (2005). The use of B-spline generated spaces in Galerkin methods was attempted before by 
Höllig (2003), but Hughes et al. (2005) recognized it as a possible way to remove the compatibility layer that is in-between
the CAD tools and the Finite Element Method (FEM). The compatibility layer contains the mesh generation process and, 
in some cases, can be computationally more expensive than the simulation itself (Hughes et al., 2005). The method that 
reduces the compatibility layer proposed by Hughes et al. (2005) is called IsoGeometric Analysis (IGA) and is based on the 
isoparametric approach: the solution fields of the PDE are in the same B-spline or NURBS space used for the parametrization 
of the geometry.

IGA sprouted new research in numerical methods due to the availability of basis functions with higher smoothness and 
with strong algebraic properties that allow for new numerical schemes like compatible discretizations. It had the same effect 
in the applied geometry field: the numerical simulation of PDEs requires high quality parametrizations of the domain while 
in CAD it is common to parametrize only the boundary and to allow both for small gaps and singularities.

Both CAD and IGA applications require the use of function spaces that allow for local changes in spatial resolution. This 
is necessary to obtain a good approximation with fewer degrees of freedom. The standard tensor-product B-spline spaces 
do not allow for local changes in spatial resolution and thus different generalizations providing adaptive refinement were 
proposed in the last 25 years. Forsey and Bartels (1988) introduced the hierarchical splines, later studied by Kraft (1997) and 
more recently by Giannelli et al. (2012) and Mokriš et al. (2014), Sederberg et al. (2003, 2004) introduced T-splines of which 
an Analysis Suitable subset (AST) was described by Beirão da Veiga et al. (2012), Deng et al. (2008) introduced PHT-splines 
and Dokken et al. (2013) introduced LR-splines whose local linear independence was studied by Bressan (2013). Each of 
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these approaches has their own strengths and weaknesses determined by the focus with which they were developed. In 
this article we try to combine the LR-splines framework with the hierarchical approach.

Our aim is to obtain a space that has strong properties such as local linear independence and that can be efficiently 
implemented. Johannessen et al. (2014) applied LR-spline spaces to IGA and explored different refinement techniques. In 
contrast to their work, we study refinement strategies that are based on theoretical guarantees. In detail we present a 
method to construct a box mesh M on a domain � whose element size is small in a neighborhood of some given regions 
and for which the associated LR-spline collection LR(M) is a basis composed of locally linearly independent functions. 
This implies that the basis is also a partition of unity.

In Section 2 we recall LR-spline definitions and results. Compared to the paper of Dokken et al. (2013) we only target 
the bi-variate case and we can therefore use a simpler notation. In particular we focus on the equivalence for the LR-spline 
collection to be a partition of unity, to be a set of locally linearly independent B-splines, and the non-nested support property
(N2S for short).

In Section 3 we describe a subset of the domain � in which it is possible to add vertical segments while preserving the 
N2S property. We describe another subset that behaves similarly for the addition of horizontal segments.

In Section 4 we define a hierarchical approach to the construction of box meshes. Then we provide sufficient conditions 
under which the associated LR-spline space has the N2S property.

In Section 5 we study the completeness of the hierarchically constructed LR-space, that is, whether it equals the piece-
wise polynomial space that is associated to the mesh.

Section 6 describes our construction of LR meshes that guarantees both the N2S property (and thus local linear indepen-
dence of the basis functions) and completeness. We comment on the locality of the refinement and show some examples 
in the case of dyadic refinement.

Section 7 compares the proposed space with the truncated hierarchical B-spline space (THB) on the same Bézier mesh.

2. Notation and LR-spline properties

We use Pd to denote the space of polynomials of degree less than or equal to d. The space of bivariate polynomials of 
degree dx in the x variable and degree dy in the y variable is denoted using a vector d = (dx, dy) for the degree:

Pd = Pdx ⊗ Pdy .

For our purpose the degree d = (dx, dy) can be considered fixed at the beginning and it will be omitted in the notation.
A knot vector � is a monotone non-decreasing sequence of real numbers

θ1 ≤ . . . ≤ θn.

The number of repetitions of a knot z in a knot vector � is called the multiplicity of z in � and denoted with:

μ�(z) = #{ j : θ j = z}. (1)

We say that two knot vectors θ1 ≤ . . . ≤ θn and ξ1 ≤ . . . ≤ ξm are compatible on the overlap1 if they can be seen as two parts 
of a larger knot vector ζ1 ≤ . . . ≤ ζm+n . More precisely if there exists ζ1 ≤ . . . ≤ ζm+n , and two indexes s, t such that{

θi = ζs+i, i = 1, . . . ,n;
ξi = ζt+i, i = 1, . . . ,m.

(2)

Note that if θn ≤ ξ1 or if ξm ≤ θ1 than the two knot vectors are compatible.
The B-spline of degree d defined by the knot vector � = (θ1, . . . , θd+2) (with θ1 < θd+2) is denoted with B[�]. Bi-variate 

B-splines R2 →R are the product of two univariate B-splines and are defined by a pair of knot vectors � = (�x, �y)

B[�](x, y) = B[�x](x)B[�y](y).

The definition of the LR-spline spaces is based on knot insertion. More precisely, two new knot vectors �+ and �− are 
defined by inserting θ̄ ∈ ]θ1, θk+2[ into a given knot vector � = (θ1, . . . , θk+2). The new knot vectors �+ and �− contain 
the knots θ̄ , θ1, . . . , θk+1 and θ̄ , θ2, . . . , θk+2 in non-decreasing order, respectively.

There is a linear relation involving the B-splines B[�], B[�+] and B[�−]. In the bivariate setting, given B[�x, �y] and 
θ̄ in [θx,i, θx,i+1[ it holds

B[�] = α+B[�+
x ,�y] + α−B[�−

x ,�y], (3)

where

1 In the context of T-splines this property is called overlap (Beirão da Veiga et al., 2012). We prefer the name compatible because two separate knot 
vectors with θn < ξ1 or ξm < θ1 are compatible, but it would be counter-intuitive to call them overlapping.
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α+ =
{

1 i = dx,
θ̄−θx,1

θx,dx+1−θx,1
otherwise,

α− =
{

1 i = 1,
θx,dx+2−θ̄

θx,dx+2−θx,2
otherwise.

We say that B[�+
x , �y] and B[�−

x , �y] are obtained from B[�x, �y] by the insertion of θ̄ . The insertion of knots in �y works 
similarly. Based on the knot insertion is the notion of nested B-splines.

Definition 1. Let S be a space of functions. A B-spline B is nested in a B-spline B ′ relatively to S and it is written B ≺S B ′ if 
there exists a sequence of B-splines B ′ = B1, . . . , Bn = B such that:

• Bi ∈ S , for i = 1, . . . , n;
• Bi+1 is obtained from Bi by the insertion of a knot, i = 1, . . . , n − 1.

Note that sequences of length 1 are allowed by this definition, i.e. B ≺S B ⇐⇒ B ∈ S . If S is the space of all functions 
R2 →R, then it will be omitted and we will use ≺ instead of ≺S .

Note that ≺S is a partial order relation on B-splines. As such it is possible to describe ≺S using a directed acyclic graph. 
Minimal and maximal elements of S with respect of ≺S correspond to sinks and sources of the graph. Comparable pairs, i.e. 
pairs B1, B2 such that B1 ≺ B2 or B2 ≺ B1, correspond to pairs of elements that are connected by an oriented path in the 
graph.

It is important to note that B ≺S B ′ implies B ≺ B ′ , but not vice versa. In particular if B is a maximal or a minimal 
element in S with respect to ≺ then it is also a maximal or minimal element for ≺S . The minimal elements for ≺S in S
are called minimal support B-splines in S .

The definition of LR-spline spaces is based on ≺S where S is an appropriate piecewise polynomial space over box 
elements. A box η is a Cartesian product of two closed intervals: [a, b] × [e, f ]. A box in R2 can be:

• a vertex if a = b and e = f ;
• a horizontal segment if a < b and e = f ;
• a vertical segment if a = b and e < f ;
• a rectangle if a < b and e < f .

By convention the interior of a horizontal or vertical segment γ = [a, b] × [e, f ] is

γ ◦ = γ \ {(a, e), (b, f )}. (4)

The interior of a rectangle γ = [a, b] × [e, f ] is its topological interior γ ◦ =]a, b[×]e, f [ and the interior of a vertex is the 
empty set.

A box mesh R on a rectangle � is a finite collection of rectangles such that:

• ⋃
η∈R η = �;

• ∀η1 
= η2 ∈R, η1
◦ ∩ η2

◦ = ∅.

For each box mesh we define the sets of vertical and horizontal edges,

E v(R) = {γ = η1 ∩ η2 : η1, η2 ∈ R and γ is a vertical segment}
Eh(R) = {γ = η1 ∩ η2 : η1, η2 ∈ R and γ is a horizontal segment}.

Their union is the set of all edges

E(R) = E v(R) ∪ Eh(R).

Definition 2. A box mesh with multiplicity M on � is a pair (R, σ) where R is a box mesh and σ : E(R) → N is a function 
representing the multiplicity of the edges. The spline space of degree d associated to a box mesh with multiplicity is

S(M) =

⎧⎪⎪⎨
⎪⎪⎩

f : � → R : ∀η ∈ R, f |η ∈ Pd,

∀γ ∈ E v(M), ∂
dx−σ (γ )
x f is continuous on γ ◦,

∀γ ∈ Eh(M), ∂
dy−σ (γ )
y f is continuous on γ ◦

⎫⎪⎪⎬
⎪⎪⎭ .

We say that a B-spline B : R2 → R is in S(M) when supp B ⊆ � and B|� ∈ S(M). When the component of M are not 
specified we will refer to E(R) by E(M).
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Throughout this paper we will assume that the multiplicity of horizontal and vertical edges does not exceed dy + 1 and 
dx + 1, respectively.

Box meshes with multiplicity can be refined by adding mesh-lines to them. Given a mesh M = (R, σ) and a segment 
γ we define M + γ as the mesh M̃ = (R̃, σ̃ ) obtained by dividing all rectangles split by γ into two. More precisely

R̃ = {
C : ∃η ∈ R : C is a connected component of η \ γ

}
(5)

and for α ∈ E(R̃)

σ̃ (α) =
⎧⎨
⎩

σ(β) α � γ ∧ ∃β ∈ E(M) : α ⊆ β

σ(β) + 1 α ⊆ γ ∧ ∃β ∈ E(M) : α ⊆ β

1 α ⊆ γ ∧ �β ∈ E(M) : α ⊆ β.

(6)

An LR mesh is a box mesh with multiplicity that can be constructed by a sequence of additions starting from a tensor mesh.
For all meshes M the space S(M) contains the Bernstein polynomials on �. Moreover they are always maximal ele-

ments in S(M) for both ≺ and ≺S(M) .

Definition 3. The LR-spline collection LR(M) is the set of the minimal support B-spline that are comparable with respect 
to ≺S(M) to at least one Bernstein polynomial. The LR-spline space is

LR(M) = spanLR(M).

With this definition the LR-spline collection can be constructed using a recursive algorithm that, starting from the set of 
Bernstein polynomials, replaces at each step a non-minimal support B-spline with two B-splines obtained by knot insertion. 
This iterative construction is described in detail by Dokken et al. (2013). The set of minimal support B-splines can indeed be 
larger than LR, see for an example Fig. 2 of Bressan (2013). The question of completeness of the LR-space, i.e. if LR(M) is 
S(M) is not trivial. Dokken et al. (2013) described sufficient conditions for the equality, these are the base of our discussion 
on completeness.

Linear independence of the B-splines in LR(M) is also a not fully resolved issue. Dokken et al. (2013) provided an 
algorithm that allows to check for linear relation efficiently, but in the literature there is no (non-trivial) construction that 
guarantees linear independence. The construction we describe is based on the theoretical results from Bressan (2013) where 
it is proved that local linear independence is equivalent to the fact that all B-splines in LR(M) are minimal elements with 
respect to ≺, see Theorem 4 below for details.

Recall that a finite system of functions is linearly independent on a set A if the fact that a linear combination of these 
functions is equal to zero on the set A implies that the coefficients of all functions with a support intersecting A vanish. 
This property is preserved by taking the union of two sets: If the system of functions is linearly independent on two open 
sets A and A′ then it is also linearly independent on A ∪ A′ . A system of functions is said to be locally linearly independent
if it is linearly independent on any open set A.

Theorem 4. Let M be a box mesh with multiplicity, then the following are equivalent:

1. ∀B1, B2 ∈LR(M): B1 ≺ B2 ⇒ B1 = B2;
2. ∀ f ∈ Pd , f =

∑
B∈LR

B[ f ](B)B where B[ f ](B) is the blossom of f evaluated at the internal knots of B (Ramshaw, 1989);

3. LR(M) is a partition of unity;
4. the functions in LR(M) are locally linearly independent;
5. ∀η ∈R, #{B ∈LR(M) : supp B ⊇ η◦} = (dx + 1)(dy + 1).

Proof. For the equivalence of the statements 1, 2, 3 and 5 we refer to Bressan (2013). We prove the equivalence of the 
fourth statement with statement No. 5. On the one hand, if the latter one is not satisfied, then there exists a rectangle η, 
which is contained in the support of at least (dx + 1)(dy + 1) + 1 B-spline functions. Since LR(M)|η◦ = Pd they are not 
linearly independent on the open set η◦ , hence the condition in the fourth statement is violated. On the other hand, assume 
the latter statement is satisfied. Since Pd ⊂ LR(M), we conclude that the functions in LR(M) are linearly independent on 
any set that is contained in any rectangle η ∈ R and possesses a non-empty interior. This observation extends to any open 
set since linear independence of functions on sets is preserved when taking unions of sets and the intersections of an open 
set with the rectangles η ∈R are either empty or have a non-empty interior. �

The property described in the first statement of this theorem will be called the non-nested support (N2S) property. The 
support can actually be nested in the physical space (this requires that some mesh edges have multiplicity >1), but they 
cannot be nested in the “index space”. Box meshes with multiplicity for which LR has the N2S property will be called N2S 
meshes.
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Fig. 1. An element η with the associated sη , tη and 
η .

The functions involved in the linear dependency relation from Dokken et al. (2013, Example 6.4) violate the N2S property. 
All the B-splines in Dokken et al. (2013, Equation (40)) are in LR(M), but all the functions on the right-hand side of the 
equality are nested (≺) in the function on the left-hand side.

In the following sections we will avoid specifying the mesh when there is no ambiguity: we will use the shorter notation 
S instead of S(M), similarly E for E(M) etc.

3. Addition of segments

In this section we describe the set Rx of horizontally refinable rectangles. Our result is that if M is an N2S mesh and γ is a 
vertical segment “well contained” in 

⋃
Rx then M +γ is an N2S mesh.2 Similarly we define the set Ry of vertically refinable 

rectangles. Here “well contained” means that only the vertices of γ can be in ∂
⋃

Rx or equivalently that γ ◦ ⊂ (
⋃

Rx)
◦ . We 

also provide additional conditions that guarantee that the N2S property is preserved for the limit case: when the intersection 
of γ with the boundary of 

⋃
Rx is a union of segments (and similarly for horizontal γ ).

Definition 5. Consider a rectangle η = [a, b] × [e, f ] ∈R and let

sη = max{σ(γ ) : γ ∈ Eh ∧ γ ⊆ [a,b] × {e}}
tη = max{σ(γ ) : γ ∈ Eh ∧ γ ⊆ [a,b] × { f }}


η = (
e, . . . , e︸ ︷︷ ︸
sη times

, f , . . . , f︸ ︷︷ ︸
tη times

)
.

See Fig. 1 for a graphical representation. We say that η ∈ R is horizontally refinable if for all B[�x, �y] ∈ LR(M) with 
supp B[�x, �y] ⊇ η it holds that �y is compatible with 
η . The set of horizontally refinable rectangles is Rx . The set Ry

of vertically refinable rectangles is defined similarly.

Note that from the definition it follows that for all η = [a, b] × [e, f ] ∈ Rx and α ∈ Eh contained in [a, b] × {e} it holds 
that σ(α) = sη . Similarly if α ⊆ [a, b] × { f } then σ(α) = tη .

Fig. 2 shows the region covered by the rectangles in Rx and in Ry for a simple mesh. Note that 
⋃

Rx does not contain 
the regions near the endpoints of horizontal mesh lines and similarly 

⋃
Ry does not contain the regions near the endpoints 

of vertical mesh lines.

Lemma 6. Let M be an N2S mesh. If γ is a vertical edge such that γ ◦ ⊆ (
⋃

Rx(M))
◦ then M + γ is an N2S-mesh and 

⋃
Rx(M +

γ ) ⊇ ⋃
Rx(M). Moreover all the B-splines in LR(M + γ ) either are in LR(M) or are obtained from B-splines in LR(M) by the 

insertion of the abscissa of γ in the horizontal knot vector. Similarly if γ is a horizontal segment.

Note that the addition of a vertical γ (satisfying the hypothesis) cannot reduce the region covered by 
⋃

Rx . This means 
that once 

⋃
Rx is computed it is possible to add many vertical segments well contained in it while preserving the N2S 

property. Conversely nothing is said about the behavior of 
⋃

Ry and thus it should be recomputed after each addition of a 
vertical segment. Similarly for horizontal segments.

Proof. We prove the lemma only for the addition of a vertical segment γ = {a} ×[e, f ]. Consider a B-spline B = B[�x, �y] ∈
LR(M) whose support is cut by γ in two connected components. This means that B is not a minimal support B-spline 
with respect to the mesh M + γ = (R̃, σ̃ ) and thus there are two B-splines that are obtained from B by inserting a, the 
abscissa of γ , into �x . Let B ′ be one of the two B-splines obtained from B . First we prove by contradiction that B ′ is 
a minimal support B-spline for S(M + γ ) and then that there is no ϕ in LR(M + γ ) such that B ′ ≺ ϕ . Let �′

x be the 
horizontal knot vector of B ′ .

2 We use the convention that ⋃ A = ⋃
a∈A a.
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Fig. 2. Example of Rx and Ry for d = (2, 2). The region covered by ⋃Rx is filled with the red chessboard pattern; that covered by ⋃Ry is filled with 
the blue chess pattern. Their intersection is filled by the blue and red chessboard pattern and appears as purple. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Assume that B ′ is not a minimal support B-spline for S(M + γ ). Then there exists ϕ ∈ S(M + γ ) that is obtained from 
B ′ by knot insertion. Consider first the case of a horizontal knot insertion so that ϕ = B[�′′

x , �y] and let θ̄ be the knot that 
has been inserted in �′

x . Let A be the set of the vertical edges in E v(M + γ ) that are contained in ({θ̄} ×R) ∩ supp B . The 
existence of ϕ implies

∀α ∈ A, σ̃ (α) ≥ μ�′′
x
(θ̄ ) > μ�′

x
(θ̄). (7)

From the definition of M + γ it follows

μ�′
x
(θ̄ ) = μ�x(θ̄ ) + c (8)

where c = 1 if θ̄ = a and 0 otherwise. From the fact that B is in LR(M) it follows (with the same c)

∃α ∈ A : σ̃ (α) = σ(α) + c. (9)

Equations (7), (8) and (9) are in contradiction.
Consider now the insertion of a vertical knot θ̄ and ϕ = B[�′

x, �′
y]. Let A be set of horizontal edges in Eh(M + γ )

contained in (R × {θ̄}) ∩ supp B . Since B ∈LR(M) and γ ◦ ⊆ (
⋃

Rx(M))
◦ it follows that for all α ∈ A such that α ∩ γ 
= ∅

it holds

σ̃ (α) = μ�y (θ̄). (10)

On the other hand for α ⊂ supp B ′ it must also hold

σ̃ (α) ≥ μ�′
y
(θ̄ ) > μ�y (θ̄ ). (11)

Equations (10) and (11) are in contradiction because there must be at least an α that is contained in supp B ′ and in-
tersects γ . We can now conclude that B ′ is in LR(M + γ ). Thus the B-spline in LR(M + γ ) whose support intersect ⋃

Rx(M) have the same vertical knot vector of a B-spline in LR(M) and thus we can conclude that 
⋃

Rx(M + γ ) ⊇⋃
Rx(M).
Assume the existence of ϕ ∈ LR(M + γ ) such that B ′ ≺ ϕ . Then there exists ϕ′ = B[
x, 
y] ∈ LR(M) such that 

B ′ ≺ ϕ ≺ ϕ′ . Let a1 < · · · < an be the ordinates of the horizontal edges contained in supp B and intersecting γ . Let αi =
[a, bi] × {ai} be the edge intersecting γ in the left endpoint at ordinate ai . From the hypothesis that γ ◦ ⊂ (

⋃
Rx(M))

◦ we 
conclude that αi ⊂ ⋃

Rx(M) and thus that 
y is compatible with(
a1, . . . ,a1︸ ︷︷ ︸
σ (α1) times

, . . . ,an, . . . ,an︸ ︷︷ ︸
σ (αn) times

)
.

Moreover from B ′ ≺ ϕ′ it follows that 
y = �y . Since B ′ ≺ ϕ ≺ ϕ′ and all have the same vertical knot vector we conclude 
that ϕ = B ′ . This proves that M + γ is an N2S mesh. �
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Fig. 3. In the meshes above the region covered by ⋃Rx is filled with the blue chessboard pattern. The addition of the thick red segments to the mesh 
preserve the N2S property. Those drawn on the left mesh satisfy the hypothesis of Lemma 6, those on the right mesh satisfy the hypothesis of Lemma 7. 
Degree is (2, 2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In Lemma 6 we addressed the preservation of the N2S property for the addition of edges that are well contained in 
Rx or Ry . This does not cover the limit case, when the added edges intersect the boundary of the refinable region. The 
problem is that by adding a segment on the boundary of Rx it is possible to obtain a new B-spline B whose support does 
not intersect (

⋃
Rx)

◦ . On these B-splines we have no control and they can be further refined and destroy the N2S property. 
We provide sufficient condition for this case in Lemma 7. In Fig. 3 there are some examples of vertical segments whose 
addition preserve the N2S property because they satisfy the hypothesis of Lemma 6 (left) or Lemma 7 (right).

Lemma 7. Let γ = {a} ×[e, f ] be a vertical segment contained in 
⋃

Rx(M). Let η1, . . . , ηm be the maximal (with respect to inclusion) 
vertical segments contained in γ ∩ ∂

⋃
Rx(M). Finally let ρ1, . . . , ρn be the horizontal edges in Eh(M) that intersect one of the ηi

and are not contained in 
⋃

Rx(M) (see the picture below where 
⋃

Rx(M) is filled with the chessboard pattern). If for each ρi there 
exists ρ̂i ∈ Eh(M) prolonging ρi and contained in 

⋃
Rx(M) such that

σ(ρ̂i) ≥ σ(ρi)

then M +γ is an N2S-mesh, 
⋃

Rx(M +γ ) ⊇ ⋃
Rx(M) and all B-splines in LR(M +γ ) \LR(M) are obtained from a B-splines 

in LR(M) \LR(M + γ ) by inserting the abscissa of γ in the horizontal knot vector. Similarly if γ is a horizontal segment.

Proof. The proof follows the pattern of the proof of Lemma 6. First we prove that if B = B[�x, �y] ∈ LR(M) is split by 
the insertion of γ then any obtained B-spline B ′ = B[�′

x, �y] is in LR(M + γ ).
Assuming that there is ϕ = B[�′′

x , �y] in S(M + γ ) obtained from B ′ by inserting a horizontal knot we reach the same 
contradiction as in Lemma 6. Now assume the existence of ϕ = B[�′

x, �′
y] in S(M + γ ) obtained from B ′ by inserting θ̄ in 

�y . Let A be the set of the edges in Eh(M + γ ) contained in R × {θ̄} ∩ supp B ′ . Then for all α in A it holds

σ̃ (α) = σ(α) ≥ μ�′
y
(θ̄) > μ�y (θ̄ ). (12)

Let α̂ be an edge in A that intersect γ . If it is possible to choose α̂ ⊂ ⋃
Rx then we reach a contradiction as in Lemma 6. 

Otherwise there must be an index i such that α̂ = ρi . Then by the additional hypothesis it follows

σ̃ (α̂) = σ(ρi) ≤ σ(ρ̂i) = μ�y (θ̄ ). (13)

Equations (12) and (13) contradict. Thus B ′ is in LR(M + γ ) and as in Lemma 6 we conclude that 
⋃

Rx(M + γ ) ⊇⋃
Rx(M).
Let ϕ ∈LR(M + γ ) be such that B ′ ≺ ϕ . Then there exists ϕ′ = B[
x, 
y] ∈LR(M) with B ′ ≺ ϕ ≺ ϕ′ .
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Let a1 < · · · < an be the ordinates of the horizontal edges contained in supp B and intersecting γ . Let αi = [a, bi] × {ai}
be the edge intersecting γ in the left endpoint at ordinate ai . Note that if αi is not contained in 

⋃
Rx(M) then it must be 

one of the ρ j . Call it ρ ji . Let

α̂i =
{

αi if αi ⊂ ⋃
Rx(M),

ρ̂ ji otherwise.
(14)

Thus suppϕ′ contains all of the α̂i and since they are contained in 
⋃

Rx(M) its knot vector 
y is compatible with(
a1, . . . ,a1︸ ︷︷ ︸
σ (α̂1) times

, . . . ,an, . . . ,an︸ ︷︷ ︸
σ (α̂n) times

)
.

This and the fact that B ′ ≺ ϕ′ imply 
y = �y . Since B ′ ≺ ϕ ≺ ϕ′ and all have the same vertical knot vector we conclude 
that ϕ = B ′ . This proves that M + γ is an N2S mesh. �

When proving both Lemma 6 and Lemma 7 we derived the following partial result to which we will refer later.

Corollary 8. If γ satisfies the hypothesis of Lemma 6 or Lemma 7 then the B-splines obtained from B-splines in LR(M) \LR(M +γ )

by the insertion of the knot corresponding to γ (either into �x or �y depending on the direction of γ ) belong to LR(M + γ ).

This means that, differently from the case of general LR splines, the addition of a segment does not trigger a chain of 
refinements, but only causes the refinement of the directly affected functions in LR(M).

4. Hierarchical box meshes

In this section we introduce a hierarchical construction of box meshes. By hierarchical we mean that it starts from a 
sequence of box meshes associated with nested tensor-product B-spline spaces (tensor meshes). After the definition we 
describe sufficient conditions for the N2S property.

4.1. Definition

Let V0 ⊂ . . . ⊂ Vm be a sequence of nested tensor-product B-spline spaces having the same degree d and defined on 
the same domain �. Let B� be the canonical basis of the space V� . Each space V� is defined by a pair of knot vectors 
�� = (��

x, ��
y) whose components are

��
x = (θ�

x,1, . . . , θ
�

x,n�
x
),

��
y = (θ�

y,1, . . . , θ
�

y,n�
y
).

In this construction we assume that at each step only one of the two components is refined: either ��
x or ��

y . We say that 
the refinement at step � is horizontal if ��

x 
= ��−1
x and ��

y = ��−1
y . Similarly we say that it is vertical if ��

x = ��−1
x and 

��
y 
= ��−1

y .

Let �0 = � ⊇ . . . ⊇ �m be a corresponding sequence of nested domains such that for each level � the domain �� is a 
union of Bézier elements for V� . That means

�� =
⋃

(s,t)∈I�

[θ�
x,s, θ

�
x,s+1] × [θ�

y,t, θ
�
y,t+1]

where I� is a subset of {(i, j) : i = 1, . . . , n�
x − 1, j = 1, . . . , n�

y − 1}. Let R� be the set of the elements from level � contained 
in �� , that means

R� =
{
η = [θ�

x,s, θ
�
x,s+1] × [θ�

y,t, θ
�
y,t+1] : (s, t) ∈ I�, η◦ 
= ∅

}
.

Definition 9. Given a sequence of levels 0, . . . , m as above, the associated hierarchical LR mesh is H = (R, σ) with

R =
m⋃

�=0

{
η = β \ ��+1 : β ∈ R�, η 
= ∅

}
(15)

and σ defined in terms of the knot multiplicities as follows
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Fig. 4. A sample hierarchical mesh with two levels. The element with label η is not an element of any tensor mesh associated to the levels.

σ(α) =
{

μ��
x
(a) if α = {a} × [e, f ] ∈ E v

μ��
y
(e) if α = [a,b] × {e} ∈ Eh (16)

where � is the biggest index such that �� ⊃ α.

Note that all the elements of R are rectangles because at each step only one direction is refined. Note also that the 
elements in R are not necessarily Bézier elements for one of the spaces V0, . . . , Vm , see Fig. 4 for a counterexample.

Hierarchical LR meshes can be constructed by iteratively adding segments to a tensor mesh. This justifies the name. Let 
M0 be the box mesh corresponding to V0. There are many possible choices of sequences of segments γ1, . . . , γN such that(

. . .
(
(M0 + γ1) + γ2

) + . . .
)

+ γN = H.

For our purposes it is convenient to define a canonical sequence that we will use in induction proofs. Let T � , � = 0, . . . , m
be the hierarchical box meshes associated to the levels 0, . . . , �. Thus T 0 is the mesh associated to V0 and T m = H. We 
describe a sequences of additions that construct T � from T �−1. The canonical sequence is then the concatenation of these. 
Assume that the refinement at step � is horizontal, then we add vertical segments. For each i = 1, . . . , n�

x we add the 
connected components of �� ∩ ({θ�

x,i} ×R) in order of increasing ordinate μ��
x
(θ�

x,i) −μ
��−1

x
(θ�

x,i) times. Similarly for vertical 
refinement steps.

4.2. Hierarchical N2S meshes

Restricting to hierarchical box meshes allows us to find sufficient conditions for the N2S property that can be expressed 
as constraints on the geometries of �0, . . .�m . It is indeed sufficient for the N2S property that there is enough separation 
between the boundary of �� and that of ��−1 in the direction of the refinement. To describe this we introduce a separation 
distance.

Definition 10. Let p = (a, e) and q = (b, f ) be points in �, then the vertical separation distance between p and q relative to 
level � is a positive integer defined by

sep�
y(p,q) =

{
#{ j : θ�

y, j ∈ [e, f ]} a = b,

+∞ a 
= b.

Similarly the horizontal separation is

sep�
x(p,q) =

{
#{ j : θ�

x, j ∈ [a,b]} e = f ,
+∞ e 
= f .

For a set of points A ⊆ � the separation sep�
y(p, A) is defined as

sep�
y(p, A) = inf

q∈A
sep�

y(p,q)

and similarly for sep�
x .

Based on the above separations we define the shadow operators S� that map subsets of � to bigger subsets of �:

S� A =
{

{p ∈ � : sep�
x(p, A) ≤ dx} if the refinement at step � + 1 is horizontal,

{p ∈ � : sep�
y(p, A) ≤ dy} if the refinement at step � + 1 is vertical.

See Fig. 5 for an example of S� in which the refinement at step � + 1 is horizontal.
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Fig. 5. We represent the shadow S� A (in purple) of a set A (in green) The degree is (2, 2), the refinement at step � + 1 is horizontal and the horizontal 
knot vector of the tensor B-spline space V� contains a knot with multiplicity 2 that corresponds to the double line in the picture. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Notation used in the proof of Theorem 11.

Theorem 11. If the domains associated to the levels are such that �� ⊇ S���+1 , � = 0, . . . , m − 1 then H has the N2S property.

Proof. We prove the theorem by induction: we assume that

• T �−2 and T �−1 are N2S-meshes;
• if the refinement at level � − 1 is horizontal then ��−1 ⊆ ⋃

Rx(T �−2);
• if it is vertical ��−1 ⊆ ⋃

Ry(T �−2);

and prove that

• T � is an N2S-mesh
• �� ⊆ ⋃

Rx(T �−1) if the refinement at step � is horizontal;
• �� ⊆ ⋃

Ry(T �−1) if the refinement at step � is vertical.

Without loss of generality we can assume that the refinement at step � is horizontal, i.e. it corresponds to the addition of 
vertical segments.

First we prove that �� ⊆ ⋃
Rx(T �−1). There are two cases: either the refinement at step � − 1 is horizontal and thus 

the above holds as stated in Lemma 6 and Lemma 7 or the refinement at step � − 1 is vertical. In the second case we prove 
that all elements η = [a, b] × [e, f ] of R(T �−1) that intersect �� are in Rx(T �−1). Let p = (px, p y) be a point in η◦ ∩ ��

and α1, . . . , αk be the vertical edges in E v (T �−1) that intersect R × {p y} ∩ ��−1, see Fig. 6.
Let a1, . . . , ak be their abscissa and Z be the knot vector

Z = (
a1, . . . ,a1︸ ︷︷ ︸
μ

�
�−1
x

(α1)

,a2, . . . ,a2︸ ︷︷ ︸
μ

�
�−1
x

(α2)

, . . . ,ak, . . . ,ak︸ ︷︷ ︸
μ

�
�−1
x

(αk)

)
. (17)

Since all αi are contained in ��−1 ⊆ ⋃
Ry(T �−2) it follows that for all B[
x, 
y] ∈LR(T �−1) such that supp B[
x, 
y] ⊇

η, 
x is compatible with Z . Moreover by the definition of the shadow operator it holds
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∑
i:ai<px

μ
��−1

x
(ai) ≥ dx + 1,

∑
i:ai>px

μ
��−1

x
(ai) ≥ dx + 1, (18)

and thus we conclude that

supp B[
x,
y] ⊂ [a1,ak] ×R.

Since all edges in Rh(M�−1) contained in [a1, ak] × {e} ∩ ��−1 have multiplicity μ��−1 (e) it follows that e must be a 
knot in 
y with maximum multiplicity: μ
y (e) < μ��−1(e) implies that e is either the first or the last knot. Similarly for f
and thus 
y is compatible with(

e, . . . , e︸ ︷︷ ︸
μ

�
�−1
y

(e)

, f , . . . , f︸ ︷︷ ︸
μ

�
�−1
x

( f )

)
.

Since B[
x, 
y] is arbitrary we conclude that η is contained in 
⋃

Rx(T �−1). Since also η is arbitrary we conclude that 
�� ⊂ ⋃

Rx(T �−1).
Recall that T � can be obtained from T �−1 by a sequence of additions of segments. Let γ1, . . . , γN be the segments 

described in Section 4.1 whose addition to T �−1 produces T � . Then the γi are contained in �� ⊆ Rx(T �−1). The addition 
of the γi such that γi

◦ ⊂ (
⋃

Rx(T �−1))
◦

preserves the N2S property according to Lemma 6. The others must satisfy the 
hypothesis of Lemma 7 because of the hierarchical construction. That is: γ cannot intercept pairs of aligned connected 
edges (δi, δe) with δi ⊂ ⋃

Rx(T �−1), δe 
⊂ ⋃
Rx(T �−1) and σ(δe) > σ(δi). So the induction is proved. �

5. Completeness

We are also interested in the completeness of the provided space, i.e. whether LR(H) equals S(H) or not. Describing 
which refinements preserve completeness was one of the themes of Dokken et al. (2013) and was pursued using homology 
based techniques. We restrict our attention to hierarchical LR meshes with the N2S property and we prove that if the ��

are “thick enough” in the direction orthogonal to the refinement then the resulting space is LR(H) = S(H). This is made 
precise in the following result.

Theorem 12. Let H be a hierarchical mesh satisfying the hypothesis of Theorem 11: i.e. for all � = 1, . . . , m it holds

�� ⊇ S���+1.

If for all horizontal refinement steps � and all connected component A = {a} × [e, f ] of {a} ×R ∩ �� it holds

sep�
y((a, e), (a, f )) ≥ dy + 2, (19)

and similarly for vertical refinement steps and all connected component A = [a, b] × {e} of R × {e} ∩ �� it holds

sep�
y((a, e), (b, e)) ≥ dx + 2, (20)

then LR(H) = S(H). See Fig. 7 for a graphical representation of the hypothesis.

Proof. As described in Section 4, H can be obtained by refining the tensor mesh M0 corresponding to the space V0:

H = M0 + γ1 + · · · + γn.

Let Mi =M0 + γ1 + · · · + γi . We know that completeness holds for tensor meshes and thus that

#LR(M0) = dimS(M0).

We prove the induction step

LR(Mi−1) = S(Mi−1) ⇒ LR(Mi) = S(Mi).

Assume that Mi is finer than T �−1 and coarser than T � and that refinement at step � is horizontal. Then γi is vertical 
segment contained in 

⋃
Rx(Mi−1) and a connected component of �� ∩ {a} × R. Let e1, . . . , ek be the ordinates of the 

intersections of γi with horizontal edges in Eh(Mi−1), pi = (a, e1) and qi = (a, ek) be the endpoints of γi and


 = (
e1, . . . , e1︸ ︷︷ ︸
μ

�
�−1 (e1)

, e2, . . . , e2︸ ︷︷ ︸
μ

�
�−1 (e2)

, . . . , ek, . . . , ek︸ ︷︷ ︸
μ

�
�−1 (ek)

)
.

y y y
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Fig. 7. Illustration of the hypothesis of Lemma 12 for a horizontal refinement step � and dy = 2. The region covered by �� is filled with the chessboard 
pattern. If the separation between the endpoints of the dashed lines (intersections of �� with vertical lines) is greater than dy + 2 then the completeness 
of T � is implied from the completeness of T �−1.

From Theorem 11 we know that Mi is an N2S mesh and thus from Theorem 4 that

#LR(Mi) = dimLR(Mi) ≤ dimS(Mi).

In order to prove the induction step we show that �LR ≥ �S where

�LR = #LR(Mi) − #LR(Mi−1)

and

�S = dimS(Mi) − dimS(Mi−1).

Reasoning as in the proof of Theorem 11, we deduce that γi satisfies the hypotheses of Lemma 6 or Lemma 7. Thus 
 is 
compatible with all the vertical knot vectors Zy of the B-splines B[Zx, Zy] ∈ LR(Mi−1) such that (supp B[Zx, Zy]) ∩ γi

= ∅. This means that all the Zy as above are composed of dy + 2 consecutive knots of 
.

Since Mi is an N2S mesh, it follows (Bressan, 2013, Lemma 3.4) that for each point v = (vx, v y) and integers s ∈
{1, . . . , dx + 1}, t ∈ {1, . . . , dy + 1} there exists B[Zx, Zy] ∈LR(Mi−1) such that

#{ζ ∈ Zx : ζ ≤ vx} = s, #{ζ ∈ Zy : ζ ≤ v y} = t.

For each edge that is contained in γi , we apply this result to one inner point choosing s = dx + 1 and considering all 
possible values of t . We then observe that for each knot vector composed of dy + 2 consecutive knots of 
, there exists at 
least one B-spline in LR(Mi−1), which is defined by this knot vector with respect to the y-direction and by another one 
with respect to the x-direction. This B-spline is refined by the addition of γi and the obtained B-splines are in LR(Mi), 
see Corollary 8. Consequently

�LR ≥
k∑

i=1

μ
��−1

y
(ei) − dy − 1 = sep�−1

y (pi,qi) − dy − 1.

Dokken et al. (2013, Theorem 5.5) provide a formula for dimS(Mi). The formula is based on previous research from 
Mourrain (2014). From the formula it follows that

�S = sep�
y(pi,qi) − dy − 1 + h0(Mi) − h0(Mi−1) − h1(Mi) + h1(Mi−1) (21)

where h0, h1 are two non-negative functions of the mesh that can be computed with homological techniques. According 
to Dokken et al. (2013, Note 1 after Theorem 5.5), h0(Mi) = 0 if S(Mi) 
= {0} and this is our case. The homological term 
h1(M0) is 0 (Note 2) since the initial mesh is a tensor-product mesh. Moreover h1(Mi) is non-increasing with respect to 
i because of (19), (20) and Dokken et al. (2013, Note 3). Consequently, all homological terms vanish and we may complete 
the proof of the induction step by observing that

�LR ≥ sep�
y(pi,qi) − dy − 1 = �S. � (22)

In a slightly different setting, the fact that the homological terms vanish when the mesh is constructed from a tensor 
mesh by adding a sequence of “long enough” segments was already stated by Mourrain (2014, Theorem 3.7).
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6. Construction

In this subsection we present a construction for hierarchical box meshes that guarantees both the N2S property and 
completeness. We assume that the spaces V0, . . . , Vm are fixed and that a minimum refinement level is specified for some 
regions.

The input of our construction is a sequence of ω1, . . . , ωm of subsets of � = [0, 1]2 and the output is a mesh such that 
all basis functions that are active on a point in ω� are refinements of basis functions from B� . The ω� do not need to be 
nested and can be empty. For example they can be a discrete set of points, a curve or a region or a union of those.

From ω1, . . . , ωm we construct the domains �1 ⊇ . . . ⊇ �m starting from �m and back to �1. First we define the auxiliary 
sets ω̃� for � = 1, . . . , m:

ω̃� =
⋃

{supp B : B ∈ B�, supp B ∩ ω� 
= ∅}.

Set �m to ω̃m . Then ��−1 with � = m − 1, . . . , 1 is defined to be

��−1 = ω̃�−1 ∪ S�−1��. (23)

By construction the domains associated to the levels satisfy Lemma 11 and Lemma 12 and thus H is an N2S-mesh for 
which LR(H) = S(H).

We conclude this section with some examples of the meshes constructed with our method in case of dyadically refined 
knot vectors. Let

��
x = [

0, . . . ,0︸ ︷︷ ︸
dx+1 times

, . . .
k

2��/2� . . . , 1, . . . ,1︸ ︷︷ ︸
dx+1 times

]
, 0 < k < 2��/2�

��
y = [

0, . . . ,0︸ ︷︷ ︸
dy+1 times

, . . .
k

2��/2� . . . , 1, . . . ,1︸ ︷︷ ︸
dy+1 times

]
, 0 < k < 2��/2�.

We show the meshes constructed from the input regions ω1, . . . , ωm with

ω� =
{

G � = m,

∅ otherwise

for different choices of G and m.
In Fig. 8 the set G is a polygonal chain composed of two segments and m is 4, 6, 8, 10, 12, 14. In Fig. 9 it is a spiral 

centered in (0.5, 0.5) and m is 4, 6, 8, 10, 12, 14. In both figures the degree is d = (2, 2).
As can be seen in Figs. 8 and 9 the refined region follows G closely and does not propagate. This statement can be made 

more precise. For simplicity we assume that the degree is the same in both coordinate directions dx = dy = d and that the 
maximal level m is even.

The size of an element η = [a, b] × [e, f ] ∈R(H) contained in �� \ ��+1 is bounded by

2−��/2�−1 ≤ b − a ≤ 2−��/2�

2−��/2�−1 ≤ f − e ≤ 2−��/2�.

The distance of such an element from ωm can be estimated using a geometric sum. Indeed the distance between ωm and 
∂�m is in

[d2−m/2, (d + 1)2−m/2+1/2].
The operator S�−1 extends the domain �� in one direction by a length contained between d2−�/2+1 and (d + 1)2−�/2+1. It 
follows that the distance between �� and the boundary of ��−2 (in the case of � even) is contained between d2−�/2+1 and 
(d + 1)2−�/2+3/2.

The distance between η ⊆ �� \��+1 and ωm can be bounded using a geometric sum and for � < m − 1 it is contained in

[d(2−�/2 − 2−m/2),23/2(d + 1)2−�/2].
So we proved that any point contained in an element of size ≈ 2−�/2 is at a distance ≈ 2−�/2 from ωm . This means that the 
obtained meshes are geometrically refined only near the requested regions.
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Fig. 8. Meshes obtained by setting ωm = � for m = 4,6, . . . ,14. The degree is (2,2).

7. Comparison with THB-splines

It is interesting to compare the described approach with the THB-spline approach developed by Giannelli et al. (2012)
and Mokriš et al. (2014). We do this in the simplified setting in which �� is a union of rectangles of level � − 1. In this 
setting we can compare the space LR(H) to the THB-spline space TH(H) having the same Bézier elements and defined 
from the same levels. This means that LR(H) and TH(H) are defined by the same sequence of tensor-product spaces V�

and domains �� .
The hierarchical spline construction selects a subset C� from the tensor-product basis B� of V� . Precisely

C� = {
B ∈ B� : supp B ⊆ �� ∧ supp B � ��+1}.

The set of generators is then 
⋃m

�=0 C� .
The THB-spline approach uses the same selection procedure, but the selected B-splines are truncated in order to guaran-

tee that they are a partition of unity and to obtain better locality. In particular each B-spline B selected from level � whose 
support intersects ��+1 is replaced by the function B̂�+1 obtained by expressing B as a linear combination of B-splines from 
level � + 1 and by setting the coefficients of the B-splines in C�+1 to 0. The procedure is then repeated for each lower level 
� + 2, . . . , m. At this point the collection of truncated B-splines is taken as the basis of the space. The truncated functions 
are always a partition of unity.
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Fig. 9. Meshes obtained by setting ωm = � for m = 4,6, . . . ,14. The degree is (2,2).

The space TH(H) is a subset of S(H) and equality is proved for meshes such that for each level � and B ∈ C� the 
intersection (supp B)◦ ∩ (� \��+1) is connected. Sharper results can be obtained for specific degrees and weaker conditions 
are needed for the decoupled version of the THB-basis that was proposed by Mokriš et al. (2014). This condition is not 
always satisfied by the type of meshes we are considering as can be seen in Fig. 10.

So in selected cases the space we are proposing is bigger than the THB-spline space. Two other advantages are that the 
basis functions are B-splines and that the basis functions are locally linearly independent.

On the other hand the locality of the refinement with our approach is degree dependent and decreases as the degree 
increase. This does not happen in the THB-spline setting. Related to this is the fact that THB-splines do not require “alter-
nating” refinement and thus can be refined more locally.

8. Conclusions

We restrict our attention to the subset of bi-variate box meshes that have the N2S-property. We describe two subdomains 
of � where respectively vertical and horizontal refinement preserves the N2S property. Using this knowledge we provide an 
explicit construction that is based on a hierarchy of tensor spaces and domains. The LR-space associated to the constructed 
mesh H has the N2S property, i.e. it has a basis of locally linearly independent functions. Moreover LR(H) is the whole 
space S(H) of piecewise polynomials associated to the mesh.
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Fig. 10. In this example mesh the support of the B-spline B of degree (3, 3) from the coarsest level intersect the � \ �1 in two connected components 
highlighted with the chess pattern. Therefore completeness is not guaranteed in the THB, but it is by N2S. In this example dimS = dimLR = 331 >
dimTH = 328.

The fact that our construction guarantees the N2S property is based on the results from Bressan (2013) that apply 
to the n-variate case. It seems thus reasonable that the construction can be generalized to n-variate case with similar 
definitions and proofs. Future work will be devoted to the generalization of Lemmas 6 and 7 to this situation. The proof 
of completeness (Theorem 12), however, relies on the results from Mourrain (2014) that are available for bi-variate splines 
only. It is expected that more effort is required to extend the completeness proof to n-variate constructions. Some results 
concerning the homology term for 3D meshes are reported in Berdinsky et al. (2014).
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