
JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.1 (1-16)

Computer Aided Geometric Design ••• (••••) •••–•••
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

On a generalization of Bernstein polynomials and Bézier

curves based on umbral calculus (II): de Casteljau algorithm ✩

Rudolf Winkel

University of Applied Sciences Bingen, Berlinstr. 109, D-55411 Bingen on the Rhine, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 August 2014
Received in revised form 27 April 2015
Accepted 28 April 2015
Available online xxxx

Keywords:
Umbral calculus
Bernstein polynomial
Bézier curve
de Casteljau algorithm

The investigation of the umbral calculus based generalization of Bernstein polynomials and
Bézier curves is continued in this paper: First a generalization of the de Casteljau algorithm
that uses umbral shift operators is described. Then it is shown that the quite involved
umbral shifts can be replaced by a surprisingly simple recursion which in turn can be
understood in geometrical terms as an extension of the de Casteljau interpolation scheme.
Namely, instead of using only the control points of level r − 1 to generate the points on
level r as in the ordinary de Casteljau algorithm, one uses also points on level r −2 or more
previous levels. Thus the unintuitive parameters in the algebraic definition of generalized
Bernstein polynomials get geometric meaning. On this basis a new direct method for the
design of Bézier curves is described that allows to adapt the control polygon as a whole by
moving a point of the associated Bézier curve.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In Winkel (2014) the properties of generalized Bernstein polynomials and generalized Bézier curves introduced earlier
(Winkel, 2001) have been investigated. For the convenience of the reader we repeat here the definition of generalized
Bernstein polynomials of order n for the sequence of real parameters ā = (ā1, . . . , ̄an):

Bn
k(t; ā) = 1

ρn(ā)

(
n

k

)
pk(t; ā)pn−k(1 − t; ā), 0 ≤ k ≤ n, (1.1)

where for any non-negative integer n

pn(t; ā) =
n∑

k=1

pn,ktk (1.2)

with the Bell polynomials (Comtet, 1974; Roman, 1984)

pn,k(ā) = 1

k!
∑

i1+···+ik=n
i1,...,ik>0

(
n

i1, . . . , ik

)
āi1 · . . . · āik . (1.3)

✩ This paper has been recommended for acceptance by Ron Goldman.
E-mail address: winkel@fh-bingen.de.
URL: http://www.fh-bingen.de/lehrende/winkel-rudolf.html.
http://dx.doi.org/10.1016/j.cagd.2015.04.002
0167-8396/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cagd.2015.04.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:winkel@fh-bingen.de
http://www.fh-bingen.de/lehrende/winkel-rudolf.html
http://dx.doi.org/10.1016/j.cagd.2015.04.002

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.2 (1-16)

2 R. Winkel / Computer Aided Geometric Design ••• (••••) •••–•••
The division by ρn(ā) = pn(1; ̄a) normalizes the generalized Bernstein polynomials and guarantees the partition of unity
property by the generalized binomial formula

pn(x + y; ā) =
n∑

k=0

(
n

k

)
pk(x; ā)pn−k(y; ā) . (1.4)

Subsequently we often write pn(t), pn,k and ρn instead of pn(t; ̄a), pn,k(ā) and ρn(ā) if the choice of ā is clear from the
context.

A parameter sequence ā is feasible, if the normalization can be done, i.e., if ρn �= 0. To simplify formulas we use subse-
quently often the non-normalized generalized Bernstein polynomials

B̃n
k(t; ā) = ρn Bn

k(t; ā) . (1.5)

Without restriction of generality one can assume ā1 = 1 in ā, since (by Winkel (2014, Thm. 5.4)) (ā1, . . . , ̄an) and
(1, ā2

ā2
1
, . . . , ān

ān
1
) define the same generalized Bernstein polynomials of order n. For the ordinary Bernstein polynomials one

has

Bn
k(t) =

(
n

k

)
tk(1 − t)n−k = B̃n

k(t; (1,0, . . . ,0)) = Bn
k(t; (1,0, . . . ,0)) .

In Winkel (2014) it has been shown that the recursion formula for ordinary Bernstein polynomials

Br
k(t) = (1 − t)Br−1

k (t) + t Br−1
k−1(t)

can be generalized to

B̃r
k(x, y; ā) = θ f ,y B̃r−1

k (x, y; ā) + θ f ,x B̃r−1
k−1(x, y; ā) (1.6)

for the non-normalized bivariate generalized Bernstein polynomials of order r with variables (x, y) and parameters ā:

B̃n
k(x, y; ā) =

(
n

k

)
pk(x; ā)pn−k(y; ā) . (1.7)

Here θ f is the umbral shift operator that generates the sequence of associated polynomials pn(x) according to

pn+1(x) = θ f pn(x) for n ∈N. (1.8)

The subscripts x or y indicate that θ f operates on x or y, respectively, and f corresponds to ā. We will give the complete
definition of θ f in Section 3.

The main purpose of the present paper is a detailed elaboration of the claim of Winkel (2014) that the generalized
recursion (1.6) can be used to generalize the ordinary de Casteljau algorithm

b0
k(t) = bk (k = 0, . . . ,n)

br
k(t) = (1 − t) br−1

k (t) + t br−1
k+1(t) (r = 1 . . . ,n;k = 0, . . . ,n − r)

that generates the Bézier curve

x(t;b) =
n∑

k=0

bk Bn
k(t) = bn

0(t) (0 ≤ t ≤ 1)

by repeated linear interpolation out of the sequence b = (b0, . . . , bn) of control points.
In Section 2 we investigate bivariate Bernstein type polynomials in variables (x, y), and in Section 3 the generalization

of the de Casteljau algorithm with umbral shifts. In Section 4 the complicated umbral shifts are replaced by a surprisingly
simple recursion that can be understood in geometrical terms as an extension of the de Casteljau interpolation scheme.
Namely, instead of using only the control points of level r − 1 to generate the points on level r as in the ordinary de
Casteljau algorithm, one uses two or more or all previous levels down to the control points at level 0. Thus the unintuitive
parameters in the algebraic definition of generalized Bernstein polynomials get geometric meaning that is illustrated exten-
sively. In Section 5 a new direct method for the design of Bézier curves is described that uses the additional freedom of the
parameters ā2, ̄a3, . . . to adapt the control polygon as a whole by moving a point of the associated Bézier curve.

Many references for the material used in this paper as well as an extensive and inspiring treatment of umbral calculus
and CAGD can be found in Roman (1984), Farin (2001), Goldman (2003), respectively.

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.3 (1-16)

R. Winkel / Computer Aided Geometric Design ••• (••••) •••–••• 3
2. Bivariate Bernstein type polynomials

The polynomials R≤n[t] = {p ∈ R[t] | deg p ≤ n} of degree ≤ n in t and the homogeneous polynomials Rn[x, y] = {p ∈
R[x, y] | deg p = n} of degree n in x and y form (n + 1)-dimensional real vector spaces with respective canonical basis
{tk | k = 0, . . . , n} and {xk yn−k | k = 0, . . . , n}. The mapping tk �→ xk yn−k is an isomorphism between R≤n[t] and Rn[x, y]. We
define column vectors t = (1, t, . . . , tn)T and h = (x0 yn, . . . , xn y0)T .

The Bernstein polynomials Bn
k(t) = (n

k

)
tk(1 − t)n−k of order n, 0 ≤ k ≤ n, and the bivariate homogeneous Bernstein

polynomials Bn
k(x, y) = (n

k

)
xk yn−k are alternative bases for R≤n[t] and Rn[x, y], respectively. We define column vectors

B(t) = (Bn
0(t), . . . , B

n
n(t))T and B(x, y) = (Bn

0(x, y), . . . , Bn
n(x, y))T .

We call the substitution mapping � : Rn[x, y] → R≤n[t] with �(p(x, y)) = p(t, 1 − t) the canonical parametrization.
Clearly, � is a vector space isomorphism that maps the homogeneous monomials xk yn−k to the basis tk(1 − t)n−k and
the homogeneous Bernstein polynomials Bn

k (x, y) to Bernstein polynomials Bn
k(t).

Similarly, the bivariate generalized Bernstein polynomials

Bn
k(x, y; ā) = 1

ρn

(
n

k

)
pk(x)pn−k(y)

of order n, 0 ≤ k ≤ n, are parametrized to generalized Bernstein polynomials Bn
k(t; ̄a). We define column vectors B(t; ̄a) =

(Bn
0(t; ̄a), . . . , Bn

n(t; ̄a))T and B(x, y; ̄a) = (Bn
0(x, y; ̄a), . . . , Bn

n(x, y; ̄a))T .
In Winkel (2014, Cor. 4.5) it has been shown that

B(t; ā) = M(ā) B(t) ,

where

M(ā) = 1

ρn
M̃(ā) = 1

ρn

(
m̃k,l(ā)

)
(2.1)

with

m̃k,l(ā) =
(n

k

)(n
l

) k∑
j=0

πk, j πn−k,n−k−l+ j

=
(n

k

)(n
l

) n−k∑
i=0

πk,k+i+l−n πn−k,i

and

πn,k =
k∑

ν=0

(
n − ν

n − k

)
pn,ν with pn,0 = δn,0 (using the Kronecker symbol).

Clearly, B(t; ̄a) is a basis of R≤n[t], if M(ā) is regular, which is the case for a generic choice of ā.
For the bivariate generalized Bernstein polynomials the analog result is

Theorem 2.1. Let ā = (ā1, . . . , ̄an) be a feasible parameter sequence. Then the transformation matrix M(x, y; ̄a) ∈ R[x, y](n+1)×(n+1)

in

B(x, y; ā) = M(x, y; ā) B(x, y)

is given by

M(x, y; ā) = M (̂a)

with

â = (̂a1, . . . , ân) and âk = āk

(x + y)k−1

or in non-normalized form by

M̃(x, y; ā) = ρn M(x, y; ā) = M̃ (̂a) .

Remark 2.2. The result that M(x, y; ̄a) is just M(ā) with ā substituted with â shows that the seemingly more general
bivariate Bernstein polynomials Bn

k(x, y; ̄a) or Bn
k(x, y) are in fact nothing more than the usual Bn

k (t; ̄a) or Bn
k(t) in disguise.

Nevertheless, it is sometimes much more convenient to operate with the bivariate form than with the usual, for example
when considering the generalized de Casteljau algorithm with umbral shifts.

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.4 (1-16)

4 R. Winkel / Computer Aided Geometric Design ••• (••••) •••–•••
For the proof of Theorem 2.1 we need the following lemma:

Lemma 2.3. For fixed n ∈N the basis of homogeneous monomials of degree n can be represented in terms of the homogeneous Bernstein
basis of degree n by

h = T (x, y) B(x, y) = (
tkj(x, y)

)
B(x, y)

with

tkj(x, y) =
(j

k

)(n
k

)
(x + y)n−k

.

Proof. Since tk, j(x, y) �= 0 only if k ≤ j ≤ n, one computes

n∑
j=0

tkj(x, y)Bn
j (x, y) =

n∑
j=k

(j
k

)(n
k

)
(x + y)n−k

(
n

j

)
x j yn− j

= 1

(x + y)n−k

n∑
j=k

(
n − k

j − k

)
x j yn− j

= 1

(x + y)n−k

n−k∑
j=0

(
n − k

j

)
xkx j y(n−k)− j = xk . �

Proof of Theorem 2.1. Going through the steps of the proof of Winkel (2014, Thm. 4.4) one sees with the above lemma that
the only new thing are the factors (x + y)n−k in the denominators. One gets:

m̃k,l(x, y; ā) =
(n

k

)(n
l

) k∑
j=0

π̂k, j π̂n−k,n−k−l+ j

=
(n

k

)(n
l

) n−k∑
i=0

π̂k,k+i+l−n π̂n−k,i

with

π̂n,k =
k∑

ν=0

(n−ν
n−k

)
(x + y)n−ν

pn,ν .

Now formula (1.3) reveals that the summands āi1 · . . . · āiν of pn,ν all contain exactly ν factors whose indices sum up to n.
Therefore

āi1 · . . . · āiν

(x + y)n−ν
= āi1

(x + y)i1−1
· . . . · āiν

(x + y)i1−ν

completes the proof. �
Remark 2.4. The definition of the ̂ak above is not unreasonable, if one observes that setting deg(āi) = i − 1 and deg(tk) = k
(as usual) gives deg(pn,k(ā)) = n − k such that pn(ā)(t) becomes a homogeneous polynomial of degree n in the ring
R[t, ̄a1, ̄a2, . . . , ̄an]. Thus the ̂ak ’s have degree zero, since for all k ∈N

deg(̂ak) = deg(āk) − deg((x + y)k−1) = 0 .

3. Generalized de Casteljau algorithm with umbral shifts

The polynomials (1.2) used for the definition (1.1) of generalized Bernstein polynomials are systematically explored in
umbral calculus (Roman, 1984). (The bars over the āk ’s are used to conform with the notations used in umbral calculus.)
We present here only the facts that are needed for the understanding of the umbral shift operators and the subsequent
calculations in this paper.

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.5 (1-16)

R. Winkel / Computer Aided Geometric Design ••• (••••) •••–••• 5
Let P =R[[t]] denote the R-algebra of formal power series in t with coefficients in R and let P+ = { f ∈R[[t]] | f (0) = 0,

f ′(0) �= 0} be the subalgebra of delta series. Then for any

f (t) =
∞∑

n=1

an

n! tn ∈ P+ (3.1)

there exists a second delta series

f̄ (t) =
∞∑

n=1

ān

n! tn ∈ P+ (3.2)

which is the compositional inverse of f , i.e., (f̄ ◦ f)(t) = (f ◦ f̄)(t) = t . Now f̄ is the generating function for the associated
polynomials pn(x) according to

ex f̄ (t) =
∞∑

n=0

pn(x)

n! tn . (3.3)

Using the notation pn(t; ̄a) in (1.2) instead of pn(x) as in (3.3) emphasizes that the associated polynomials depend on the
parameters ā and with the change from x to t we conform with the usual notation for the independent variable of Bernstein
polynomials. The different meanings of x and t in different contexts in this paper should not be an obstacle.

It is shown in umbral calculus that the umbral shift operator θ f generates the sequence of associated polynomials
according to (1.8) if one defines (Roman, 1984, Cor. 3.6.6)

θ f pn(x) = x f̄ ′(f (t)) pn(x) = x [f ′(t)]−1 pn(x) (3.4)

with t acting as linear differentiation operator on a polynomial p ∈ R[x] as

tp(x) = p′(x) .

With (1.8) it is not difficult to establish (see Winkel, 2014) the following down recurrence for the non-normalized bivariate
generalized Bernstein polynomials

B̃0
0(x, y; ā) = 1 and for r = 1, . . . ,n and k = 0, . . . , r:

B̃r
k(x, y; ā) = θ f ,y B̃r−1

k (x, y; ā) + θ f ,x B̃r−1
k−1(x, y; ā) , (3.5)

where the operators θ f ,x and θ f ,y act on the variables x and y, respectively.
The canonical parametrization and the normalization by multiplication with ρ−1

r then yields the recurrence for general-
ized Bernstein polynomials. Subsequently we often write θx and θy instead of θ f ,x and θ f ,y if f is clear from the context.

Example 3.1. For ordinary Bernstein polynomials with ā = (1, 0, 0 . . .) one computes f̄ (t) = t = f (t) by (3.1)–(3.2), pn(x) =
xn by (3.3), ρr = 1 for all r ∈ N, and with f̄ ′(f (t)) = [f ′(t)]−1 = 1 = t0 (meaning no differentiation) one sees that θ f =
x is simply multiplication by x. Hence we have confirmed formula (3.2) as pn+1(x) = x pn(x) in the ordinary Bernstein
case. Canonical parametrization of (3.5) then gives the well-known recursion formula for Bernstein polynomials: Br

k(t) =
(1 − t)Br−1

k (t) + t Br−1
k−1(t).

Fig. 1 shows that the down recurrence (3.5) is a triangular scheme (Goldman, 2003) that generates the bottom level n of
generalized Bernstein polynomials B̃n

k(x, y; ̄a) out of the single top polynomial B̃0
0(x, y; ̄a) = 1 at level 0 by increasing the

degree r of the polynomials on every new level.

Theorem 3.2. For fixed f ∈P+ , n ∈N and 0 ≤ k ≤ n one has

Bn
k(x, y; ā) = 1

ρn

(
n

k

)
(θ f ,x)

k(θ f ,y)
n−k(1) with ρn = pn(x + y). (3.6)

Proof. From the down recursion (3.5) one sees that B̃n
k(x, y; ̄a) is the sum of all differently ordered compositions of k times

the operator θx and n − k times the operator θy applied to 1. Alternatively, it is the sum over all paths that lead from
the top of the triangular scheme to B̃n

k . Since there are
(n

k

)
such compositions or paths and since the operators θx and θy

commute, the formula follows for the non-normalized case. But the normalizing factor ρn must be pn(x + y) according to
the generalized binomial formula (1.4). �

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.6 (1-16)

6 R. Winkel / Computer Aided Geometric Design ••• (••••) •••–•••
Fig. 1. Down recurrence for n = 3, arguments (x, y; ā) omitted.

Fig. 2. Up recurrence for n = 3, arguments (x, y; ā;b) omitted.

To the down recurrence there corresponds an up recurrence or generalized de Casteljau algorithm (see Fig. 2) that generates
the generalized Bézier curve of degree n:

xn
0(t; ā;b) =

n∑
k=0

bk Bn
k(t; ā) (0 ≤ t ≤ 1) (3.7)

or some point xn
0(t0; ̄a; b) with t0 ∈ [0, 1] on it from the sequence of control points b = (b0, . . . , bn). The control points can

be viewed as constant generalized Bézier curves of order 0:

x0
k(t; ā;b) = bk B0

0(t; ā) = bk (0 ≤ k ≤ n). (3.8)

The bottom layer of this triangular scheme is formed by the n + 1 control points and every new layer is given by n − r
consecutive generalized Bézier curves of order r or n − r points for fixed t = t0 laying on these intermediary generalized
Bézier curves

xr
k(t; ā;b) =

r∑
j=0

bk+ j Br
k(t; ā) (0 ≤ k ≤ n − r, 0 ≤ t ≤ 1). (3.9)

Note that (3.7) and (3.8) are special case of (3.9) for r = n and r = 0, respectively. The following theorem describes the up
recurrence in terms of umbral shifts.

Theorem 3.3. The generalized de Casteljau algorithm with umbral shifts results from normalization and canonical parametrization
of the following up recurrence with ̃xr

k = x̃r
k(x, y; ̄a; b)

x̃0
k = bk for k = 0, . . . ,n, (3.10)

x̃r
k = θy x̃r−1

k + θx̃xr−1
k+1 for r = 1, . . . ,n; k = 0, . . . ,n − r

where

x̃r
k :=

r∑
j=0

bk+ j B̃r
j(x, y; ā) (0 ≤ k ≤ n − r, 0 ≤ t ≤ 1). (3.11)

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.7 (1-16)

R. Winkel / Computer Aided Geometric Design ••• (••••) •••–••• 7
Proof. The initialization of the ̃x0
k (x, y; ̄a; b) as control point bk is consistent with (3.8) since ρ0 = 1 for all ā. Assume that

(3.10) is true for r − 1. Then with some index shifting, the linearity of θ f , and B̃r
j(x, y; ̄a) = 0 for j < 0 or j > r:

θy x̃r−1
k + θx̃xr−1

k+1
(3.11)= θy

⎛⎝r−1∑
j=0

bk+ j B̃r−1
j (x, y; ā)

⎞⎠ + θx

⎛⎝r−1∑
j=0

bk+1+ j B̃r−1
j (x, y; ā)

⎞⎠
= θy

⎛⎝k+r−1∑
j=k

b j B̃r−1
j−k(x, y; ā)

⎞⎠ + θx

⎛⎝ k+r∑
j=k+1

b j B̃r−1
j−k−1(x, y; ā)

⎞⎠
= θy

⎛⎝k+r∑
j=k

b j B̃r−1
j−k(x, y; ā)

⎞⎠ + θx

⎛⎝k+r∑
j=k

b j B̃r−1
j−k−1(x, y; ā)

⎞⎠
=

k∑
j=0

bk+ j

(
θy B̃r−1

j (x, y; ā) + θx B̃r−1
j−1(x, y; ā)

)
(3.5)=

k∑
j=0

bk+ j B̃r
j(x, y; ā)

(3.11)= x̃r
k . �

The appearance of derivations in the form of umbral shift operators in the above formulas seem to preclude a discrete
generalized de Casteljau algorithm directly on the control points br

k of different orders r = 1, . . . , n, but since all calculations
are done on polynomials of degree less than n, purely algebraic calculations are possible. The next section will show that the
elimination of differentiation yields a surprisingly simple and geometrically meaningful generalized de Casteljau algorithm.

4. Generalized de Casteljau algorithm without umbral shifts

Let f and its compositional inverse f̄ be defined with coefficients an and ān , respectively, as in (3.1)–(3.2). The formula
(3.4) for the umbral shift operator shows that when parameters ān for the generalized Bernstein polynomials are given, then
we need to compute the an from them. This can be achieved by one of the formulas for Lagrange inversion, for which the
most suitable in our context (Comtet, 1974, 5.8 Thm. E [8f]) is:

a1 = 1 = ā1

an =
n−1∑
k=1

(−n)k pn−1,k(
ā2

2
,

ā3

3
, . . . ,

ān

n
)

for n ≥ 2 with (−n)k := (−n)(−n − 1) · . . . · (−n − k + 1) = (−1)k (n + k − 1)!
(n − 1)! , (4.1)

because we may have computed the Bell polynomials pn−1,k(ā1, . . . , ̄an−1) already. Setting

[f ′(t)]−1 =
∞∑

n=0

dn

n! tn (4.2)

gives d0 = 1 and the recursion

dn = −
n∑

k=1

(
n

k

)
ak+1dn−k for n ∈N (4.3)

by the convolution of coefficients in

1 = f ′(t)[f ′(t)]−1 =
⎛⎝∑

n≥0

an+1

n! tn

⎞⎠⎛⎝∑
n≥0

dn

n! tn

⎞⎠ .

The first few coefficients are

d1 = ā2

d2 = −ā2 + ā3
2

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.8 (1-16)

8 R. Winkel / Computer Aided Geometric Design ••• (••••) •••–•••
d3 = 3 ā3
2 − 4 ā2ā3 + ā4

d4 = −15 ā4
2 + 25 ā3ā2

2 − 7 ā4ā2 − 4 ā2
3 + ā5

d5 = 105 ā5
2 − 210 ā3ā3

2 + 60 ā4ā2
2 + 70 ā2ā2

3 − 11 ā5ā2 − 15 ā3ā4 + ā6 .

Then

θ f = x [f ′(t)]−1 = x
∑
n≥0

dn

n! tn = x + x
∑
n≥1

dn

n! tn =: x + xD f . (4.4)

Note, that in D f one needs only the first m summands if θ f is applied to a polynomial of degree m.

Remark 4.1. From the definition (1.1)–(1.3) of generalized Bernstein polynomials it is clear that the polynomials of order r in
(3.10) can depend only on parameters ā1, . . . , ̄ar and that the parameters ār+1, . . . , ̄an do not appear up to level r. The same
conclusion can be drawn also from (3.6) or the up recursion (3.10), because for the generation of a level r polynomial or
curve one needs D f only up to dr−1 and from (4.1) and (4.4) one concludes that an and dr−1 depend exactly on ā2, . . . , ̄ar .

Remark 4.2. Using the representation θ f = x + xD f in formula (3.6) for generalized Bernstein polynomials one can compute
a formula that splits every B̃n

k(x, y; ̄a) into a sum of the ordinary homogeneous Bernstein polynomial Bn
k (x, y) and a rather

complicated rest:

B̃n
k(x, y; ā) =

(
n

k

)
(x + xD f ,x)

k(y + yD f ,y)
n−k(1)

=
(

n

k

)
xk yn−k +

(
n

k

)[
xk D̄n−k

f ,y + yn−k D̄k
f ,x + D̄n−k

f ,x D̄k
f ,x

]
(1)

with

D̄k
f ,x =

k∑
i=1

(
k

i

)
xk−i(xD f ,x)

i

D̄n−k
f ,y =

n−k∑
j=1

(
n − k

j

)
yn−k− j(yD f ,y)

j .

We know now how to compute the umbral shift operator θ f as a finite linear differential operator from given ā. Next
we take advantage of the fact, that we have to apply it only on very special polynomials that are connected in a seemingly
tangled way to the coefficients of the operator.

Theorem 4.3. For fixed parameter sequence ā and n ∈N the derivatives of the associated polynomials are

∂x pn(x) =
n−1∑
k=0

(
n

k

)
ān−k pk(x) , (4.5)

and for the bivariate and parametrized generalized Bernstein polynomials

∂x B̃n
k(x, y; ā) =

k∑
i=1

(
n

i

)
āi B̃n−i

k−i (x, y; ā) (4.6)

∂y B̃n
k(x, y; ā) =

n−k∑
j=1

(
n

j

)
ā j B̃n− j

k (x, y; ā) , (4.7)

dt B̃n
k(t; ā) =

k∑
i=1

(
n

i

)
āi B̃n−i

k−i (t; ā) −
n−k∑
j=1

(
n

j

)
ā j B̃n− j

k (t; ā) . (4.8)

Proof. Using Thm. 2.4.9 of Roman (1984) and the umbral calculus definition of the action of a functional tk applied to a
monomial xn

〈tk | xn〉 = n!δn,k

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.9 (1-16)

R. Winkel / Computer Aided Geometric Design ••• (••••) •••–••• 9
one computes

p′
n(x) =

n−1∑
k=0

(
n

k

)
〈t|pn−k(x)〉 pk(x)

(1.2)=
n−1∑
k=0

(
n

k

)
pn−k,1 pk(x)

(1.3)=
n−1∑
k=0

(
n

k

)
ān−k pk(x) .

Then (
n

k

)
p′

k(x)pn−k(y) =
(

n

k

) k−1∑
i=0

(
k

i

)
āk−i pi(x)pn−k(y)

=
k−1∑
i=0

āk−i

(
n

k

)(
k

i

)
pi(x)pn−k(y)

=
k−1∑
i=0

āk−i

(
n

k − i

)(
n − k + i

i

)
pi(x)pn−k(y)

=
k−1∑
i=0

(
n

k − i

)
āk−i B̃n−k+i

i (x, y; ā) .

Instead of summing over i from 0 to k − 1 one can sum over k − i from k to 1. This gives (4.6). Using the symmetry
B̃n

k(x, y; ̄a) = B̃n
n−k(y, x; ̄a) one computes

∂y B̃n
k(x, y; ā) = ∂y B̃n

n−k(y, x; ā)

(4.6)=
n−k∑
j=1

(
n

j

)
ā j B̃n− j

n−k− j(y, x; ā)

=
n−k∑
j=1

(
n

j

)
ā j B̃n− j

k (x, y; ā) .

For the last formula one observes that dt B̃n
k(t; ̄a) is nothing but the canonical parametrization of ∂x B̃n

k(x, y; ̄a) −
∂y B̃n

k(x, y; ̄a). �
The next theorem shows that also l-fold differentiation yields surprisingly simple formulas.

Theorem 4.4. For fixed ā, n ∈N and l ∈N0 the l-th derivatives for the bivariate generalized Bernstein polynomials are

∂ l
x B̃n

k(x, y; ā) = l!
k∑

j=l

(
n

j

)
p j,l(ā) B̃n− j

k− j (x, y; ā) (4.9)

∂ l
y B̃n

k(x, y; ā) = l!
n−k∑
j=l

(
n

j

)
p j,l(ā) B̃n− j

k (x, y; ā) . (4.10)

Proof. First of all, the formulas are correct for l = 0 (no differentiation), because p j,0(ā) = δ j,0, and also for l = 1, because
one gets the formulas (4.6)–(4.7) of the previous theorem from p j,1(ā) = ā j . For l = 2 one computes with the abbreviation
B̃n

k = B̃n
k(x, y; ̄a)

∂ 2
x B̃n

k
(4.6)=

k∑
āi

(
n

i

)
∂x B̃n−i

k−i

i=1

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.10 (1-16)

10 R. Winkel / Computer Aided Geometric Design ••• (••••) •••–•••
(4.6)=
k∑

i=1

āi

(
n

i

) k−i∑
i′=1

āi′
(

n − i

i′

)
B̃n−i−i′

k−i−i′

=
k∑

i=1

k−i∑
i′=1

āiāi′
(

n

i

)(
n − i

i′

)
B̃n−i−i′

k−i−i′

and in general with the abbreviation j = i1 + i2 + · · · + il

∂ l
x B̃n

k =
k∑

i−1=1

k−i1∑
i2=1

. . .

k−i1−i2−···−il−1∑
il=1

āi1 āi2 . . . āil

(
n

i1

)(
n − i1

i2

)
. . .

(
n − i1 − i2 − · · · − il−1

il

)
B̃n−i1−i2−···−il

k−i1−i2−···−il

=
k∑

i−1=1

k−i1∑
i2=1

. . .

k−i1−i2−···−il−1∑
il=1

n!
i1!i2! . . . il!(n − j)! āi1 āi2 . . . āil B̃n− j

k− j

=
k∑

j=l

∑
i1+···+il= j
i1,...,il>0

(
n

j

)(
j

i1, i2, . . . , ıl

)
āi1 āi2 . . . āil B̃n− j

k− j

(1.3)=
k∑

j=l

(
n

j

)
l! p j,l(ā) B̃n− j

k− j .

Then

∂ l
y B̃n

k(x, y; ā) = ∂ l
y B̃n

n−k(y, x; ā)

(4.9)= l!
n−k∑
j=l

(
n

j

)
p j,l(ā) B̃n− j

n−k− j(y, x; ā)

= l!
n−k∑
j=l

(
n

j

)
p j,l(ā) B̃n− j

k (x, y; ā) . �

Going back to the triangular scheme for the down recurrence (Fig. 1) one observes that partial differentiation by x gives
terms laying on the diagonal starting at B̃n

k and going up to the left whereas partial differentiation by y gives terms on the
diagonal to the upper right.

For the main theorem about the generalized de Casteljau algorithm below we need a formula that seems not to be
mentioned in the umbral calculus literature.

Lemma 4.5. For fixed ā and j ∈N0 one has the identity

j∑
i=0

di p j,i(ā) = ā j+1 . (4.11)

Proof. From

∞∑
j=0

ā j+1

j! t j (3.2)= f̄ ′(t) = f̄ ′(f (f̄ (t))) = [f ′(f̄ (t))]−1 (4.2)=
∞∑

i=0

di

i! f̄ (t)i

one concludes with the formula for conjugate representation for associated sequences (Roman, 1984, Thm. 2.4.4):

p j,i(ā) = coefficient of t j in f̄ (t)i

j!
and f̄ (t)i = ti +O(ti+1) that

∞∑
i=0

di

i! f̄ (t)i =
∞∑
j=0

1

j!

⎛⎝ j∑
i=0

di p j,i(ā)

⎞⎠ t j .

Comparison of coefficients gives (4.11). �

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.11 (1-16)

R. Winkel / Computer Aided Geometric Design ••• (••••) •••–••• 11
Now the laborious metamorphosis of the generalized de Casteljau algorithm that transforms the caterpillar with umbral
shifts into the butterfly without umbral shifts can be completed with the next theorem. We emphasize the difference be-
tween functions and their differentiation in Theorem 3.3 and the elementary algebraic operations on points in Theorem 4.6
with the suggestive notations xr

k and br
k although the functions become points upon evaluation and the points become

functions if x, y, t are taken as variables on a suitable range.

Theorem 4.6. Given a sequence b = (b0, . . . , bn) of control points in RN and a (feasible) parameter sequence ā. Then the generalized
de Casteljau algorithm for ̃br

k = b̃r
k(x, y; ̄a; b) is given by

b̃0
k = bk for k = 0, . . . ,n,

b̃r
k = y b̃r−1

k + x b̃r−1
k+1 +

r∑
i=2

(
r − 1

i − 1

)
āi

(
y b̃r−i

k + x b̃r−i
k+i

)
for r = 1, . . . ,n and k = 0, . . . ,n − r. (4.12)

With similar initialization of the recursion and ranges for the indices the normalized recursion for br
k = br

k(x, y; ̄a; b) is given by

br
k = 1

ρn

r∑
i=1

(
r − 1

i − 1

)
ρr−i āi

(
y br−i

k + x br−i
k+i

)
, (4.13)

and the parametrized recursion for br
k = br

k(t; ̄a; b) by

br
k = 1

ρn

r∑
i=1

(
r − 1

i − 1

)
ρr−i āi

(
(1 − t)br−i

k + t br−i
k+i

)
. (4.14)

Proof. It is enough to prove the first recursion (4.12).

B̃r
j

(1.6)= θy B̃r−1
j + θx B̃r−1

j−1
(1.7)
(4.2)= y

⎛⎝r−1− j∑
l=0

dl

l! ∂ l
y B̃r−1

j

⎞⎠ + x

⎛⎝ j−1∑
l=0

dl

l! ∂ l
x B̃r−1

j−1

⎞⎠
(4.9)

(4.10)= y

⎛⎝r− j−1∑
l=0

dl

r−1− j∑
i=l

(
r − 1

i

)
pi,l B̃

r−1−i
j

⎞⎠ + x

⎛⎝ j−1∑
l=0

dl

j−1∑
i=l

(
r − 1

i

)
pi,l B̃

r−1−i
j−1−i

⎞⎠
= y

⎛⎝r−1− j∑
i=0

(
r − 1

i

)[
i∑

l=0

dl pi,l

]
B̃r−1−i

j

⎞⎠ + x

⎛⎝ j−1∑
i=0

(
r − 1

i

)[
i∑

l=0

dl pi,l

]
B̃r−1−i

j−1−i

⎞⎠
(4.11)= y

⎛⎝r−1− j∑
i=0

(
r − 1

i

)
āi+1 B̃r−1−i

j

⎞⎠ + x

⎛⎝ j−1∑
i=0

(
r − 1

i

)
āi+1 B̃r−1−i

j−1−i

⎞⎠ .

This gives with ̃xr
k replaced by ̃br

k:

b̃r
k

(3.11)=
r∑

j=0

bk+ j B̃r
j

= y

⎛⎝ r∑
j=0

bk+ j

r−1− j∑
i=0

(
r − 1

i

)
āi+1 B̃r−1−i

j

⎞⎠ + x

⎛⎝ r∑
j=0

bk+ j

j−1∑
i=0

(
r − 1

i

)
āi+1 B̃r−1−i

j−1−i

⎞⎠
= y

⎛⎝r−1∑
i=0

(
r − 1

i

)
āi+1

r−1−i∑
j=0

bk+ j B̃r−1−i
j

⎞⎠ + x

⎛⎝r−1∑
i=0

(
r − 1

i

)
āi+1

r∑
j=i+1

bk+ j B̃r−1−i
j−1−i

⎞⎠
(3.11)=

r−1∑
i=0

(
r − 1

i

)
āi+1

⎛⎝y b̃r−1−i
k + x

r−1−i∑
j=0

bk+ j+i+1 B̃r−1−i
j

⎞⎠
(3.11)=

r−1∑
i=0

(
r − 1

i

)
āi+1

(
y b̃r−1−i

k + x b̃r−1−i
k+i+1

)
.

With a final index shift and a splitting of the sum one arrives at (4.12). �

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.12 (1-16)

12 R. Winkel / Computer Aided Geometric Design ••• (••••) •••–•••
Fig. 3. Generalized de Casteljau algorithm up to level r = 3. According to (4.12)–(4.14) the point b2
0 depends on b1

0, b1
1 via ā1, and on b0, b2 via ā2 (double

arrows). The point b3
1 depends on b2

1, b2
2 via ā1, on b1

1, b1
3 via ā2, and on b1, b4 via ā3 (triple arrows).

Fig. 4. (Intermediary) generalized Bézier curves xr
k for ā = (1,−.1,0,0,0) with points br

k for t = .4, ordinary Bézier curves dotted.

Hence we have discovered a geometrically meaningful interpretation of the parameters āk that was not at all obvious
from the original algebraic–combinatorial definition:

For ā = (ā1, 0, . . . , 0) with ā1 = 1 one gets the usual de Casteljau algorithm that generates the intermediary control
points on level r by linear interpolation of two adjacent points from the previous level r − 1. A parameter ā2 �= 0 adds an
ā2-weighted linear interpolation of two points separated by one point from level r − 2. An ā3 �= 0 adds an ā3-weighted
linear interpolation of two points separated by two points from level r − 3, and so on.

Fig. 3 illustrates that the points that have an influence on some br
j lay on the left and right diagonal going down from br

j .
In principle, the dependence of points on some level on more than just the previous level points can be achieved in

many ways — but usually not in a way that doesn’t sacrifice important properties such as affine invariance. Probably the
only possible way to retain all the properties listed in Winkel (2014) is to use generalized Bézier polynomials as introduced
in Winkel (2001). With formula (4.14) it is now easy to deduce an additional property that was hard to see from the
algebraic definition (1.1)–(1.3): Though the generalized Bernstein polynomials do not in general respect the convex hull
property — they include for example as special case the Lagrange polynomials with equidistant nodes —, they have the
property of linear precision by an easy induction using (4.14). In other words, if the basic control points b0

j lay on a straight
line, then all br

j for all levels r lay on this line.
Figs. 4 and 5 show for two different control polygons how the intermediary and final generalized Bézier curves look like

in comparison with the ordinary intermediary and final Bézier curves. (The points on the curves for t = .4 are not computed
by evaluation but by (4.14)!) In Fig. 4 the parameter sequence uses a small negative ā2, whereas the higher parameters are
zero. This draws the (intermediary) generalized Bernstein polynomials closer to the control polygon. In Fig. 5 the parameter
sequence for the interpolation of the control polygon is used as determined in Winkel (2014). The control polygon starts

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.13 (1-16)

R. Winkel / Computer Aided Geometric Design ••• (••••) •••–••• 13
Fig. 5. (Intermediary) generalized Bézier curves xr
k for ā = (1,−1/5,2/25,−6/125,24/625) with points br

k for t = .4, ordinary Bézier curves dotted.

Fig. 6. Intermediary generalized Bézier curves xr
k for ā = (1, ā2,0,0,0), ordinary Bézier curves dotted.

and ends at the point most to the right. Note that the intermediary curves are not interpolating, because the parameter
sequences for interpolation are different for different numbers of control points.

Fig. 6 shows more intermediary Bézier curves to give an impression how versatile these curves are (and because they
look nice). I each case the end of the control polygon overlaps suitably with the beginning to achieve perfect symmetry.

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.14 (1-16)

14 R. Winkel / Computer Aided Geometric Design ••• (••••) •••–•••
Finally in this section we note that from the proof of Theorem 4.6 one gets immediately a down recurrence as (3.5) for
bivariate generalized Bernstein polynomials but now without umbral shifts.

Corollary 4.7. Given a (feasible) parameter sequence ā. Then for ̃Br
k = B̃r

k(x, y; ̄a) is given by

B̃0
0 = 1 and for r = 1, . . . ,n and k = 0, . . . , r:

B̃r
k = y

r−k∑
i=1

(
r − 1

i − 1

)
āi B̃r−i

k + x
k∑

i=1

(
r − 1

i − 1

)
āi B̃r−i

k−i . (4.15)

With similar initialization of the recursion and ranges for the indices the normalized recursion for Br
k = Br

k(x, y; ̄a) is given by

Br
k = y

ρr

r−k∑
i=1

(
r − 1

i − 1

)
ρr−i āi Br−i

k + x

ρr

k∑
i=1

(
r − 1

i − 1

)
ρr−i āi Br−i

k−i . (4.16)

5. A new direct method for the design of Bézier curves

Usually the designer of a Bézier curve sets up in an intuitive way a control polygon and inspects the resulting Bézier
curve. If the curve is not as desired, then the control points are moved interactively one by one, until the result is satisfying.
In the past there have also been invented a number of direct methods for curve design, that allow to change the whole
Bézier curve by picking a point on the curve and changing its geometric constraints, e.g., its position in ambient space, the
tangent direction and magnitude, or the magnitude of the curvature at the point (see for example Bartels and Beatty, 1989;
Fowler and Bartels, 1993; Gleicher, 1992). The purpose of the present section is to indicate, how the additional freedom
gained by the parameters ā2, ̄a3, . . . can be used to extend the known direct methods. Note that by the generalized de
Casteljau algorithm of Theorem 4.6 these parameters do not describe local differential–geometric properties, but global
properties of the generalized Bézier curves, e.g., an ā2 > 0 and an ā2 < 0 leads to a global decrease resp. increase (cf. Fig. 4)
of curvature compared to the ordinary Bézier curves. We hope that other researchers can apply this approach to their
particular problem.

The new direct method is described and illustrated first from the perspective of the designer, then we discuss the
mathematics behind the working steps. (Note, that also a weighting of control points can be done in the usual way in the
generalized setup.)

5.1. Working steps — the designer’s perspective

(1) At some stage in the design process a control polygon CP(b) for a sequence of control points b = (b0, . . . bn) is displayed
together with its associated Bézier curve x(t; b). In addition, a point S1 := x(t1; b) for some t1 ∈ (0, 1) is displayed. We
call this point the first shaping point (Fig. 7(A)). The designer can move S1 on x(t; b). As we will see below, it will be
favorable to choose a place for S1 where the Bézier curve substantially deviates from the control polygon. Based on this
criterion the software can also propose an initial position of S1.

(2) The designer can move the shaping point S1 to a new position S1,new aside x(t; b). Simultaneously a new Bézier curve
xnew through the moved S1,new is displayed. The original curve x(t; b) can still remain visible for comparison (Fig. 7(B)).

(3) A soon as the new Bézier curve xnew is confirmed by the designer, a new control polygon CP(b′) for a new sequence of
control points b′ is displayed such that xnew = x(t; b′) (Fig. 7(C)).

(4) The design process can be continued again with steps 1–3 as above or with adjustments of single control points in the
usual way.

Fig. 7. Illustration of the three steps of the proposed design method.

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.15 (1-16)

R. Winkel / Computer Aided Geometric Design ••• (••••) •••–••• 15
It is also possible to display a second shaping point S2 := x(t2; b) with t2 ∈ (0, 1), t2 �= t1, that allows finer adjustments
and more flexibility. Actually, there are up to n − 1 shaping points for a Bézier curve of degree n possible, but one or at
most two should be sufficient in practice.

5.2. Working steps – the mathematician’s perspective

(1) x(t; b) is computed from CP(b) in the usual way, e.g., by subdivision, and S1 is displayed for some predefined t1, e.g.,
t1 = .4, or in a more sophisticated fashion, e.g., by inspection of the bending of CP(b).

(2) Let x(ā2) := x(t1; ̄a; b) for ā = (1, ̄a2, 0, . . . , 0) be the curve of variation of ā2 at t1 for short the ā2-curve (see Fig. 8). In
other words: x(ā2) is computed with the formula for the generalized Bézier curve

x(t; ā;b) =
n∑

k=0

bk Bn
k(t; ā) (0 ≤ t ≤ 1) (5.1)

but with variable ā2 and fixed t1. A suitable domain for ā2 could be the interval [rmax(n) + ε, 2], where rmax(n) is the
largest zero of

ρn(ā2) := pn(1; (1,a2,0, . . . ,0)) = 1 +
(

n

2

)
ā2 +O(ā2

2) . (5.2)

Why is rmax(n) of interest and why is (5.2) true? First of all, note that the zeros of pn(1; ̄a) as polynomial in ā2 are the
values of ā2 where the associated generalized Bernstein polynomials are not defined, or in geometric terms, where the
generalized Bernstein polynomials blow up and flip over by passing through infinity. To determine rmax(n) one observes
that by (1.3) one has pn,n−1(ā) = ān

1 and

pn,n−1(ā) = 1

(n − 1)! · (n − 1) · n!
2! ān−2

1 ā2 =
(

n

2

)
ān−2

1 ā2 .

Evaluation of pn(t; (1, a2, 0, . . . , 0)) at t = 1 in (1.2) then gives (5.2). Since all terms of pn(1; ̄a) are positive, ρn(ā2) has
negative roots only, the maximum one being equal (n = 2, 3) or smaller (n ≥ 4) than

−1(n
2

) = − 2

n(n − 1)
.

This gives the lower boundary −.1 for ā2 used in Fig. 8. A slightly smaller choice like −.12 continues the ā2-curves
vastly beyond the convex hull of the control polygon in the direction of infinity, because for p5(1; (1, a2, 0, 0, 0)) =
15ā2

2 + 10ā2 + 1 one has rmax(n) ≈ −.1225. On the other hand, using 3, 4, 5, or greater numbers as the upper boundary
for ā2 does not lead to a visible continuation of the ā2-curves. Note further that the ā2-curves are straight only if the
control polygon is highly symmetric as in Fig. 8(A), and that the ā2-curves need not be perpendicular to the Bézier
curve x(t; b) (Fig. 8(B)).
For the design process in step 2 it would be comfortable, if S1,new would not be restricted to the ā2-curve at a fixed t1,
but could be moved freely between different ā2-curves. A remark of caution is necessary here, because in general
different ā2-curves intersect. So the topic of ā2-curve and the appropriate change between different ā2-curves needs
further investigation.
The Bézier curve xnew that accompanies S1,new on the design display is of course the generalized Bézier curve x(t; ̄a; b)

(5.1) for the respective choice of ā2. As discussed in Winkel (2014) the curve x(t; ̄a; b) can be computed efficiently
as ordinary Bézier curve x(t; b′) for a transformed control polygon b′ = b(ā): let C(b) and C(b′) be the matrices with
control points b0, . . . bn and b′

0, . . . b′
n , respectively, as column vectors. Then C(b′) = C(b(ā)) = C(b) M(ā) with the

transformation matrix (2.5).

Fig. 8. a2-Curves with −.1 < ā2 < 2 for six equidistant t ∈ [0,1], ordinary Bézier curves dotted.

JID:COMAID AID:1489 /FLA [m3G; v1.152; Prn:14/05/2015; 10:11] P.16 (1-16)

16 R. Winkel / Computer Aided Geometric Design ••• (••••) •••–•••
In general the use of further shaping points S2, S3, . . . , Sn−1 relies similarly on the respective variation of the parameters
ā3, ̄a4, . . . , ̄an .

(3) The new control polygon CP(b′) is simply the display of the last transformed control polygon computed in step 2 for
xnew = x(t; ̄a; b) = x(t; b′) in the background.

Remark 5.1. Instead of the parameter ā2 one can also use the responsiveness c as described in Winkel (2014, Thm. 2.1), in
particular, if one wants to have exact interpolation of control points as design option.

Fig. 9. x5
k for n = 6 and ā = (1,−.3,0,0,0,0).

References

Bartels, R., Beatty, J., 1989. A technique for the direct manipulation of spline curves. Graph. Interface 89, 33–39.
Comtet, L., 1974. Advanced Combinatorics. Reidel, Dordrecht.
Farin, G., 2001. Curves and Surfaces for Computer Aided Geometric Design. A Practical Guide, 5th ed. Academic Press, Boston.
Fowler, B., Bartels, R., 1993. Constraint-based curve manipulation. IEEE Comput. Graph. Appl. 13, 43–49.
Gleicher, M., 1992. Integrating constraints and direct manipulation. In: Proceedings of the 1992 Symposium on Interactive 3D Graphics. ACM Press, Cam-

bridge, Massachusetts, United States, pp. 171–174.
Goldman, R., 2003. Pyramid Algorithms. A Dynamic Programming Approach to Curves and Surfaces for Geometric Modelling. Morgan Kaufmann Publishers,

San Francisco.
Roman, S., 1984. The Umbral Calculus. Academic Press, Boston.
Winkel, R., 2001. Generalized Bernstein polynomials and Bézier curves: an application of umbral calculus to computer aided geometric design. Adv. Appl.

Math. 27, 51–81.
Winkel, R., 2014. On a generalization of Bernstein polynomials and Bézier curves based on umbral calculus. Comput. Aided Geom. Des. 31, 227–244.

http://refhub.elsevier.com/S0167-8396(15)00054-0/bib4242s1
http://refhub.elsevier.com/S0167-8396(15)00054-0/bib43s1
http://refhub.elsevier.com/S0167-8396(15)00054-0/bib46s1
http://refhub.elsevier.com/S0167-8396(15)00054-0/bib4642s1
http://refhub.elsevier.com/S0167-8396(15)00054-0/bib476Cs1
http://refhub.elsevier.com/S0167-8396(15)00054-0/bib476Cs1
http://refhub.elsevier.com/S0167-8396(15)00054-0/bib47s1
http://refhub.elsevier.com/S0167-8396(15)00054-0/bib47s1
http://refhub.elsevier.com/S0167-8396(15)00054-0/bib5231s1
http://refhub.elsevier.com/S0167-8396(15)00054-0/bib5730s1
http://refhub.elsevier.com/S0167-8396(15)00054-0/bib5730s1
http://refhub.elsevier.com/S0167-8396(15)00054-0/bib5731s1

	On a generalization of Bernstein polynomials and Bézier curves based on umbral calculus (II): de Casteljau algorithm
	1 Introduction
	2 Bivariate Bernstein type polynomials
	3 Generalized de Casteljau algorithm with umbral shifts
	4 Generalized de Casteljau algorithm without umbral shifts
	5 A new direct method for the design of Bézier curves
	5.1 Working steps - the designer's perspective
	5.2 Working steps - the mathematician's perspective

	References

