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A new equivalence notion between non-stationary subdivision schemes, termed asymptotic 
similarity, which is weaker than asymptotic equivalence, is introduced and studied. 
It is known that asymptotic equivalence between a non-stationary subdivision scheme 
and a convergent stationary scheme guarantees the convergence of the non-stationary 
scheme. We show that for non-stationary schemes reproducing constants, the condition 
of asymptotic equivalence can be relaxed to asymptotic similarity. This result applies to a 
wide class of non-stationary schemes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This short paper studies univariate binary non-stationary uniform subdivision schemes. Such schemes are efficient itera-
tive methods for generating smooth functions via the specification of an initial set of discrete data f[0] := { f [0]

i ∈ R, i ∈ Z}, 
and a set of refinement rules, mapping at each iteration the sequence of values f[k] := { f [k]

i ∈R, i ∈ Z} attached to the points 
of the grid 2−k

Z into the sequence of values f[k+1] attached to the points of 2−(k+1)
Z. At each level k, the refinement rule 

Sa[k] is defined by a finitely supported mask a[k] := {a[k]
i , i ∈ Z}, so that

f[k+1] := Sa[k] f[k] with
(

Sa[k] f[k])
i
:=

∑
j∈Z

a[k]
i−2 j f [k]

j . (1)

Each subdivision scheme {Sa[k] , k ≥ 0} we will deal with is assumed to be local, in the sense that there exists a positive 
integer N such that supp (a[k]) := {i ∈ Z | a[k]

i �= 0} ⊆ [−N, N] for all k ≥ 0.
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The idea of proving the convergence of a non-stationary scheme by comparison with a convergent stationary one was 
first developed in Dyn and Levin (1995), via the notion of asymptotic equivalence between non-stationary schemes. Two 
subdivision schemes {Sa[k] , k ≥ 0} and {Sa∗[k] , k ≥ 0} are said to be asymptotically equivalent when

∞∑
k=0

‖Sa[k] − Sa∗[k] ‖ < +∞,

which holds if and only if 
∑∞

k=0 ‖a[k] − a∗[k]‖ < +∞. The main result of the present work is that for convergence analysis of 
non-stationary schemes reproducing constants, asymptotic equivalence can be replaced by the weaker notion of asymptotic 
similarity. We say that two schemes are asymptotically similar when

lim
k→∞

‖a[k] − a∗[k]‖ = 0. (2)

The class of subdivision schemes to which our result applies is wide and important from the application point of view. 
For instance, this class contains all uniform subdivision schemes generating spaces of exponential polynomials with one 
exponent equal to zero, and in particular all subdivision schemes for uniform splines in such spaces (Conti and Romani, 
2011; Dyn et al., 2003). Besides their classical interest in geometric modeling and approximation theory, uniform exponential 
B-splines are very useful in Signal Processing (Conti et al., 2015; Unser and Blu, 2005) and in Isogeometric Analysis (Manni 
et al., 2011, 2014). In the latter context, exponential B-splines based subdivision schemes permit to successfully address the 
difficult evaluation of these splines.

The article is organized as follows. In Sections 2 and 3 the analysis leading to the main result of this paper is presented. 
In Section 2 we derive a sufficient condition for the convergence of non-stationary schemes reproducing constants, in terms 
of difference schemes. This condition replaces the well-known necessary and sufficient condition for convergence in the 
stationary case. In Section 3 we introduce the asymptotic similarity relation (2) and develop some useful consequences 
for the analysis of non-stationary subdivision schemes. In particular, we show that, if two subdivision schemes reproduce 
constants, and if one of them satisfies the above-mentioned sufficient condition, so does the other. This fact is important 
for the proof of the convergence of non-stationary schemes reproducing constants by comparison (in the sense of (2)) 
with convergent stationary ones. Finally, in Section 4 we illustrate our result with non-stationary versions of the de Rham 
algorithm and of the four-point scheme.

Throughout the article the notation ‖ · ‖ refers to the sup-norm, for either operators, functions, or sequences in RZ and, 

in particular, we recall that ‖Sa[k] ‖ := max

(∑
i∈Z

|a[k]
2i |,

∑
i∈Z

|a[k]
2i+1|

)
.

2. A sufficient condition for convergence

Let {Sa[k] , k ≥ 0} be a given subdivision scheme, defining successive f[k] , k ≥ 0, via (1). At any level k ≥ 0, we denote by 
PL(f[k]) the piecewise linear function interpolating the sequence f[k] , i.e., PL(f[k])(i2−k) = f [k]

i for all i ∈ Z. The scheme is 
said to be convergent if, for any bounded f[0] , the sequence {PL(f[k]), k ≥ 0} is uniformly convergent on R. If so, the limit 
function is denoted by S∞

{a[k], k≥0}f
[0] .

The subdivision scheme can equivalently be defined by its sequence of symbols, the symbol of the mask a[k] of level 
k being defined as the Laurent polynomial a[k](z) := ∑

i∈Z a[k]
i zi . The scheme {Sa[k] , k ≥ 0} is said to reproduce constants if 

f [0]
i = 1 for all i ∈ Z implies f [k]

i = 1 for all i ∈ Z and all k ≥ 0, which holds if and only if∑
i∈Z

a[k]
2i =

∑
i∈Z

a[k]
2i+1 = 1 for all k ≥ 0,

or if and only if the symbols satisfy

a[k](−1) = 0 and a[k](1) = 2 for all k ≥ 0. (3)

If (3) holds, each symbol can be written as a[k](z) = (1 + z)q[k](z), where q[k](z) := ∑
i∈Z q[k]

i zi satisfies q[k](1) = 1, and we 
have

q[k]
i =

∑
j≤i

(−1)i− ja[k]
j , a[k]

i = q[k]
i + q[k]

i−1, i ∈ Z, k ≥ 0. (4)

From the right relation in (4) it is easily seen that the scheme {Sq[k] , k ≥ 0} permits the computation of all backward 
differences � f [k]

i := f [k]
i − f [k]

i−1, namely

�f[k+1] = Sq[k]�f[k], with �f[k] := {� f [k]
i , i ∈ Z}.

The non-stationary subdivision scheme {Sq[k] , k ≥ 0} is called the difference scheme of {Sa[k] , k ≥ 0}.
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The scheme {Sa[k] , k ≥ 0} is stationary when its masks a[k] do not depend on the level k, i.e., a[k] = a for all k ≥ 0. In that 
case we will use the simplified notation {Sa}.

As is well known, reproduction of constants is necessary for convergence of stationary subdivision schemes. Let us recall 
also the following major convergence result about the stationary case (see e.g. Dyn, 2002).

Theorem 1. Let {Sa} be a stationary subdivision scheme reproducing constants, with difference scheme {Sq}. Then the scheme {Sa}
converges if and only if there exists a positive integer n such that μ := ∥∥(Sq)n

∥∥ < 1.

A similar necessary and sufficient condition for the convergence of non-stationary subdivision schemes is not known. 
Nevertheless, a non-stationary version of the sufficient condition is given in Theorem 3 below.

Definition 2. We say that a subdivision scheme {Sa[k] , k ≥ 0}, assumed to reproduce constants, satisfies Condition A, when its 
difference scheme {Sq[k] , k ≥ 0} fulfills the following requirement:

there exist two integers K ≥ 0, n > 0, such that

μ := sup
k≥K

∥∥∥Sq[k+n−1] . . . Sq[k+1] Sq[k]
∥∥∥ < 1. (5)

Let us recall that a scheme {Sa[k] , k ≥ 0} is said to be bounded, if supk≥0 ‖Sa[k] ‖ < +∞, or, equivalently, due to locality, 
if supk≥0 ‖a[k]‖ < +∞.

Theorem 3. Let {Sa[k] , k ≥ 0} be a bounded subdivision scheme reproducing constants and satisfying Condition A. Then, {Sa[k] , k ≥ 0}
converges. Moreover, there exists a positive number C , such that, for any initial f[0],

‖S∞
{a[k], k≥0}f

[0] −PL
(

f[k])‖ ≤ C μ̂k‖�f[0]‖, k ≥ 0, with μ̂ := μ
1
n , (6)

where μ and n are provided by (5), and where {f[k], k ≥ 0} are the sequences generated by the subdivision scheme.

Before proving the theorem we prove two lemmas. Below, as well as whenever we refer to a specific mask, we only 
indicate the non-zero elements.

Lemma 4. Let {Sa[k] , k ≥ 0} be a bounded subdivision scheme which reproduces constants, its locality being prescribed by the positive 
integer N. Let h :=

{
1
2 ,1, 1

2

}
be the mask of the stationary linear B-spline subdivision scheme. The symbols of the masks {d[k] :=

a[k] − h, k ≥ 0} can be written as

d[k](z) = (1 − z2)e[k](z), (7)

where, for each k ≥ 0, the mask e[k] satisfies

e[k]
i :=

∑
j≥0

d[k]
i−2 j, for all i ∈ Z, supp e[k] ⊂ [−N, N − 2]. (8)

Proof. The factorization (7) is valid for the difference of any two subdivision schemes reproducing constants since their 
symbols take the same value at −1 and 1, see (3). The rest of the claim readily follows from (7). �
Lemma 5. Under the assumptions of Theorem 3 there exists a positive constant C1 such that

‖�f[k]‖ ≤ C1 μ̂k‖�f[0]‖, k ≥ 0. (9)

Proof. Select any integers p, r, with p ≥ 0 and 0 ≤ r ≤ n − 1, where n is given by (5). Repeated application of (5) yields:

‖�f[K+pn+r]‖ ≤ μp‖�f[K+r]‖
≤ μ̂K+pn+r ‖Sq[K+r−1] . . . Sq[1] Sq[0] ‖

μ̂K+r
‖�f[0]‖. (10)

From (10) and from the fact that μ̂ < 1 it can easily be derived that (9) holds with

C1 := 1
K+n−1

max ‖Sq[k−1] . . . Sq[1] Sq[0] ‖. �

μ̂ 0≤k≤K+n−1
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Proof of Theorem 3. By standard arguments it is sufficient to show that the sequence {F [k] :=PL(f[k]), k ≥ 0}, of piecewise 
linear interpolants satisfies

‖F [k+1] − F [k]‖ ≤ � μ̂k‖�f[0]‖ , k ≥ 0, (11)

for some positive constant �. The constant C in (6) can then be chosen as C := �/(1 − μ̂). With the help of the hat function

H(x) =
{

1 − |x|, x ∈ (−1,1),

0, otherwise,

we can write F [k+1] and F [k] respectively as

F [k+1](x) =
∑
i∈Z

(
Sa[k] f[k])

i
H(2k+1x − i) ,

and

F [k](x) =
∑
i∈Z

f[k]
i H(2kx − i) =

∑
i∈Z

(
Shf[k])

i
H(2k+1x − i) ,

where Sh is the subdivision scheme for linear B-splines recalled in Lemma 4. Hence, by the definition of d[k] in Lemma 4, 
we obtain

F [k+1](x) − F [k](x) =
∑
i∈Z

g[k+1]
i H(2k+1x − i) with g[k+1] := Sd[k] f[k]. (12)

The left relations in (8) can be written as d[k]
i = e[k]

i − e[k]
i−2 for all i ∈ Z, implying that

g[k+1]
i =

∑
j∈Z

e[k]
i−2 j

(
�f[k])

j
, i ∈ Z. (13)

Now, Lemma 4 and the boundedness assumption ensure that

‖e[k]‖ ≤ C2 := N(sup
j≥0

‖a[ j]‖ + 1) < +∞, k ≥ 0. (14)

Gathering (14), (13), (12), (9) leads to (11), with � := NC1C2. �
As in the stationary case, it can be proved that the limit function in Theorem 3 is Hölder continuous with exponent 

|Log2μ̂|.

Remark 6. Different proofs of the fact that Condition A is sufficient for convergence already exist in the wider context of 
non-regular (i.e., non-uniform, non-stationary) schemes, using non-regular grids, either nested (Maxim and Mazure, 2004)
or non-nested (Mazure, 2005, 2006). Nevertheless, we did consider it useful to give a simplified proof in the context of 
uniform schemes and regular grids. Indeed, in that case the proof is made significantly more accessible by the use of the 
corresponding classical tools.

3. Asymptotically similar schemes

Definition 7. We say that two subdivision schemes {Sa[k] , k ≥ 0} and {Sa∗[k] , k ≥ 0} are asymptotically similar if

lim
k→∞

‖a[k] − a∗[k]‖ = 0. (15)

Clearly, asymptotic similarity is an equivalence relation between subdivision schemes, which is weaker than asymptotic 
equivalence. By the locality of the two schemes, proving their asymptotic similarity simply consists in checking that

lim
k→∞

(a[k]
i − a∗[k]

i ) = 0 for −N ≤ i ≤ N ,

where [−N, N] contains the support of the masks a[k] , a∗[k] for k ≥ 0. Note that (15) can be replaced by limk→∞ ‖Sa[k] −
Sa∗[k] ‖ = 0 as well. If two subdivision schemes are asymptotically similar and if one of them is bounded, so is the other.

Depending on the properties of the schemes, asymptotic similarity can be expressed in different ways:

Proposition 8. Given two subdivision schemes {Sa[k] , k ≥ 0} and {Sa∗[k] , k ≥ 0} which both reproduce constants, the following prop-
erties are equivalent:
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(i) {Sa[k] , k ≥ 0} and {Sa∗[k] , k ≥ 0} are asymptotically similar;
(ii) the difference schemes {Sq[k] , k ≥ 0} and {Sq∗[k] , k ≥ 0} are asymptotically similar.

If, in addition, one of the two subdivision schemes {Sa∗[k], k ≥ 0} or {Sa[k] , k ≥ 0} is bounded, then (i) is also equivalent to

(iii) for any fixed p ≥ 0, limk→∞
∥∥∥Sq[k+p] . . . Sq[k] − Sq∗[k+p] . . . Sq∗[k]

∥∥∥ = 0.

Proof. Without loss of generality we can assume that the locality of the two schemes is determined by the same positive 
integer N . Then, by application of (4) we can derive that supp q[k], supp q∗[k] ⊂ [−N, N − 1], and that

1

2
‖a[k] − a∗[k]‖ ≤ ‖q[k] − q∗[k]‖ ≤ 2N‖a[k] − a∗[k]‖ .

The equivalence between (i) and (ii) follows. Clearly, (ii) is implied by (iii). As for the implication (ii) ⇒ (iii), it follows by 
induction from the equality

Sq[k+p+1] Sq[k+p] . . . Sq[k] − Sq∗[k+p+1] Sq∗[k+p] . . . Sq∗[k]

=
(

Sq[k+p+1] − Sq∗[k+p+1]
)

Sq[k+p] . . . Sq[k] + Sq∗[k+p+1]
(

Sq[k+p] . . . Sq[k] − Sq∗[k+p] . . . Sq∗[k]
)

, k ≥ 0 ,

and from the boundedness of the two schemes. �
Proposition 9. Let {Sa∗[k] , k ≥ 0} be a bounded subdivision scheme reproducing constants and satisfying Condition A. Then, any sub-
division scheme {Sa[k] , k ≥ 0} which reproduces constants and is asymptotically similar to {Sa∗[k], k ≥ 0}, also satisfies Condition A.

Proof. Using the notation of Proposition 8, from Condition A we derive the existence of two integers K ∗, n such that

μ∗ := sup
k≥K ∗

∥∥∥Sq∗[k+n−1] . . . Sq∗[k]
∥∥∥ < 1.

Select any μ ∈ (μ∗, 1) and choose ε > 0 such that μ∗ + ε < μ. The two schemes being asymptotically similar, and {Sa∗[k] ,
k ≥ 0} being bounded, we know that (iii) of Proposition 8 holds. We can thus find K̃ ≥ 0, such that∥∥∥Sq[k+n] . . . Sq[k] − Sq∗[k+n] . . . Sq∗[k]

∥∥∥ ≤ ε for all k ≥ K̃ .

Clearly, we have∥∥∥Sq[k+n] . . . Sq[k]
∥∥∥ ≤ μ < 1, for each k ≥ K := max(K ∗, K̃ ). (16)

The claim is proved. �
Remark 10. We would like to draw the reader’s attention to the fact that we have not proved that, when two bounded 
non-stationary subdivision schemes reproducing constants are asymptotically similar, convergence of one of them implies 
convergence of the other. Convergence of the second scheme is obtained only when convergence of the first one results 
from Condition A. This follows from Proposition 9 and Theorem 3. This is actually sufficient to prove Theorem 11 below, 
which is the main application of all previous results.

Theorem 11. Let {Sa∗ } be a convergent stationary subdivision scheme with μ∗ := ∥∥(Sq∗ )n
∥∥ < 1. Let {Sa[k] , k ≥ 0} be a non-stationary 

subdivision scheme reproducing constants which is asymptotically similar to {Sa∗}. Then, the scheme {Sa[k] , k ≥ 0} is convergent and 
for any η ∈ (μ∗ 1

n , 1) there exists a positive constant C such that, for any initial bounded f[0],

‖S∞
{a[k], k≥0}f

[0] −PL
(

f[k+1])‖ ≤ C ηk‖�f[0]‖, k ≥ 0.

Proof. The existence of a positive integer n with μ∗ := ∥∥(Sq∗ )n
∥∥ < 1 is due to the convergence of the stationary scheme 

{Sa∗ }, see Theorem 1. In other words, {Sa∗ } satisfies Condition A. We also know that {Sa∗ } reproduces constants. Accordingly, 
by application of Proposition 9, we can say that {Sa[k] , k ≥ 0} satisfies Condition A too. Furthermore, we know that we can 
apply Theorem 3 using any μ ∈ (μ∗, 1) (see (16)). �
4. Illustrations

We conclude this work with two examples illustrating the convergence claim in Theorem 11, and with an example 
showing the necessity of reproduction of constants in this theorem. In what follows we only write the non-zero elements 
of the masks.



6 C. Conti et al. / Computer Aided Geometric Design 37 (2015) 1–8
Fig. 1. Limit functions obtained via non-stationary de Rham schemes starting from f[1] = δ, with γk = γ + α
k , k ≥ 1. Left: γ = 2. Right: γ = 1.5. For both 

pictures the displayed functions correspond to α = 2.5 (blue); α = −1.5 (green). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

4.1. First example

The oldest instances of subdivision schemes are certainly the de Rham schemes (de Rham, 1956). Given a positive 
parameter γ , the associated de Rham scheme consists in placing on each segment of the polygonal line of any given level k, 
exactly two consecutive points of the next level, so that they divide this segment with ratios 1 : γ : 1. This corner cutting 
geometric construction yields a stationary scheme {Sa∗ }, with mask

a∗ =
{

1

2 + γ
,

1 + γ

2 + γ
,

1 + γ

2 + γ
,

1

2 + γ

}
, (17)

known to converge for any value of γ > 0. In a very natural way, a more general geometric construction can be done using 
a sequence of positive parameters γk , k ≥ 0, instead of a single parameter γ for all levels. We now divide each segment 
of level k with ratios 1 : γk : 1. The scheme {Sa[k] , k ≥ 0} produced is a non-stationary version of the de Rham scheme. Its 
mask a[k] of level k is obtained by replacing γ by γk in (17). All masks have the same support and

a∗
i − a[k]

i = ± γk − γ

(2 + γk)(2 + γ )
for all i ∈ supp (a) and for all k ≥ 0.

Accordingly, for the scheme {Sa[k] , k ≥ 0} to be asymptotically similar to the classical stationary de Rham scheme {Sa∗ } of 
parameter γ , it is necessary and sufficient to choose the sequence γk , k ≥ 0, so that

lim
k→∞

γk = γ . (18)

Since {Sa[k] , k ≥ 0} obviously reproduces constants, we deduce from Theorem 11 that if the sequence {γk, k ≥ 0}, converges 
to a limit in (0, +∞) the corresponding non-stationary de Rham scheme {Sa[k] , k ≥ 0} converges.

We illustrate this in Fig. 1, where, for γ = 2, and γ = 1.5, limit functions corresponding to two sequences γk , k ≥ 1, are 
shown, starting from the initial sequence f[1] := δ = {δi,0, i ∈ Z}. For γ = 2, {Sa∗ } is simply the Chaikin algorithm with mask 
a = { 1

4 , 3
4 , 3

4 , 1
4 }. In either illustration, the non-stationary subdivision scheme {Sa[k] , k ≥ 1} is not asymptotically equivalent 

to the corresponding de Rham scheme {Sa∗ } since 
∑

k≥1 ‖Sa[k] − Sa∗[k] ‖ = +∞.

4.2. Second example

We now start with another famous example of stationary scheme, the four-point scheme {Sa∗ } (Dyn et al., 1987). Given 
a fixed parameter w , at any level k ≥ 0, the values at level (k + 1) are computed from those at level k according to the 
following formulas:

f [k+1]
2i = f [k]

i , f [k+1]
2i+1 = (

1

2
+ w)( f [k]

i + f [k]
i+1) − w( f [k]

i−1 + f [k]
i+2), i ∈ Z. (19)

It is known that convergence holds when w ∈ (− 1
2 , 12 ).

Here too a very natural approach consists in trying not to keep the same parameter w at each level. This idea already ap-
peared in Conti and Romani (2010), Levin (1999), Marinov et al. (2005), where even non-uniform versions of the four-point 
scheme were addressed. Let us limit ourselves to a uniform non-stationary four-point scheme, associated with a sequence 
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Fig. 2. Limit functions obtained via (19) starting from f[1] = δ. Left wk := w + α
k , k ≥ 1, w = 1

8 and α = −0.125 (blue); α = 0.125 (green). Right wk :=
w(1 − 1

kα ), k ≥ 1, w = 1
8 and α = 1 (blue), α = 0.1 (green). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.)

Fig. 3. From left to right: 8; 12; 16 iterations of (20) starting from f[1] = δ.

of parameters wk , k ≥ 0. The scheme {Sa[k] , k ≥ 0}, is simply obtained by replacing w by wk in (19) at any level k ≥ 0. 
Clearly

‖a[k] − a∗‖ = |wk − w|, k ≥ 0,

which means that {Sa[k] , k ≥ 0} is asymptotically similar to {Sa∗ } if and only if limk→∞ wk = w , while it is asymptotically 
equivalent to {Sa∗ } if and only if 

∑
k≥0 |wk − w| < +∞. Accordingly, by Theorem 11, we can state that a non-stationary four-

point scheme converges as soon as its sequence of parameters converges to a limit in the interval (− 1
2 , 12 ). The convergence 

is illustrated in Fig. 2 for two sequences of parameters wk . In all these illustrations, the schemes are not asymptotically 
equivalent to the corresponding classical four-point scheme.

4.3. About reproduction of constants

Let us now consider the family of masks {a[k], k ≥ 1}, with

a[k] =
{

1

4
+ 1

k
,

3

4
+ 1

k
,

3

4
+ 1

k
,

1

4
+ 1

k

}
, k ≥ 1. (20)

Fig. 3 shows the results after 8, 12, 16 iterations in the left, in the center and in the right, respectively. It clearly shows that 
the corresponding non-stationary scheme is not convergent. Still, it is asymptotically similar to the Chaikin scheme. This 
is not in contradiction with Theorem 11 since reproduction of constants is not satisfied. Indeed, 

∑
i∈Z a[k]

2i = ∑
i∈Z a[k]

2i+1 =
1 + 2

k �= 1 for all k ≥ 1. This enhances the importance of all assumptions for the validity of Theorem 11.

5. Concluding remarks

Non-stationary subdivision schemes are harder to analyze than their stationary counterparts. Analyzing them by com-
parison with a simpler scheme is quite a natural idea. Up to now, the main tool for such a comparison was the asymptotic 



8 C. Conti et al. / Computer Aided Geometric Design 37 (2015) 1–8
equivalence, as developed in Dyn and Levin (1995), see also Dyn et al. (2007). In the present article, we have replaced it 
by asymptotic similarity, a simpler and weaker equivalence relation between non-stationary schemes. Our work presents 
a twofold interest. It was clearly important on the theoretical side to point out that asymptotic equivalence may be a 
too demanding requirement. Indeed, provided that it reproduces constants, a non-stationary scheme which is asymptot-
ically similar to a convergent stationary one is convergent. Certainly, many among the known converging non-stationary 
schemes are asymptotically equivalent to stationary analogues. Still, we have presented two simple examples which show 
that asymptotic similarity can also be useful in the design of new converging non-stationary schemes.

To enhance the significance of asymptotic similarity, we would like to mention that this notion was first introduced 
for non-regular (non-uniform, non-stationary) schemes in Mazure (in press) (simply named there equivalence). However, the 
non-uniformity made it necessary to define it locally. In this non-regular framework, it proved to be a forceful tool to analyze 
not only the convergence of a subdivision scheme but also the regularity of the limit functions it produces. As pointed out 
by D. Levin, in the uniform setting, smoothness of the generated limits can be proved by combining asymptotic similarity 
with the notion of smoothing factors introduced in Dyn and Levin (1995).

Further results concerning asymptotic similarity for uniform non-stationary schemes can be found in Charina et al. (2015)
along with several important extensions of this notion.
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