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Many problems in computer aided geometric design and computer graphics can be turned
into a root-finding problem of a polynomial equation. Among various solutions, clipping
methods based on the Bernstein–Bézier form usually have good numerical stability.
A traditional clipping method using polynomials of degree r can achieve a convergence
rate of r + 1 for a single root. It utilizes two polynomials of degree r to bound the given 
polynomial f (t) of degree n, where r = 2, 3, and the roots of the bounding polynomials 
are used for clipping off the subintervals containing no roots of f (t). This paper presents
a rational cubic clipping method for finding the roots of a polynomial f (t) within an
interval. The bounding rational cubics can achieve an approximation order of 7 and the
corresponding convergence rate for finding a single root is also 7. In addition, differently
from the traditional cubic clipping method solving the two bounding polynomials in O (n2), 
the new method directly constructs the two rational cubics in O (n) which can be used for
bounding f (t) in many cases. Some examples are provided to show the efficiency, the
approximation effect and the convergence rate of the new method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many problems in computer aided geometric design and computer graphics can be turned into a root-finding problem
of polynomial equations, such as curve/surface intersection (Efremov et al., 2005; Liu et al., 2009; Nishita et al., 1990;
Patrikalakis and Maekawa, 2002), point projection (Chen et al., 2008), collision detection (Choi et al., 2006; Lin and 
Gottschalk, 1998), and bisectors/medial axes computation (Elber and Kim, 2001). In principle, a system of polynomial equa-
tions of multiple variables can be turned into a univariate polynomial equation by using the resultant theory. This paper 
discusses the root-finding problem of a univariate polynomial equation within an interval.

Many references turn the given polynomial f (t) into its power series, and a collection of related references can be 
found in McNamee (1993–2002), Isaacson and Keller (1966), Mourrain and Pavone (2005), Reuter et al. (2007), Rouillier 
and Zimmermann (2004). The Bernstein–Bézier form of f (t) has a good numerical stability with respect to perturbations 
of the coefficients (Farouki et al., 1987; Farouki and Goodman, 1996; Jüttler, 1998). Several clipping methods based on the 
Bernstein–Bézier form are developed (Bartoň and Jüttler, 2007; Liu et al., 2009; Morken and Reimers, 2007; Sederberg and 
Nishita, 1990). Note that the number of zeros of a Bézier function is less or equal to that of its control polygon. The method 
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in Morken and Reimers (2007) utilizes the corresponding control polygon to approximation f (t), in which the zeros of 
the control polygon are used to approximate the zeros of f (t) from one side. The method in Morken and Reimers (2007)
achieves a convergence rate of 2 for a simple root. In principle, a B-spline (or Bézier) curve is bounded by the convex 
hull of its control polygon, the corresponding roots are then bounded by the roots of the convex hull. The corresponding 
approximation order of the approach using convex hull is 2 (Schulz, 2009). Comparing with the method in Morken and 
Reimers (2007), the r-clipping method in Bartoň and Jüttler (2007), Liu et al. (2009) bounds the zeros of f (t) by using the 
zeros of two bounding polynomials of degree r, which achieves a higher approximation order r + 1, where r = 2, 3.

In principle, one can also use rational polynomials to bound f (t) for root finding. A rational quadratic polynomial has five 
free variables, which can achieve an approximation order 5 to f (t). If two rational quadratics are utilized to bound f (t), one 
can achieve a convergence rate of 5 for a simple root, which is much higher than that of 3 when using a quadratic clipping 
polynomial. However, in some cases when the curve (t, f (t)) is not convex within [a, b], the denominators of the rational 
quadratic polynomials for bounding f (t) may have one or more zeros within [a, b], which leads to a bad approximation 
effect between f (t) and its bounding polynomials.

A rational cubic polynomial, on the other hand, can approximate f (t) in a much better way than that of a rational 
quadratic polynomial, even in case that (t, f (t)) is not convex within the given interval [a, b]. This paper presents a rational 
cubic clipping method which utilizes two rational cubic polynomials to bound f (t) for root-finding. The bounding rational 
cubics achieve the approximation order 7 to f (t) and the corresponding rational cubic clipping method can achieve a 
convergence rate of 7 for a simple root, which is much higher than that of 4 of previous cubic clipping methods. In addition, 
the method proposed in this paper directly constructs two rational cubic polynomials interpolating four positions and three 
derivatives of f (t), which can bound f (t) in many cases and it leads to a much higher computation efficiency. Some 
numerical examples are provided to show both higher convergence rate and higher computation efficiency of the new 
method.

The remainder of this paper is organized as follows. Section 2 provides an outline of clipping methods. Section 3 illus-
trates the rational cubic clipping method for finding two bounding rational cubics in details. Numerical examples and some 
further discussions are provided in Section 4, and the conclusions are drawn at the end of this paper.

2. Outline of the clipping methods

Suppose that f (t), t ∈ [a, b], is the given polynomial of degree n. The basic idea of the clipping methods is to find two 
bounding polynomials, and then to clip off the subintervals containing no roots of f (t) by using the roots of the bounding 
polynomials. The clipping process continues until the lengths of the remaining subintervals are less than a given tolerance. 
Finally, the middle points of the remaining subintervals are recorded as the roots of f (t).

The numerical convergence rate of a clipping method within an interval tends to be m̄/k̄, where m̄ is the convergence 
rate of a method for a single root, and k̄ is the sum of multiplicities of all of the roots within the interval. If k̄ is large for 
some cases, the numerical convergence rate is very slow. In this paper, at the beginning, we apply the method in Morken 
and Reimers (2007) to divide the given interval into several sub-intervals by utilizing the zeros of the control polygon of 
the given Bézier function, which can improve the corresponding convergence rate.

2.1. The algorithm of a clipping step of the clipping method

In each clipping step, one needs to find two bounding polynomials for a given interval [a, b] and then to split the 
interval [a, b] into several subintervals by using the roots of the bounding polynomials. The subintervals containing no root 
of f (t) are further clipped off. The computation of the two bounding polynomials is one of the key issues of a clipping 
step. Different clipping methods may obtain different bounding polynomials. Suppose that the two bounding polynomials 
are obtained such that g1(t) ≤ f (t) ≤ g2(t). Note that the roots of gi(t) is usually easily obtained, it is trivial to check 
whether or not a root of gi(t) is a root of f (t). Let � be a subinterval of [a, b]. We utilize the following lemma to clip the 
subintervals containing no roots of f (t).

Lemma 1. If g1(t) > 0 or g2(t) < 0 for all t ∈ �, then � can be removed.

Proof. Firstly, if g1(t) > 0, we have f (t) ≥ g1(t) > 0, for all t ∈ �. That is to say, � contains no root of f (t) and can be 
removed.

Secondly, if g2(t) < 0, we have f (t) ≤ g2(t) < 0. Similarly, � contains no root of f (t) and can also be removed. �
In this paper, we provide a rational cubic clipping method to find the roots of f (t), in which two rational cubic poly-

nomials are used for bounding f (t). The roots of the two bounding rational cubic polynomials within an interval can be 
solved by using the Cardano formula (see more details in Liu et al., 2009). Finally, from Lemma 1, the roots of the bounding 
polynomials can be used for clipping the subintervals containing no roots of f (t).
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2.2. The analysis of convergence rate

The analysis of the convergence rate is another key issue of the clipping method, which depends on the approximation 
order of the bounding polynomials. We have the following theorem.

Theorem 1. Suppose that the two bounding polynomials gi(t), i = 1, 2, achieve an approximation order m to f (t) within interval 
[a, b] whose length is small enough for satisfying Eq. (2), then the corresponding convergence rate for a root t� of multiplicity k is 

m

k
.

Proof. From the assumption that t� has multiplicity k, we have that

f ( j)(t�) = 0, for j = 0,1, · · · ,k − 1, and f (k)(t�) �= 0. (1)

Combining Taylor’s expansion with Eq. (1), there exist a small enough η > 0 and ξ1(t) such that

| f (t) − f (t�)| = | f (k)(t�)

k! (t − t�)k + f (k+1)(ξ1(t))

(k + 1)! (t − t�)k+1|

> |1

2

f (k)(t�)

k! (t − t�)k|, ∀t ∈ [t� − η, t� + η]. (2)

Let t�
i be a root of gi(t). From Eq. (2), we have that

| f (t�
i ) − f (t�)| > |1

2

f (k)(t�)

k! (t�
i − t�)k|, i = 1,2. (3)

From the assumption that gi(t) achieves an approximation order m to f (t) within [a, b], there exists a constant ci such 
that

| f (t) − gi(t)| < ci(b − a)m, for all t ∈ [a,b]. (4)

Combining Eq. (3) and Eq. (4), we have that

|1

2

f (k)(t�)

k! (t�
i − t�)k| < | f (t�

i ) − f (t�)| = | f (t�
i )|

= | f (t�
i ) − gi(t

�
i )|

< ci(b − a)m. (5)

Let C̄i = 2ci ·k!
f (k)(t�)

. From Eq. (5), we obtain that

|t�
i − t�| < C̄

1
k
i (b − a)

m
k , (6)

which means that the corresponding convergence rate is m
k . �

3. Finding two rational cubics for bounding f (t)

For the sake of convenience, let

h = b − a, t j = a + j

3
h, j = 0,1,2,3,

d j = f (t j) and v j = f ′(t j), j = 0,1,2,3,

g1(t) = (t − t0)
2(t − t1)

2(t − t2)
2(t − t3),

g2(t) = (t − t0)(t − t1)
2(t − t2)

2(t − t3)
2.

Let κ = sup
0≤u≤1

|(u − 0)2(u − 1/3)2(u − 2/3)2(u − 1)| ≈ 0.00149921. By substituting t = a + uh, we have that

−κh7 ≤ g1(a + uh) = (u − 0)2(u − 1/3)2(u − 2/3)2(u − 1) · h7 ≤ 0,

0 ≤ g2(a + uh) = (u − 0)(u − 1/3)2(u − 2/3)2(u − 1)2 · h7 ≤ κh7. (7)

We also introduce Theorem 3.5.1 in page 67, Chapter 3.5 of Davis (1975) as follows.
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Theorem 2. Let w0 , w1 , · · ·, wr be r + 1 distinct points in [a, b], and n0, · · ·, nr be r + 1 integers ≥ 0. Let N = n0 + · · · + nr + r. 
Suppose that g(t) is a polynomial of degree N such that

g(i)(w j) = f (i)(w j), i = 0, · · · ,n j, j = 0, · · · , r.

Then there exists ξ(t) ∈ [a, b] such that

f (t) − g(t) = f (N+1)(ξ(t))

(N + 1)!
r∏

i=0

(t − wi)
ni+1. �

3.1. Constructing two rational cubics as reference polynomials

Let B3, j(t) = C3
j (b − t)3− j(t − a) j/h3 be a Bernstein basis function of degree 3 mapping to [a, b], j = 0, 1, 2, 3. We 

introduce two rational cubic polynomials

Ri(t) =
∑3

j=0 ri, j B3, j(t)

B3,0(t) + ∑3
j=1 ri, j+3 B3, j(t)

= Yi(t)

ωi(t)
, (8)

where ri, j are the unknowns, i = 1, 2 and j = 0, 1, · · · , 6. By adding the following constraints

R1(t j) = d j and R ′
1(tl) = vl, j = 0,1,2,3, l = 0,1,2, (9)

we obtain the values of the seven unknowns r1, j in R1(t), j = 0, 1, · · · , 6. Similarly, we compute the values of {r2, j}6
j=0 in 

R2(t) from the constraints

R2(t j) = d j and R ′
2(tl) = vl, j = 0,1,2,3, l = 1,2,3. (10)

3.2. Computing the two rational cubic polynomials for bounding f (t)

For a general case, R1(t) can be utilized as the reference polynomial, and the error bounds between f (t) and R1(t) can 
be estimated, i.e., there exist ε1 and ε2 such that ε1 ≤ f (t) − R1(t) ≤ ε2, ∀t ∈ [a, b]. Thus, the two bounding polynomials 
can be set as

R1(t) + ε1 ≤ f (t) ≤ R1(t) + ε2, ∀t ∈ [a,b]. (11)

The details for estimating ε1 and ε2 are as follows. Let H1(t) = ω1(t) f (t) − Y1(t) be a polynomial of degree n + 3. From 
Eq. (9), we have that

H1(t j) = 0, H ′
1(tl) = 0, j = 0,1,2,3, l = 0,1,2. (12)

Combing Eq. (12) with Theorem 2, there exists ξ1(t) ∈ [a, b] such that

H1(t) = H (7)
1 (ξ1(t))

7! g1(t). (13)

Following Eq. (13), g1(t) is a factor of H1(t), i.e., F1(t) = H1(t)
g1(t) is a polynomial of degree n − 4. Both F1(t) and H (7)

1 (t) are 
thus of degree n − 4, which can be rewritten in Bernstein form such that

F1(t) =
n−4∑

j=0

p1, j Bn−4, j(t;a,b) and H(7)
1 (t) =

n−4∑

j=0

p2, j Bn−4, j(t;a,b), (14)

where Bn−4, j(t; a, b) is a Bernstein basis function within [a, b] of degree n − 4. Suppose that

λi,1 = sup
0≤ j≤n−4

{pi, j}, λi,2 = inf
0≤ j≤n−4

{pi, j} and μ1 = inf
a≤t≤b

ω1(t). (15)

If μ1 > 0, we have that

λ1,1 ≤ F1(t) ≤ λ1,2, λ2,1 ≤ H (7)
1 (t) ≤ λ2,2, for all t ∈ [a,b].

From Eq. (13), we obtain that

μ3 = min{−κλi,2
,0} ≤ H1(t) ≤ max{−κλi,1

,0} = μ4, ∀t ∈ [a,b], i = 1,2. (16)

7! 7!
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Table 1
Comparisons on the computational complexity and the convergence rate.

Methods M3 Mr MI

Time O (n2) O (n2) O (n)

AO 4 7 7
CR 4/k 7/k 7/k

AO: Approximation order; CR: Convergence rate. k: The multiplicity of a root; AO =
CR × k.

Thus, we have that

ε1 = μ3 · h7

μ1
≤ H1(t)

ω1(t)
= f (t) − R1(t) ≤ μ4 · h7

μ1
= ε2, ∀t ∈ [a,b]. (17)

Finally, we obtain two bounding rational cubic polynomials as

Rl(t) = R1(t) + ε1 ≤ f (t) ≤ R1(t) + ε2 = Rr(t). (18)

Let M = max{|2μ3

μ1
|, |2μ4

μ1
|}. From Eq. (18), we have that

| f (t) − Ri(t)| < Mh7, i = l, r,1, (19)

which means that the two bounding polynomials achieve an approximation order 7 to f (t). From Theorem 1, it achieves a 
convergence rate of 7/k for a root of multiplicity k. Thus, we have Theorem 3 as follows.

Theorem 3. The rational cubic clipping method by using rational cubic polynomials can achieve a convergence rate of 7/k for a root of 
multiplicity k. �
Remark 1. Let H2(t) = ω2(t) f (t) − Y2(t). If f (4)(t) doesn’t change its sign for all t ∈ [a, b], i.e., either f (4)(t) ≤ 0 or f (4)(t) ≥
0 for all t ∈ [a, b], we have that H (7)

1 (t) · H (7)
2 (t) ≥ 0, ∀t ∈ [a, b], which means that R1(t) and R2(t) directly bound f (t) within 

[a, b]. The corresponding method is called the improved one in this paper.

Remark 2. If the denominator ω1(t) of R1(t) has one or more zeros within [a, b] such that μ1 ≤ 0 and it leads to a bad 
approximation effect. In such a case, the interval [a, b] is divided into two halves for further clipping steps, which is similar 
to that used in the cubic clipping method in Liu et al. (2009).

4. Discussions and numerical examples

For the sake of convenience, let M3, Mr and MI be the cubic clipping method in Liu et al. (2009), the rational cubic 
clipping method in this paper and the improved method in Remark 1, respectively. If there are many roots of f (t) within 
[a, b], both of M3 and Mr may converge very slowly. In this paper, at the beginning, if there are four or more zeros of the 
control polygon of f (t) (in Bézier form), or if the first clipping step fails to clip the given interval, we utilize these zeros 
to divide [a, b] into several subintervals. All of the examples are implemented by using the Maple software on PC with 4 G
memory and 2.5 G CPU, the average computation time of a clipping step is tested by setting the number of digits after the 
decimal point as 16, the corresponding unit is millisecond.

4.1. Analyzing the computational complexity and the convergence rate

Firstly, we compare the computational complexity and the convergence rate of M3 and Mr . If the two bounding polyno-
mials are obtained, the remaining computation of a clipping step can be done within O (n), so the computation of the two 
bounding polynomials would dominant the computational complexity of the methods under discussion. In M3 , it needs to 
estimate the bounds of a polynomial of degree n, whose computational complexity is O (n2); while in Mr , for a general case, 
it needs to estimate the bounds of a polynomial of degree n − 4 in Eq. (14), whose computational complexity is O ((n − 4)2). 
So for a general case, both M3 and Mr have a comparable computational complexity. In some cases that the conditions in 
Remark 1 are satisfied, MI is applied to construct R1(t) and R2(t) which directly bound f (t), the corresponding computa-
tional complexity is O (n), which is much higher than that of M3. The approximation order of the bounding polynomials to 
f (t) in M3, Mr and MI are 4, 7 and 7, respectively. As shown in Theorem 3 and also Table 1, the convergence rates of both 
Mr and MI are 7/k for a root of multiplicity k, which is much higher than that of 4/k of M3. (See Table 1.)
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Fig. 1. Example 1: (a) plots of f1(t) and its control polygon in solid black line, and the bounding curves from M3, Mr and MI ; (b–c) error plots between 
f2(t) and its bounding polynomials from M3, Mr and MI , respectively.

4.2. Comparing the approximation effect and the computational efficiency

By using the zeros of the control polygon of f (t) to divide [a, b] at the beginning, the improved method MI mentioned 
in Remark 1 can be applied for computing the two bounding polynomials in most of cases. Firstly, we show two examples 
for illustrating the new method.

Example 1. Given f1(t) = (t − 1/4)(2 − t)(t + 5)2 having a single root in t ∈ [0, 1] (see also Fig. 1), the results of the first 
clipping process are as follows. In this case, M3 obtains the resulting subinterval of length 3.9e−2, and the maximum error 
between f1(t) and its bounding polynomials is 9.1e−2. From Mr , the resulting subinterval is of length 9.6e−7, while the 
corresponding maximum error is 2.6e−5. From MI , the resulting subinterval is of length 2.0e−8, while the corresponding 
maximum error is 2.9e−6. See Fig. 1(b–c) for the corresponding error plots.

Example 2. Given f2(t) = (t − 0.2)(t − 0.25)(t − 0.75)(t + 5)7(t − 6)2 having three roots in t ∈ [0, 1] (see also Fig. 2(a)), 
the results of the first clipping process are as follows. In this case, M3 obtains two resulting subintervals [0.05, 0.41] and 
[0.68, 0.75] with lengths 0.26 and 0.07, respectively, and the corresponding maximum error between f2(t) and its bounding 
polynomials is 1.02e+5. From Mr , it obtains three subintervals [0.17, 0.21], [0.23, 0.27] and [0.7477, 0.7506] with lengths 
0.04, 0.04 and 0.0029, for bounding the three single roots, respectively. The corresponding maximum error is 3.73e+3. From 
MI , it obtains three subintervals [0.1986, 0.2004], [0.2497, 0.2504] and [0.74997, 0.75008] with lengths 0.0018, 7.5e−4 and 
1.1e−4 for bounding the three single roots, respectively. The corresponding maximum error is 1.5e+3. See Fig. 2(b–c) for 
the corresponding error plots.
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Fig. 2. Example 2: (a) plots of f2(t) and its control polygon in solid black line, and the bounding curves from M3 , Mr and MI ; and (b–c) error plots between 
f2(t) and its bounding polynomials from M3, Mr and MI , respectively.

Table 2
Comparisons on errors and convergence rates (Examples 1–2).

Exam M 1 2 3 4 CR Error

Fig. 1
M3 3.9e−2 2.1e−13 6.5e−54 5.4e−216 4 9.1e−2
Mr 9.6e−7 8.1e−49 1.0e−343 / 7 2.6e−5
MI 2.0e−8 2.9e−62 4.0e−439 / 7 2.9e−6

Fig. 2
M3 7.0e−2 1.9e−6 1.1e−24 1.4e−97 4 1.0e+5
Mr 2.9e−3 1.6e−21 2.9e−149 / 7 3.7e+3
MI 1.1e−4 3.0e−32 4.1e−225 / 7 1.5e+3

For the above two examples, more details are listed in Table 2, where “M” means method and “Error” means the maximal 
approximation error between f1(t) and its bounding polynomials at the first clipping step. As shown in both Figs. 1–2

and Table 2, both Mr and MI can achieve a much better approximation effect than that of M3, and the corresponding 
subintervals are of much smaller lengths than that of M3. The results of more clipping steps are shown in Table 2. It shows 
that M3 and Mr achieve convergence rates of 4 and 7, respectively.
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Fig. 3. Examples 3–5: Plots of (a) f3(t) of degree 14 with a double root and a single root; (b) f4(t) of degree 9 with a triple root; and (c) f5(t) of degree 
17 with seven single roots. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Examples 3–5. We have tested Mr by using the following three examples

f3(t) = (t − 0.250001)2(t + 0.5)5(t − 0.7)(t − 1.1)6,

f4(t) = (t − 0.25)3(4 − t)6,

f5(t) = (t − 1

8
)(t − 1

7
)(t − 1

5
)(t − 1

2
)(t − 5

9
)(t − 4

5
)(t − 8

9
)(t2 + 2)2(t2 − 2t + 2)3,

where t ∈ [0, 1], which is also shown in Fig. 3. In Fig. 3, the lines in dashed black and the points in solid black are the control 
polygon and its control points, while the points in red circle are the zeros of its control polygon. The comparison results are 
shown in Table 3. In these cases, the number of the digits after decimal point is set as 1000 or more for testing purpose for 
achieving a high precision shown in Table 3. In Table 3, k means the multiplicity of a root and M means “method”. Table 3
shows the results of a double root of f3(t), a triple root of f4(t) and a single root of f5(t). Similarly, note that there are 
seven zeros of the control polygon of f5(t), we directly use the seven zeros to divide [0, 1] into eight subintervals before 
applying both Mr and M3. It shows that both Mr and MI have a much higher convergence rate 7/k than that of 4/k of M3, 
where k denotes the multiplicity of the root.

The average computation time of a clipping step among M3, Mr and MI , i.e., T3, Tr and T I , are listed in Table 4, where 
the unit is millisecond. It shows that T3 and Tr are comparable, while T I is much less than that of T3, or in other words, 
MI is much faster and is about 7–10 times faster than that M3. The convergence rates of Mr and MI are 7/4 times higher 
than that of M3. Both the computational efficiency and convergence rate of a clipping step in MI are thus much better than 
that of M3.
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Table 3
Comparisons on errors and convergence rates (Examples 3–5).

Exam k M 1 2 3 4 5 CR

Fig. 3(a) 2
M3 1.8e−1 1.9e−2 2.0e−4 2.1e−8 2.5e−16 2
Mr 1.8e−1 7.1e−3 7.5e−8 2.7e−25 2.5e−86 7/2
MI 1.8e−1 5.8e−4 1.1e−12 3.6e−43 6.7e−150 7/2

Fig. 3(b) 3
M3 3.1e−1 7.5e−2 1.2e−2 1.4e−3 8.0e−5 4/3
Mr 4.5e−3 1.2e−6 6.4e−15 2.8e−34 2.0e−79 7/3
MI 1.9e−3 3.1e−8 1.9e−19 1.7e−45 3.1e−106 7/3

Fig. 3(c) 1
M3 1.2e−1 1.7e−2 1.9e−6 3.0e−22 2.0e−85 4
Mr 1.2e−1 7.4e−3 2.7e−11 2.5e−70 1.9e−483 7
MI 1.2e−1 3.0e−5 1.5e−31 1.4e−215 / 7

Table 4
Comparisons on average computation time (ms) of a clipping step.

Examples Fig. 1 Fig. 2 Fig. 3(a) Fig. 3(b) Fig. 3(c)

T3 34.18 46.80 43.58 38.06 63.46
Tr 35.01 44.80 42.14 37.34 61.12
T I 4.72 6.630 5.22 4.61 6.53
T I /T3 13.8% 14.2% 11.9% 12.1% 10.2%

Fig. 4. Plot of the Wilkinson polynomial.

4.3. Numerical robustness

The proposed Mr method also uses the Cardano formula to solve cubic polynomial equations, which is the same to M3 . 
The stability of Bernstein–Bézier representation is also applicable to Mr , which is the same as that of the M3 method.

Example 6. We have tested both M3 and Mr to compute the roots of the Wilkinson polynomial

W (x) =
20∏

i=1

(x − i),

within [0, 25], which has twenty zeros i, i = 1, 2, · · · 20, see also Fig. 4. At the beginning, we compute the zeros of the corre-
sponding control polygon, i.e., {0.27, 1.55, 2.83, 4.11, 5.38, 6.65, 7.92, 9.19, 10.46, 11.73, 13.007, 14.27, 15.54, 16.81, 18.07,

19.34, 20.61, 21.87, 23.14, 24.40}. Thus, the given interval [0, 25] is divided into twenty-two sub-intervals by using the 
above twenty-one zeros. There are sixteen sub-intervals containing one or two roots of f (t). We select the three of them 
[0.27, 1.55], [2.83, 4.11] and [16.81, 18.07] to illustrate more details, which contain one, two and two roots of f (t), respec-
tively. The bounding polynomials at the first clipping step from M3, Mr and MI are shown in Fig. 5. As shown in Fig. 5, 
both Mr and MI work for all sub-intervals, which achieve much better approximation effect than those of M3. The other 
thirteen sub-intervals are similar. More details of the results are list in Table 5. It shows that the corresponding convergence 
rates of M3, Mr and MI for a single root is 4, 7 and 7, respectively.
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Fig. 5. Example 6: Plots of the given Wilkinson polynomial with respective bounding polynomials from M3, Mr and MI (left column); and corresponding 
error plots between the given Wilkinson polynomial and its bounding polynomials (right column), for sub-intervals (a–b) [0.27, 1.55]; (c–d) [2.83, 4.11]; 
and (e−f) [16.81, 18.07].
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Table 5
Comparisons on errors and convergence rates (Example 6, W (x)).

Fig. 5 k M 1 2 3 4 5 CR

(a, b) 1
M3 6.4e−1 1.1e−2 2.3e−9 3.4e−36 1.7e−143 4
Mr 4.4e−3 1.9e−20 4.7e−142 / / 7
MI 1.6e−4 1.1e−31 6.9e−222 / / 7

(c, d) 1
M3 2.2e−2 1.0e−8 3.7e−34 7.5e−136 1.1e−542 4
Mr 7.3e−3 3.9e−18 4.8e−125 1.9e−873 / 7
MI 1.6e−3 8.6e−22 1.4e−149 / / 7

(e, f) 1
M3 2.8e−1 2.2e−4 9.5e−17 3.2e−66 4.4e−264 4
Mr 1.8e−2 1.8e−15 2.4e−106 1.6e−742 / 7
MI 1.4e−3 1.0e−23 1.1e−164 / / 7

5. Conclusions

This paper presents a rational cubic clipping method (denoted as Mr ) for finding the roots of a polynomial f (t) within 
an interval, which can achieve a convergence rate of 7 for a single root by using rational cubic polynomials. Different from 
previous clipping methods in Bartoň and Jüttler (2007), Liu et al. (2009) for computing two bounding polynomials in O (n2)

time, Mr directly constructs two rational cubic polynomials, which can be used to bound f (t) in many cases and leads to 
a computational complexity of O (n). Numerical examples also show that Mr can achieve a much higher convergence rate, 
much better approximation effect and much higher computation efficiency than previous clipping methods in Bartoň and 
Jüttler (2007), Liu et al. (2009).

As for future work, it should also be feasible to achieve a higher computation efficiency by using two bounding B-spline 
curves, or to achieve a higher convergence rate by combining with reparameterization techniques. Another possible future 
work is to extend Mr from the curve case to surface cases, which can be used for the root-finding problem of an equation 
system consisting of two bivariate polynomials.
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