
Computer Aided Geometric Design 39 (2015) 67–82
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

Localized discrete Laplace–Beltrami operator over triangular
mesh ✩

Xinge Li a, Guoliang Xu a,∗, Yongjie Jessica Zhang b

a LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
b Computational Biomodeling Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 July 2015
Received in revised form 1 September 2015
Accepted 1 September 2015
Available online 15 September 2015

Keywords:
Laplace–Beltrami operator
Surface triangulation
Discretization
Convergence

The Laplace–Beltrami operator is the foundation of describing geometric partial differential
equations, and it also plays an important role in the fields of computational geometry,
computer graphics and image processing, such as surface parameterization, shape analysis,
matching and interpolation. However, constructing the discretized Laplace–Beltrami oper-
ator with convergent property has been an open problem. In this paper we propose a
new discretization scheme of the Laplace–Beltrami operator over triangulated surfaces. We
prove that our discretization of the Laplace–Beltrami operator converges to the Laplace–
Beltrami operator at every point of an arbitrary smooth surface as the size of the triangular
mesh over the surface tends to zero. Numerical experiments are conducted, which support
the theoretical analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Laplace–Beltrami operator (LBO) is a generalization of the Laplace operator from flat spaces to manifolds. It plays a 
central role in many areas, such as image processing (Bertalmio et al., 2000; Kimmel et al., 1997; Sapiro, 2006; Weickert, 
1998), surface processing (Bajaj and Xu, 2003; Clarenz et al., 2000; Desbrun et al., 1999; Meyer et al., 2003; Schneider and 
Kobbelt, 2000, 2001), and the study of geometric partial differential equations (PDEs) (Bertalmio et al., 2000; Mayer, 2001;
Sapiro, 2006; ter Haar Romeny, 1994). In these applications, the objective surfaces to be processed are usually represented 
as discrete meshes. Hence, it is necessary in practice to discretize the LBO.

The classical Laplace operator on flat spaces is generally approximated by a finite difference method. However, due to 
the complexity and diversity of the discretized manifold surfaces, the discretization of the LBO is much more complicated 
than the Laplacian over flat spaces. In the literature, several discretizations have been proposed over triangular meshes 
(Pinkall and Polthier, 1993; Taubin, 1995; Desbrun et al., 1999; Mayer, 2001; Xu, 2004; Demanet, 2006). Most of them are 
variants of the cotangent scheme (Pinkall and Polthier, 1993), which is a form of the finite element method, applied to the 
Laplace–Beltrami operator on a surface. Given a surface with a fine mesh, we expect the discretization computed from such 
a mesh provides an accurate representation of the underlying surface Laplacian. However, a detailed theoretical analysis 
of existing discretizations in Xu (2004) shows that while point-wise convergence can be established for special classes of 
meshes, such as certain meshes with valence-6, or for linear functions over a sphere in R3, none of these methods is 
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convergent for surface meshes in general. Wardetzky (2008) also provided an overview over convergence properties of weak 
versions of the LBO for embedded polyhedral surfaces from a functional-analytic viewpoint.

For the quadrilateral or even general polygonal meshes there are far fewer results. Liu et al. (2008) described a discretiza-
tion of the LBO on quadrilateral meshes based on a bilinear interpolation of the quadrilateral. They achieved consistency 
under some special, but not too restrictive conditions. Xiong et al. (2011) obtained a discrete LBO on quadrilateral meshes 
by averaging the cotangent scheme over all possible triangulations of the given mesh, and Alexa and Wardetzky (2011)
extended the cotangent scheme to the case of general polygonal meshes. Recently, Carl (2015) derived a Laplace operator on 
semi-discrete surface, which is represented by a mapping into R3 possessing one discrete and one continuous variable. He 
proved consistency of the semi-discrete Laplacian, meaning that it converges point-wise to the Laplace–Beltrami operator 
when the semi-discrete surface converges to a smooth one, and also showed convergence of the discretization of LBO on 
quadrilateral meshes defined in Alexa and Wardetzky (2011).

In Belkin et al. (2008), the authors introduced a point-wise convergent discretization of the LBO on the triangular mesh, 
called the mesh Laplacian. The construction is based on a discretization of the heat kernel defined on the flat space R2. The 
convergent properties have been generalized by Belkin et al. (2009) to point clouds in Rd , and they constructed the PCD 
Laplacian. Sun et al. (2009) applied the mesh Laplacian to the computation of the heat kernel signature, which is obtained by 
restricting the heat kernel to the time domain, and derived a concise and provably informative multi-scale point signature 
based on the heat diffusion process. A notable recent work (Liu et al., 2012) built a new point-wisely symmetrizable discrete 
LBO over the point-sampled surface which is also based on the same discretization of the heat kernel. The authors also 
indicated that their discretization can provide orthogonal bases for further spectral geometric analysis and processing tasks. 
In Hildebrandt and Polthier (2011), the authors proposed a principle for constructing strongly consistent discrete LBO based 
on the cotangent weights.

In this paper, we present a new discretization scheme that guarantees convergence at each point, which is L∞ conver-
gence, and it is applicable to arbitrary triangulated surfaces. We summarize our main contributions as follows:

1. Our discretization scheme is based on a discretization of the heat kernel defined on the curved surface embedded in 
R3. It is much more accurate than the scheme based on the discretization of the heat kernel defined on the plane, 
especially for waved surfaces with insufficient dense triangulations;

2. Our discretization scheme is applicable to arbitrary triangulated surfaces without the limitation on the quality of the 
triangular mesh. We study how the surface and its triangulation influence the integral approximation over a surface;

3. Combining the integral approximation results with the idea of approximating the heat flow on a triangular mesh, we 
present a local and adaptive algorithm for approximating the LBO on an arbitrary surface with a point-wise convergence 
guarantee for triangular meshes;

4. We propose a method to estimate the parameters involved in the algorithm adaptively; and
5. We provide experimental results showing that our method outperforms other discretization schemes in terms of L∞

convergence.

The rest of the paper is organized as follows. In Section 2, we introduce the LBO and its approximation. In Section 3, we 
describe a quantitative measure of how well a triangular mesh approximates the underlying surface. In Section 4, we present 
and analyze our method for approximating the LBO with a point-wise convergence guarantee for arbitrary triangulated 
surfaces. Some numerical results are presented in Section 5. Section 6 concludes the paper. Some proofs of the theoretical 
results are presented in Appendix A.

2. Laplace–Beltrami operator and its approximation based on the heat kernel

In this paper, we consider a smooth compact (oriented) surface S ⊂ R3 without boundary. Let x(u1, u2) = [x(u1, u2),

y(u1, u2), z(u1, u2)]T be the parametric representation of S , and gαβ = 〈xuα , xuβ 〉 (α, β = 1, 2) be the coefficients of the 
first fundamental form of S with xuα = ∂x

∂uα . Set g = det(gαβ), [gαβ ] = [gαβ ]−1. Let f be a C1 smooth function on S , i.e., 
f ∈ C1(S), the tangential gradient operator ∇S acting on f is given by

∇S f = [
xu1 ,xu2

] [
gαβ

] [
fu1 , fu2

]T ∈ R3, (1)

where fuα = ∂ f
∂uα . Let v be a C1 smooth vector field on surface S , we define the tangential divergence operator divS acting 

on v by

divS(v) = 1√
g

[
∂

∂u1
,

∂

∂u2

][√
g
[

gαβ
] [

xu1 ,xu2

]T v
]
. (2)

Let f ∈ C2(S), then ∇S f is a C1 smooth vector field on S , and the Laplace–Beltrami operator �S applying to f is defined as

�S f = divS(∇S f )

= 1√
g

[
∂

∂u1
,

∂

∂u2

][√
g
[

gαβ
] [

fu1 , fu2

]T]
. (3)
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Let x be a surface point on S , we have (Willmore, 1993)

�Sx = 2H(x) ∈ R3, (4)

where H(x) is the mean curvature normal at x, and H(x)/‖H(x)‖ is the unit surface normal.
Now we consider the approximation of �S f . It is well known that the solution u(x, t) of the heat equation on surface S{

�Su(x, t) = ∂u
∂t (x, t),

u(x,0) = f (x),

can be written as

u(x, t) =
∫
S

Ht
S(x,y) f (y)dν(y),

where ν denotes the area of a surface element, and Ht
S (x, y) is the heat kernel of the surface S , i.e., the measure of how 

much heat propagates from y to x in time t . Thus the heat equation can be rewritten as follows:

�Su(x, t) = ∂

∂t

∫
S

Ht
S(x,y) f (y)dν(y).

Recalling that u(x, 0) = f (x) and that∫
S

Ht
S(x,y)dν(y) = 1,

we obtain

�S f (x) = ∂

∂t

∫
S

Ht
S(x,y) f (y)dν(y) |t=0

= lim
t→0

1

t

⎛
⎝∫

S

Ht
S(x,y) f (y)dν(y) − u(x,0)

⎞
⎠

= lim
t→0

1

t

⎛
⎝∫

S

Ht
S(x,y) f (y)dν(y) − f (x)

⎞
⎠

= lim
t→0

1

t

∫
S

Ht
S(x,y)( f (y) − f (x))dν(y).

However, we do not know the exact form of the heat kernel Ht
S(x, y) for an arbitrary manifold with some rare excep-

tions, and all we can utilize is the asymptotic form. For example,

Ht
S(x,y) ≈ 1

4πt
e− dS (x,y)2

4t ,

where dS (x, y) denotes the geodesic distance between two points x and y on surface S . Then, given a point x ∈ S and a 
function f : S → R, we obtain the approximation of the LBO, denoted as Ft

S :

Ft
S f (x) = 1

4πt2

∫
S

e− dS (x,y)2

4t ( f (y) − f (x))dν(y), (5)

where the parameter t is a positive quantity, which intuitively reflects the size of the neighbourhood considered at the 
point x. Through the above discussion, we obtain the following theorem.

Theorem 1. For a given function f ∈ C2(S), we have

lim
t→0

∥∥Ft
S f − �S f

∥∥∞ = 0. (6)
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Remark 1. In Belkin et al. (2008), the authors selected the heat kernel as

Ht
S(x,y) ≈ 1

4πt
e− ‖x−y‖2

4t ,

where ‖x − y‖ denotes the Euclidean distance between two points x and y on surface S . But we believe that the geodesic 
distance is a better choice, especially for the steep surfaces. Numerical experiments in Section 5 will illustrate our statement.

From (5), we can observe that Ft
S is global in the sense that computing the Laplacian of a function at some points 

requires the integral over the whole surface. Now we localize the approximation Ft
S . Let Sr(x) = {y ∈ S : dS (x, y) ≤ r} ⊂ S , 

we approximate Ft
S by

Ft
Sr

f (x) = 1

4πt2

∫
y∈Sr(x)

e− dS (x,y)2

4t ( f (y) − f (x))dν(y), (7)

and we obtain another theorem.

Theorem 2. For a given function f ∈ C2(S) and a given r > 0, we have

lim
t→0

∥∥Ft
Sr

f − �S f
∥∥∞ = 0. (8)

Proof. For any point x ∈ S , we have∣∣Ft
Sr

f (x) − �S f (x)
∣∣ ≤ ∣∣Ft

Sr
f (x) − Ft

S f (x)
∣∣ + ∣∣Ft

S f (x) − �S f (x)
∣∣ .

For the first term on the right hand side, we have

∣∣Ft
Sr

f (x) − Ft
S f (x)

∣∣ =

∣∣∣∣∣∣∣
1

4πt2

∫
y∈S\Sr(x)

e− dS (x,y)2

4t ( f (y) − f (x))dν(y)

∣∣∣∣∣∣∣
≤ 1

4πt2

∫
y∈S\Sr(x)

e− dS (x,y)2

4t | f (y) − f (x)|dν(y)

≤ 2‖ f ‖∞ A(S)

4πt2
e− r2

4t , (9)

where A(S) denotes the area of the surface S . Using L’Hospital’s rule, we can obtain

lim
t→0

1

t2
e− r2

4t = lim
t→0

t−2

e
r2
4t

= lim
t→0

−2t−3

− r2t−2

4 e
r2
4t

= lim
t→0

8t−1

r2e
r2
4t

= lim
t→0

−8t−2

− r4t−2

4 e
r2
4t

= lim
t→0

32

r4e
r2
4t

= 0.

Combining it with Eqn. (9), we have

lim
t→0

∣∣Ft
Sr

f (x) − Ft
S f (x)

∣∣ = 0.

On the other hand, we obtain the limit

lim
t→0

∣∣Ft
S f (x) − �S f (x)

∣∣ = 0

by Theorem 1. Hence, by taking the limit, we obtain limt→0 Ft
Sr

f (x) = �S f (x), which proves the theorem. �
Theorems 1 and 2 state that these two approximate operators Ft

S and Ft
Sr

converge to the LBO at every point on the 
surface.
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Fig. 1. Rightness of a triangle �.

3. Triangulation of the surface and measurement of the triangulation

Let K be a triangular mesh in R3. We now propose a quantitative measure of how well a triangular mesh approximates 
the underlying surface. We first cite a lemma from Federer (1959).

Lemma 3. Let S be a smooth compact (oriented) surface in R3, there exists an open set US of R3 containing S and a continuous map 
ξ from US onto S satisfying the following property: if p belongs to US , then there exists a unique point ξ(p) realizing the distance 
from p to S (ξ is the orthogonal projection onto S).

A proof of this lemma can be found in Federer (1959). We shall also need the notion of the reach of a surface, introduced 
in Federer (1959).

Definition 1. The reach of a smooth compact surface S is the largest ρ > 0 for which ξ is defined on the (open) tubular 
neighbourhood Uρ(S) of radius ρ of S .

Definition 2. We say that a triangular mesh K is closely inscribed in a smooth surface S if

(1) all the vertices of K lie on S;
(2) K lies in Uρ(S) where ρ is the reach of S; and
(3) the restriction of ξ to K , i.e., ξ : K → S , is bijective.

Here, we assume that the triangular mesh K is closely inscribed in S . We denote the set of triangles of K as TK and 
denote a generic triangle of K as �. η(�) represents the length of the longest edge of �. Let V (�) denote the set of 
vertices of �, and then we have

rig(�) = sup
p∈V (�)

| sin(θp)|,

where θp is the angle at vertex p of �, denoting the rightness of a triangle � (Fig. 1), and we have 0 < rig(�) ≤ 1. Globally, 
we denote

η(K ) = sup
�∈TK

η(�)

as the height of K , and denote

rig(K ) = min�∈TK
rig(�)

as the rightness of K .

Definition 3. We say that K is a sufficiently fine triangular mesh Kε,δ of S if there exist two positive constants ε and δ, 
such that

η(K ) ≤ ερ, rig(K ) ≥ δ. (10)

We will later need the following results on the relations between a smooth surface S and an approximating triangular 
mesh Kε,δ of S . Let np denote the unit normal of S at the point p and n� the normal of the triangle �. The following 
lemma from Morvan and Thibert (2004) compares the behaviour of the normal vector field of a smooth surface S with the 
normal of each face of a triangulation Kε,δ .
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Lemma 4. Let Kε,δ be an approximating triangular mesh of S , then we have

sin � (n�,np) ≤
(

4

δ
+ 2

)
ε (11)

for any triangle � ∈ TK and any point p ∈ V (�).

For any point p ∈ R3, let d(p, S) denote the shortest distance from p to any point in the set S ⊂ R3, and we have the 
following lemma.

Lemma 5. Let Kε,δ be an approximating triangular mesh of S , then we have

(i) For any point p ∈ K , d(p, S) ≤
(

4
δ

+ 3
)
ε2ρ; and

(ii) For any point x ∈ S , d(x, K ) ≤
(

4
δ

+ 3
)
ε2ρ .

Remark 2. Results like this lemma have been proposed in Lemma 3.3 in Belkin et al. (2008). We put the proof of this lemma 
into Appendix A of the paper.

4. Our discretization of Laplace–Beltrami operator and its convergence results

In this section, we present our local algorithm for approximating the LBO on an arbitrary surface by constructing the 
discretized version of the integral (7).

First, we construct a discretized version of the integral 
∫
S g(x)dν(x), where g : S → R is a function defined on S , by 

setting

IK g =
∑
�∈K

A(�)

3

∑
p∈V (�)

g(p),

where A(�) denotes the area of the triangle �. That is, each triangle of the mesh contributes to IK g the amount of its area 
multiplied by the average value of its vertices.

Lemma 5 implies that the triangular mesh K is close to the underlying surface S both geometrically and topologically. 
Intuitively, quantities defined on S are closely related to their analogs defined on K . Indeed, consider an arbitrary but fixed 
triangle � ∈ TK , note that although the map ξ is not differentiable on the entire domain K , it is differentiable for the 
interior of �. We now present a result on bounding the Jacobian of the map ξ .

Lemma 6. Let Kε,δ be an approximating triangular mesh of S with ε < 1/10 and δ ≥ 4/37. Given any triangle � ∈ TK , for any point 
p in the interior of �, ξ is differentiable at p and we have

| J (p)| ≤ 1

1 −
(

4
δ

+ 3
)
ε2

,

where J (p) is the Jacobian of the map ξ at the point p. In particular,∣∣∣∣ A(S)

A(Kε,δ)

∣∣∣∣ ≤ 1

1 −
(

4
δ

+ 3
)
ε2

,

where A(S) and A(Kε,δ) denote the areas of S and Kε,δ respectively.

Proof. By Lemma 1 in Morvan and Thibert (2002), we have

| J (p)| ≤ 1

1 − ‖ξ(p) − p‖λξ(p)

, (12)

where λξ(p) is the maximal curvature of S at ξ(p). Combining (12) with

λξ(p) ≤ 1

ρ

and Lemma 5 (i) above, we obtain

| J (p)| ≤ 1

1 −
(

4
δ

+ 3
)
ε2

,

which proves the lemma. �
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The following lemma from Belkin et al. (2008) bounds the geodesic distance dS (p, q) in terms of the Euclidean distance 
‖p − q‖ between points p and q.

Lemma 7. Given two points p, q ∈ S and letting d = ‖p − q‖ < ρ/2, we have d ≤ dS (p, q) ≤ d + 4d3

3ρ2 .

The following theorem shows the relation between 
∫
S g(x)dν(x) and IK g in terms of the parameters of the surface and 

the mesh.

Theorem 8. Given a Lipschitz function g : S → R, let L = Lip(g) be the Lipschitz constant of function g, i.e., |g(x) − g(y)| ≤
Lip(g)dS (x, y). Setting ‖g‖∞ = supx∈S |g(x)|, we have∣∣∣∣∣∣

∫
S

gdν − IK g

∣∣∣∣∣∣ ≤
(

2ρLε + 2δ − (4 + 3δ) ε2

δ − (4 + 3δ) ε2
‖g‖∞

)
A(S). (13)

Remark 3. Results like this theorem have been proposed in Theorem 2.5 in Belkin et al. (2008). We put the proof of this 
theorem into Appendix A of the paper.

Let

V =
⋃

�∈TK

V (�),

and

Kr(x) =
⋃

y∈Vr(x)

R(y),

where Vr(x) = {y ∈ V : dS (x, y) ≤ r}, and R(x) denotes the union of the triangles sharing the vertex x ∈ V , i.e., one ring 
neighbourhood of the vertex x. For any x ∈ V , by constructing the discretized version of the integral (7), we obtain the 
discretization of LBO, denoted as Lt

Kr
:

Lt
Kr

f (x) = 1

4πt2

∑
�∈Kr(x)

A(�)

3

∑
p∈V (�)

e− dS (p,x)2

4t ( f (p) − f (x))

= 1

4πt2

∑
p∈Vr(x)

A(p)

3
e− dS (p,x)2

4t ( f (p) − f (x)), (14)

where A(p) denotes the area of the one ring neighbourhood of the vertex p, the parameters t and r are functions of the 
point x, which will allow the algorithm to adapt to the local mesh size. We will discuss how to calculate the parameters 
adaptively in detail in Section 5.

The following theorem shows the quality of approximating Ft
Sr

by Lt
Kr

in terms of the parameters of the surface and the 
triangular mesh.

Theorem 9. Let Kε,δ be an approximating triangular mesh of S with ε < 1/10 and δ ≥ 4/37. Given a function f ∈ C1(S), let 
‖ f ‖∞ = supx∈S | f (x)| and ‖∇S f ‖∞ = supx∈S ‖∇S f ‖, for any point x ∈ S , we have

∣∣Lt
Kr

f (x) − Ft
Sr

f (x)
∣∣ ≤ A(S)

2πt2
·
{[

Cρεt− 1
2 + 2δ − (4 + 3δ) ε2

δ − (4 + 3δ) ε2

]
‖ f ‖∞ + ρε ‖∇S f ‖∞

}
. (15)

Proof. First, set g(y) = 1
4πt2 e− dS (x,y)2

4t ( f (y) − f (x)). Comparing Eqn. (7) and Eqn. (14), we obtain that

∣∣Lt
Kr

f (x) − Ft
Sr

f (x)
∣∣ =

∣∣∣∣∣∣∣
∫
Sr

gdν − IKr g

∣∣∣∣∣∣∣ . (16)

By Theorem 8, to bound the above quantity, we bound ‖g‖∞ and the Lipschitz constant of g . It is easy to verify that

‖g‖∞ ≤ 1
2
‖ f ‖∞.
2πt
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For Lip(g), since g is C1-continuous, it is upper bounded by

‖∇S g‖∞ = sup
y∈S

‖∇S g(y)‖.

On the other hand, we have

‖∇S g(y)‖ ≤ 1

4πt2
(2‖ f ‖∞ · ‖∇Se− dS (x,y)2

4t ‖ + ‖∇S f (y)‖).

To bound ‖∇Se− dS (x,y)2

4t ‖, let y(u1, u2) be the parametric representation of S , then we have yuα = ∂y
∂uα , gαβ = 〈yuα , yuβ 〉, 

[gαβ ] = [gαβ ]−1, ϕ(y) = ϕ(y(u1, u2)) = e− dS (x,y)2

4t and ϕuα = ∂ϕ
∂uα . By definition,

∇Sϕ = [yu1 ,yu2 ][gαβ ][ϕu1 ,ϕu2 ]T,
then we have

‖∇Sϕ‖2 = [ϕu1 ,ϕu2 ][gαβ ][yu1 ,yu2 ]T[yu1 ,yu2 ][gαβ ][ϕu1 ,ϕu2 ]T
= [ϕu1 ,ϕu2 ][gαβ ][ϕu1 ,ϕu2 ]T.

Since [gαβ ] is fully dependent on the surface, [gαβ ] is bounded for smooth surface. Hence, we have

‖∇Sϕ‖2 ≤ C(|ϕu1 |2 + |ϕu2 |2 + |ϕu1ϕu2 |),
where C refers to a certain positive constant in this paper. To bound ‖∇Sϕ‖2, we need to bound |ϕu1 | and |ϕu2 |. For |ϕu1 |, 
we have

∣∣ϕu1

∣∣ = e− dS (x,y)2

4t
dS(x,y)

2t

∣∣∣∣∂dS(x,y)

∂u1

∣∣∣∣
≤ Ce− dS (x,y)2

4t
dS(x,y)

2t
≤ C

1√
t
,

where 
∣∣∣ ∂dS (x,y)

∂u1

∣∣∣ is bounded by some positive constant C for a smooth surface S and the last inequality holds as z/ez2 ≤ 1

for any real number z. Similarly, we can obtain |ϕu2 | ≤ C 1√
t
. It then follows that

‖∇Sϕ‖2 ≤ C
1

t
,

and

‖∇Se− dS (x,y)2

4t ‖ = ‖∇Sϕ‖ ≤ C
1√

t
.

Thus,

‖∇S g‖∞ = sup
y∈S

‖∇S g(y)‖ ≤ 1

4πt2

(
C‖ f ‖∞√

t
+ ‖∇S f ‖∞

)
.

Combining with Theorem 8 and putting everything together, we prove the theorem. �
Theorem 10. Let Kε,δ be an approximating triangular mesh of S , we set t(ε) = εα for an arbitrary fixed positive number 0 < α < 2/5. 
Then for any f ∈ C2(S), we have

lim
ε→0

sup
Kε,δ

∥∥∥Lt(ε)
Kr

f − �S f
∥∥∥∞ = 0, (17)

where the supremum is taken over all approximating triangular meshes Kε,δ of S .

Remark 4. Results like this theorem have been proposed in Theorem 2.1 in Belkin et al. (2008). We put the proof of this 
theorem into Appendix A of the paper.

By now, we have proven that, as the approximating mesh of the surface becomes denser, our discretization of LBO on K
converges to the Laplace–Beltrami operator on S .
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Fig. 2. Triangulation of the domain. (a) Three directional triangular partition; (b) Unstructured triangular partition.

5. Numerical experiments

This section aims to exhibit the numerical behaviours of our discretization of LBO defined by (14). To show the numerical 
convergence of Lt

Kr
, we compute the mean curvature using (4). Let d denote the maximal edge length of the triangular 

mesh K , which is called the mesh size of K .
Since our algorithm is based on a no-boundary condition and it holds for interior points of a surface, we consider six 

two-variable functions over the region [−3, 3] × [−3, 3] in the uv-plane as surfaces in R3,

F1(u, v) =
√

18 − u2 − v2;
F2(u, v) = u2 + v2;
F3(u, v) = tanh(9v − 9u);
F4(u, v) = 1.25 + cos(5.4v)

6 + 6(3u − 1)2
;

F5(u, v) = exp

(
−81

16
(u2 + v2)

)
;

F6(u, v) = sin(5u) sin(5v). (18)

Their exact mean curvatures can be easily computed analytically. The surfaces are triangulated by triangulating the planar 
domain first and then mapping the planar triangulation onto the surface via the selected bivariate functions. Both the 
exact and approximated mean curvatures are computed at some selected domain points (ui , v j) ∈ [−1, 1] × [−1, 1]. As 
the first test case, the planar domain is triangulated as shown in Fig. 2(a), and the points are chosen as (ui, v j) = ( i

5 , j
5 )

for i = −5, . . . , −1, 0, 1, . . . , 5; j = −5, . . . , −1, 0, 1, . . . , 5. The second test case is an unstructured domain triangulation as 
shown in Fig. 2(b), and we compute the exact and approximated mean curvatures at all the vertices in [−1, 1] × [−1, 1].

In the numerical experiments, we need to choose the input values for parameters t and r in (14). In order to compute t
adaptively, we adopt a fitting method. Firstly, we choose the domain as [0, 1] × [0, 1] and set r =

√
2

2 , then for the regular 
mesh, the fitting method is as follows:

(1) Triangulate the domain around the point (0.5, 0.5) locally as shown in Fig. 2(a) with di = 1
20·2i , where i = 0, 1, 2, 3.

(2) For the point (0.5, 0.5) in each mesh Ki , set a series of different values to t , for example, t j = j ∗ 0.0001, j =
1, 2, · · · , 1000, compute the absolute errors between the exact and approximated mean curvatures of the surfaces de-
fined by the functions

{Bk(u, v)}2
k=0 = {u2, (u + 1)(v + 1), v2} (19)

respectively. Choose (di, ti,k), k = 0, 1, 2, with the smallest absolute error.
(3) Let t = βdγ , and determine the coefficients β, γ > 0 such that

βdγ
i = ti,k, i = 0,1,2,3; k = 0,1,2

hold in the least square sense. By taking the natural logarithm on both sides of these equations, we obtain
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Fig. 3. Unstructured mesh for fitting.

Fig. 4. The choice of the parameter t according to the local mesh size d for the regular mesh (a) and unstructured mesh (b) respectively.

ln β + γ ln di = ln ti,k, i = 0,1,2,3; k = 0,1,2.

This system is solved by solving its normal equation. The fitting result is shown in Fig. 4(a) and

t = 0.2601d1.7947, (20)

where d denotes the local mesh size around the point x, that is, the average distance between x and its one ring 
neighbor vertices.

Similarly for the unstructured mesh, our fitting method is as follows:

(1) The original triangular partition of the domain [0, 1] × [0, 1] is shown in Fig. 3. It is recursively subdivided by linear 
bisection for three times. For the vertex 226, it is easy to see that its valance is 7, one of its one ring neighbour vertices, 
whose index is 392, has a valance of 5, and others are all valance-6 vertices.

(2) For the vertex 226 and its one ring neighbour vertices in each mesh Ki , compute the local mesh sizes respectively, then 
average them to obtain di for each mesh.

(3) For the vertex 226 and its one ring neighbour vertices in each mesh Ki , set a series of different values to t , compute the 
absolute errors between the exact and approximated mean curvatures of the surfaces defined by (19) at these vertices 
respectively, then average them to obtain the averaged absolute error at vertex 226. Choose (di, ti,k) with the smallest 
absolute error.

(4) Let t = βdγ , and determine the coefficients β, γ > 0 such that

βdγ
i = ti,k, i = 0,1,2,3; k = 0,1,2

hold in the least square sense. By taking the natural logarithm on both sides of these equations, we obtain

ln β + γ ln di = ln ti,k, i = 0,1,2,3; k = 0,1,2.

Again, this system is solved by solving its normal equation. The fitting result is shown in Fig. 4(b) and

t = 0.0568d0.9215. (21)

For the parameter r, from Eqn. (9) with the precomputed t , we have
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∣∣Ft
Sr

x(p) − Ft
Sx(ω)

∣∣ ≤ 1

4πt2
e− r2

4t

((|x(ω)|A(S) + ‖x‖L1

)2

+ (|y(ω)|A(S) + ‖y‖L1

)2

+ (|z(ω)|A(S) + ‖z‖L1

)2
) 1

2 ≤ η,

where x(ω) = [x(ω), y(ω), z(ω)]T is a parametric representation of S , and η > 0 is the threshold. Set

T =
((|x(ω)|A(S) + ‖x‖L1

)2 + (|y(ω)|A(S) + ‖y‖L1

)2

+ (|z(ω)|A(S) + ‖z‖L1

)2
) 1

2
,

then we obtain

r ≥
(

−4h ln
4πt2η

T

) 1
2

.

In our numerical experiments, given η > 0, the precomputed t and T , we just take r as

r =
(

−4h ln
4πt2η

T

) 1
2

. (22)

To observe the convergent property, finer and finer domain triangulations are generated. For case (a) in Fig. 2, d is taken 
to be 1

10 , 1
20 , 1

40 , 1
80 or 1

160 . For case (b), the domain is recursively subdivided by the bisection linear subdivision. Hence, 
d = d0, d0

2 , d0
4 , d0

8 or d0
16 , where d0 = 0.327804 is the maximal edge length of the triangulation as shown in Fig. 2(b).

To measure the error between our discretization of the LBO and the surface Laplacian, we consider the maximal error 
between the approximated mean curvature computed by our proposed approximate operator Lt

Kr
and the exact mean cur-

vature computed from the continuous surfaces defined by Fi . The results are shown in Tables 1 and 2 for the regular and 
unstructured meshes respectively. It is easy to see that the approximation errors of all six surfaces by our method always 
approach to zero as d → 0, then we come to the conclusion that our proposed approximate operator Lt

Kr
converges to the 

surface Laplacian under the L∞ norm.
Figs. 5 and 6 show the distributions of the absolute errors between the exact mean curvatures and the approximated 

mean curvatures, which are computed by our method on surfaces defined by (18) with regular and unstructured meshes 
respectively. We can observe that our method achieves pretty good approximations in flat regions, but the absolute errors 
are relatively large at sharp edges or spikes. This makes sense since the approximated geodesic distance between any two 
points on triangular mesh K is closely related to the geodesic distance on the original surface S in gently changed regions, 
while it may result in relatively larger error in sharp regions.

To better analyze the convergence property of our discretization of the LBO, we compare the behaviours of our method 
with those of the cotangent scheme (Xu, 2004), mesh Laplacian (Belkin et al., 2008) and PCD Laplacian (Belkin et al., 2009)
as the mesh becomes denser and denser. Similar to the computation of our method, we also compute the maximal errors 
between the exact mean curvature computed from the continuous surfaces defined by (18) and the approximated mean 
curvatures computed by the above three methods for the regular and unstructured meshes shown in Fig. 2. The numerical 
results are shown in Tables 1 and 2. We can observe that the maximal absolute errors of all six surfaces using our method 
always approach to zero as the mesh sizes tend to zero. In contrast, finer mesh does not lead to lower approximation 
errors by the cotangent scheme, mesh Laplacian and PCD Laplacian. We can see that our discretization provides better 
approximation than the mesh Laplacian and cotangent scheme, and the PCD Laplacian also provides better approximation 
except the unstructured mesh defined by F3 which has a waterfall shape. The reason why the PCD Laplacian works badly 
for these meshes is that this method projects the neighbour dataset of the point of interest onto its tangent plane, which 
introduces significant errors. It is easy to see that the PCD Laplacian achieves better approximation than our discretization 
on the surfaces defined by F2 and F5 which have single peaks, when the point cloud is dense enough.

6. Conclusion

In this paper, we have developed an adaptive algorithm for approximating the Laplace–Beltrami operator on a triangular 
mesh with point-wise convergence guarantee. Such convergence is required in many applications, where quantities, such as 
mean curvature, need to be estimated at each node of the mesh. The convergence result does not require the aspect ratio of 
mesh elements to be bounded. Experimental results show that our algorithm indeed exhibits convergence empirically, and 
outperforms current popular methods in accuracy. Especially, our method provides quite good approximation of the LBO for 
surfaces with sharp features. In the future, we will investigate symmetrizable discrete LBO based on our method and then 
build a set of orthogonal bases for spectral analysis over triangulated manifold surfaces.
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Table 1
The maximal errors of four methods for regular meshes in Fig. 2(a).

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

(441a, 800b) (1681, 3200) (6561, 12,800) (25,921, 51,200) (103,041, 204,800)

F1(u, v) Cotangent scheme 0.235702 0.235702 0.235702 0.235702 0.235702
Mesh Laplacian 0.000411 0.000468 0.000430 0.000416 0.000412
PCD Laplacian 0.001552 0.003481 0.008454 0.004977 0.000901
Our discretization 0.000060 0.000020 0.000006 0.000002 0.000001

F2(u, v) Cotangent scheme 1.508710 1.524443 1.528437 1.529439 1.529690
Mesh Laplacian 0.137564 0.147730 0.150068 0.150726 0.150856
PCD Laplacian 0.128634 0.043275 0.010182 0.010499 0.004664
Our discretization 0.106606 0.034988 0.010797 0.003247 0.000966

F3(u, v) Cotangent scheme 0.803238 2.623072 3.268838 3.446476 3.491986
Mesh Laplacian 1.129171 1.075224 1.155793 1.166884 1.169671
PCD Laplacian 1.739820 0.791107 0.201265 0.263039 0.299344
Our discretization 0.817050 0.267496 0.070618 0.019475 0.005532

F4(u, v) Cotangent scheme 2.396574 2.519787 2.554907 2.564053 2.566364
Mesh Laplacian 1.219628 1.192671 1.185124 1.183230 1.182732
PCD Laplacian 0.848218 0.241403 0.058406 0.024557 0.015631
Our discretization 0.945236 0.290051 0.071237 0.018535 0.005268

F5(u, v) Cotangent scheme 1.319973 2.020372 3.005013 3.280313 3.351187
Mesh Laplacian 5.854427 5.848452 5.847980 5.848257 5.848202
PCD Laplacian 8.480840 2.580990 0.690788 0.185750 0.083480
Our discretization 5.284975 2.730238 1.152661 0.406840 0.128737

F6(u, v) Cotangent scheme 4.168940 4.634181 6.063968 6.596706 6.744826
Mesh Laplacian 4.185271 3.726886 3.770037 3.780960 3.783662
PCD Laplacian 5.389650 5.944800 6.644630 1.852490 0.580877
Our discretization 4.084806 3.381458 2.162143 1.054748 0.365619

a The number of points in a triangular mesh.
b The number of triangles in a triangular mesh.

Table 2
The maximal errors of four methods for unstructured meshes in Fig. 2(b).

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

(152, 263) (566, 1052) (2183, 4208) (8573, 16,832) (33,977, 67,328)

F1(u, v) Cotangent scheme 0.235712 0.235705 0.235703 0.235702 0.235702
Mesh Laplacian 0.216080 0.014542 0.000771 0.000421 0.000322
PCD Laplacian 0.001683 0.005028 0.013758 0.095672 0.287526
Our discretization 0.101205 0.032905 0.013538 0.011564 0.006840

F2(u, v) Cotangent scheme 1.814936 1.944597 1.977632 1.985597 1.987404
Mesh Laplacian 1.541950 0.142515 0.145452 0.146267 0.146461
PCD Laplacian 1.498230 0.138436 0.052086 0.013285 0.029403
Our discretization 0.240210 0.162081 0.104578 0.058352 0.031748

F3(u, v) Cotangent scheme 3.852991 2.893134 3.830829 4.602100 4.840330
Mesh Laplacian 6.835887 3.377893 2.206625 2.286917 2.311476
PCD Laplacian 3.324200 2.358150 4.457640 6.918110 14.614000
Our discretization 4.535904 1.942065 1.530049 1.244348 0.898454

F4(u, v) Cotangent scheme 2.796931 3.598438 3.691693 3.685935 3.674926
Mesh Laplacian 0.830878 0.768244 0.750365 0.745610 0.744430
PCD Laplacian 1.605960 0.496808 0.179935 0.323418 0.634843
Our discretization 1.158992 0.745525 0.443030 0.232326 0.119999

F5(u, v) Cotangent scheme 1.691123 5.564102 7.846315 8.482160 8.628272
Mesh Laplacian 5.126129 4.517994 4.440401 4.422669 4.418278
PCD Laplacian 7.769850 6.531170 0.813982 0.396653 0.869729
Our discretization 5.562846 4.468237 3.372483 2.446122 1.648161

F6(u, v) Cotangent scheme 17.358684 5.647897 12.910192 19.308704 21.243011
Mesh Laplacian 20.929625 17.808631 17.768711 17.774103 17.775265
PCD Laplacian 20.697100 20.475700 20.239800 17.591600 2.056850
Our discretization 19.707274 17.760350 15.371045 13.074602 10.619516
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Fig. 5. The distributions of the absolute error between the exact and approximated mean curvatures on six surfaces (a–f) defined by (18) with regular 
meshes.

Acknowledgements

X. Li and G. Xu were supported in part by NSFC under the Grants 11101401, 81173663, and NSFC Fund for Creative 
Research Groups of China (Grant No. 11321061). Y. Zhang was supported in part by PECASE Award N000141410234 and 
NSF CAREER Award OCI-1149591. The authors would also like to thank Mikhail Belkin (The Ohio State University) for the 
helpful inspiration of this work.

Appendix A

Proof of Lemma 5. As shown in Fig. 7, suppose the point p is contained in the triangle � ∈ TK and point q is any vertex of 
�. Let Tq denote the tangent plane at q. Assume that B and B ′ are the two balls of radius ρ tangentially touching S at q
on each side of Tq , and the centers of B and B ′ are o and o′ , respectively.

Obviously, the angle between Tq and the plane passing through � is � (n�, nq), which implies that the angle between 
Tq and the line passing through p and q is at most � (n�, nq). Let y denote the projection of p on Tq . We have

‖y − q‖ ≤ ‖p − q‖ ≤ ερ,

and

‖y − p‖ ≤ ‖q − p‖ sin � (n�,nq) ≤
(

4

δ
+ 2

)
ε2ρ.

The last inequality follows from (10) and (11). Furthermore, we observe that one of the segments [o, y] and [o′, y] must 
intersect with S . Without loss of generality, we assume [o, y] intersects with S . Since B does not contain any point from S
except q, we have d(y, S) ≤ ‖y − z‖, where z is the intersection between [o, y] and B . This implies that

d(y,S) ≤
√

ρ2 + ‖y − q‖2 − ρ ≤ (
√

1 + ε2 − 1)ρ ≤ ε2ρ,

then we have
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Fig. 6. The distributions of the absolute error between the exact and approximated mean curvatures on six surfaces (a–f) defined by (18) with unstructured 
meshes.

Fig. 7. Illustration of Lemma 5.

d(p,S) ≤ ‖p − y‖ + d(y,S) ≤
(

4

δ
+ 2

)
ε2ρ + ε2ρ =

(
4

δ
+ 3

)
ε2ρ,

which proves part (i) of the lemma.
For part (ii), since the map ξ : K → S is bijective and continuous, it is a homeomorphism and part (ii) holds follow-

ing (i). �
Proof of Theorem 8. Since ξ is bijective and the set of surface mesh faces {ξ(�), � ∈ TK } partitions the surface S , we have∫

S

g(x)dν(x) =
∑

�∈TK

∫
ξ(�)

g(x)dν(x)

=
∑

�∈TK

∫
g(ξ(u, v)) J (u, v)dudv,
�
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where (u, v) is any orthogonal coordinate system on the plane passing through the triangle �. It then follows from Lemma 6
that ∣∣∣∣∣∣∣

∫
S

g(x)dν(x) −
∑

�∈TK

∫
�

g(ξ(u, v))dudv

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

�∈TK

∫
�

g(ξ(u, v))( J (u, v) − 1)dudv

∣∣∣∣∣∣∣
≤

∑
�∈TK

∫
�

|g(ξ(u, v))|
⎛
⎝ 1

1 −
(

4
δ

+ 3
)
ε2

+ 1

⎞
⎠dudv

≤ 2δ − (4 + 3δ) ε2

δ − (4 + 3δ) ε2
A(K )‖g‖∞ . (23)

On the other hand, for any vertex p of � and any point x = (u, v) ∈ �, we have ‖p − x‖ ≤ ερ by definition of Kε,δ . It 
then follows from Lemma 5(i) and the triangle inequality that

‖p − ξ(x)‖ ≤ ‖p − x‖ + ‖x − ξ(x)‖ ≤
(
ε +

(
4

δ
+ 3

)
ε2

)
ρ.

Since ε < 1/10 and δ ≥ 4/37, we have dS (p, ξ(x)) ≤ 2ερ by Lemma 7. Therefore

|g(ξ(x)) − g(p)| ≤ 2ρLε,

where L = Lip(g) is the Lipschitz constant of g . This implies∣∣∣∣∣∣∣
∫
�

(g(ξ(u, v)) − g(p))dudv

∣∣∣∣∣∣∣ ≤ 2ρLεA(�).

Note that p is an arbitrary vertex of �, we have∣∣∣∣∣∣∣
∫
�

g(ξ(u, v))dudv − A(�)

3

∑
p∈V (�)

g(p)

∣∣∣∣∣∣∣
= 1

3

∣∣∣∣∣∣∣3
∫
�

g(ξ(u, v))dudv −
∑

p∈V (�)

g(p)A(�)

∣∣∣∣∣∣∣
≤ 1

3

∑
p∈V (�)

∣∣∣∣∣∣∣
∫
�

(g(ξ(u, v)) − g(p))dudv

∣∣∣∣∣∣∣ ≤ 2ρLεA(�).

Combining it with Eqn. (23), we have∣∣∣∣∣∣
∫
S

gdν − IK g

∣∣∣∣∣∣ ≤ 2ρLεA(K ) + 2δ − (4 + 3δ) ε2

δ − (4 + 3δ) ε2
A(K )‖g‖∞ .

From Lemma 6, we have

A(K ) ≤ A(S).

Thus the theorem is proved. �
Proof of Theorem 10. For any point x ∈ S , we have∣∣∣Lt(ε)

Kr
f (x) − �S f (x)

∣∣∣ ≤
∣∣∣Lt(ε)

Kr
f (x) − Ft(ε)

Sr
f (x)

∣∣∣ +
∣∣∣Ft(ε)

Sr
f (x) − �S f (x)

∣∣∣ .
By choosing t(ε) = εα , where 0 < α < 2/5 is an arbitrary fixed positive number, it follows from Theorem 9 that
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∣∣∣Lt(ε)
Kr

f (x) − �S f (x)

∣∣∣ ≤ O (ε1− 5
2 α) +

∣∣∣Ft(ε)
Sr

f (x) − �S f (x)

∣∣∣ .
The above big-O notation is a linear combination of A(S), ρ(S), ‖ f ‖∞ and ‖∇S f ‖∞ . On the other hand, we can obtain

lim
ε→0

∣∣∣Ft(ε)
Sr

f (x) − �S f (x)

∣∣∣ = 0

by Theorem 1. Hence by taking the limit, we have

lim
ε→0

Lt(ε)
Kr

f (x) = �S f (x),

which proves the theorem by noting that the surface S is compact. �
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