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Optimal recursive decomposition (or DR-planning) is crucial for analyzing, designing, 
solving or finding realizations of geometric constraint systems. While the optimal DR-
planning problem is NP-hard even for (general) 2D bar–joint constraint systems, we 
describe an O (n3) algorithm for a broad class of constraint systems that are isostatic 
or underconstrained. The algorithm achieves optimality by using the new notion of a 
canonical DR-plan that also meets various desirable, previously studied criteria. In addition, 
we leverage recent results on Cayley configuration spaces to show that the indecomposable 
systems – that are solved at the nodes of the optimal DR-plan by recombining solutions 
to child systems – can be minimally modified to become decomposable and have a 
small DR-plan, leading to efficient realization algorithms. We show formal connections 
to well-known problems such as completion of underconstrained systems. Well suited to 
these methods are classes of constraint systems that can be used to efficiently model, 
design and analyze quasi-uniform (aperiodic) and self-similar, layered material structures. 
We formally illustrate by modeling silica bilayers as body–hyperpin systems and cross-
linking microfibrils as pinned line-incidence systems. A software implementation of our 
algorithms and videos demonstrating the software are publicly available online (visit
http://cise.ufl.edu/~tbaker/drp/index.html).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Geometric constraint systems have well-established, mature applications in mechanical engineering and robotics, and 
they continue to find emerging applications in diverse fields from machine learning to molecular modeling. Solving or real-
izing geometric constraint systems requires finding real solutions to a large multivariate polynomial system (of equalities and 
inequalities representing the constraints); this requires double exponential time in the number of variables, even if the type 
or orientation of the solution is specified. Thus, to realize a geometric constraint system, it is crucial to perform recursive de-
composition into locally rigid subsystems (which have finitely many solutions), and then apply the reverse process of recom-
bining the subsystem solutions. With the use of decomposition–recombination (DR-) planning, the complexity is dominated by 
the size of the largest subsystem that is solved, or recombined, from the solutions of its child subsystems, i.e. the maximum 
fan-in occurring in a DR-plan. In addition, navigating and analyzing the solution spaces, as well as designing constraint sys-
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Fig. 1. (a) Cross section of the Chlamydomonas algae axoneme, a cilia composed of microtubules (Wikimedia Commons, 2007a). (b) Cross section of a 
tendon displaying the hierarchical structure (Hollister, 2007). (c) A DNA array exhibiting the Sierpinski triangle (Wikimedia Commons, 2007b).

tems with desired solution spaces, leads to the optimal decomposition–recombination (DR-) planning problem (Sitharam, 2005;
Hoffman et al., 2001a, 2001b).

For a broad class of geometric constraint systems, local rigidity is characterized generically as a sparsity and tightness 
condition of the underlying constraint (hyper)graph (Laman, 1970; Streinu and Theran, 2009; Tay, 1976; White and Whiteley, 
1987). This allows the generic DR-planning problem to be stated and treated as a combinatorial or (hyper)graph problem as 
we do in this paper.

Naïvely, the optimal DR-plan is used as follows. Each decomposed subsystem – a node of the DR-plan – is treated 
and solved as a polynomial system of constraints between its child subsystems. However, even in an optimal DR-plan, 
there can be arbitrarily many children at a node. In other words, even in the recursive decomposition given by an opti-
mal DR-plan, the size of the maximal indecomposable subsystem could be arbitrarily large. It represents a bottleneck that 
dictates the complexity of solving or realizing the constraint system (Sitharam, 2006; Sitharam et al., 2010a, 2010b). We 
address this problem using the recently developed concept of convex Cayley configuration spaces (Sitharam and Gao, 2010;
Sitharam et al., 2011a, 2011b; Sitharam and Wang, 2014; Wang and Sitharam, 2015). This allows for even greater reduc-
tion of the complexity by realizing large, indecomposable systems in a manner that avoids working with large systems of 
equations. Specifically, we give an efficient technique for optimally modifying large indecomposable subsystems in a manner 
that reduces their complexity while preserving desired solutions; the modification ensures a convex Cayley configuration 
space, and the space can be efficiently searched to find a realization that satisfies the additional constraints of the original 
system. This optimal modification problem is a generalization of the previously studied problem of optimal completion of 
underconstrained systems (Sitharam, 2005; Joan-Arinyo et al., 2003).

DR-plans are especially useful for constraint systems that exhibit some level of self-similarity and quasi-uniformity, in 
addition to isostaticity. These properties can be leveraged to further reduce the complexity of both optimal DR-plan con-
struction and recombination. We consider 3 different types of constraint systems – which we collectively call qusecs – that 
are used to model, design, and analyze quasi-uniform or self-similar materials. In the remainder of this section, we motivate 
the materials application and give the contributions and organization of the paper.

1.1. Introducing qusecs

A large class of constraint systems that we call qusecs, a contraction of “quasi-uniform or self-similar constraint system”, 
(a) can be treated combinatorially as described above and (b) occur as independent (isostatic or underconstrained) systems 
in materials applications. We discuss these next. Some natural and engineered materials can be analyzed by treating them 
as two dimensional (2D) layers. As illustrated by the examples below, the structure within each layer is often: self-similar1

(Gaspar and Csermely, 2012), spanning multiple scales; generally aperiodic and quasi-uniform within any one scale; and 
composed of a few repeated motifs appearing in disordered arrangements. Note that a 2D layer is not necessarily planar 
(genus 0), it can consist of multiple, inter-constraining planar monolayers. Furthermore, a layer is often either isostatic or un-
derconstrained (not self-stressed/overconstrained, see Section 2.1 for definitions). These properties, as well as quasi-uniformity, 
aperiodicity, self-similarity, and layered structure, are natural consequences of evolutionary pressures or design objectives 
such as stability, minimizing mass, optimally distributing external stresses, and participating in the assembly of diverse and 
multifunctional, larger structures.

The importance of an optimal DR-plan is particularly evident for a qusecs. The quasi-uniform or self-similar properties 
mean that the decomposition and solution for one subsystem can be used as the decomposition and solution for other 
subsystems, thus causing further reduction in the complexity of both DR-planning and recombination. This is shown in 
Figs. 3 and 10.

Some materials that are readily modeled as qusecs include:

1 In this manuscript we only study finite 2D structures. Self-similarity refers to the result of finitely many levels of hierarchy or subdivision in an iterated 
scheme to generate self-similar structures.
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1. Cross-sections of microtubule structures (Needleman et al., 2004) (Fig. 1a), e.g., in ciliary membranes and transitions 
(Garcia-Gonzalo and Reiter, 2012).

2. Cross-sections of organic tissue with hierarchical structure, e.g., compact bone and tendon (Fig. 1b).
3. Crosslinked cellulose or collagen microfibril monolayers, e.g., in cell-walls (Wikimedia Commons, 2010, 2007c), as well 

as crosslinked actin filaments in the cytoskeleton matrix. See Section 6.
4. More recent, engineered examples, including disordered graphene layers (Björkman et al., 2015; Eder et al., 2015)

sometimes reinforced by microfibrils; and DNA assemblies including a recent Sierpinski gasket (Rothemund et al., 2015)
(Fig. 1c), bringing other self-similar structures (Wikimedia Commons, 2012) within reach.

5. Silica bi-layers (Wilson et al., 2013), glass (Heyde, 2013), and materials that behave like assemblies of 2D particles under 
non-overlap constraints, i.e. like jammed disks on the plane (Donev et al., 2015). See Section 5.

1.2. Organization and contributions

In Section 2, we provide basic definitions in combinatorial rigidity theory, and formalize the new notion of qusecs 
(Sitharam et al., 2010a, 2010b; Sitharam, 2006). In addition, we define DR-plans and what it means for a DR-plan to be 
complete or optimal. We survey previous work on DR-planning algorithms, discussing other desirable criteria of DR-plans 
and their relation to the NP-hard optimality property of DR-plans.

In Section 3, we define a so-called canonical DR-plan and prove a strong Church–Rosser property: all canonical DR-plans 
for isostatic or underconstrained qusecs are optimal. In so doing, we navigate the NP-hardness barrier present in the general 
form of the DR-planning problem; the canonical DR-plan elucidates the essence of the NP-hardness of finding optimal 
DR-plans when a system is over-constrained. Furthermore, our optimal/canonical DR-plan satisfies desirable properties such 
as the previously studied cluster minimality (Hoffman et al., 2001a). Also in this section, an O (n3) time algorithm is provided 
to find an optimal DR-plan for independent bar–joint graphs. While this and the next section focus on bar–joint graphs, the 
theory is easily extended to other qusecs used to model the abovementioned types of materials, as shown in subsequent 
sections.

In Section 4, we give a method to deal with the algebraic complexity of recombining the realizations or solutions of 
child subsystems into a solution of the parent system (Sitharam et al., 2010a, 2010b; Sitharam, 2006). Specifically, we define 
the problem of minimally modifying the indecomposable recombination system so that it becomes decomposable via a 
small DR-plan and yet preserves the original solutions in an efficiently searchable manner. When the modifications are 
bounded, we obtain new, efficient algorithms for realizing both isostatic and underconstrained qusecs by leveraging recent 
results about Cayley parameters in Sitharam and Gao (2010), Sitharam et al. (2011a, 2011b) (see Sections 4.3 and 4.4). In 
Section 4.5, we show formal connection to well known problems such as optimal completion of underconstrained systems 
(Joan-Arinyo et al., 2003; Sitharam, 2005; Gao et al., 2006) and to find paths within the connected components.

In Sections 5 and 6, we briefly describe applications of the above techniques to modeling, analyzing, and designing 
specific properties in 2D material layers (Jackson and Jordán, 2008). We explicitly model these materials as qusecs. For 
Examples 4 and 5, we discuss boundary conditions for achieving various desired properties of body–hyperpin systems. For 
Example 3, we discuss canonical and optimal DR-plans for pinned line incidence systems (Sitharam et al., 2014).

Section 7 concludes the paper, and Section 7.1 lists open problems and conjectures. In particular, we conjecture that the 
methods of Section 3 extend in fact to a large class of (hyper)graphs, formally those with an underlying abstract rigidity 
matroid in which independence corresponds to some type of sparsity, and maximal independence (rigidity) is a tightness 
condition.

Throughout this paper, an asterisk after a formal statement indicates that its proof appears in Appendix A.
A software implementation of our algorithms and videos demonstrating the software are publicly available online.2

2. Preliminaries and background

We first give basic definitions and concepts in combinatorial rigidity, leading to a definition of a DR-plan, its properties, 
and how they relate. The section ends with a discussion of previous work on DR-plans.

2.1. Geometric constraint systems and combinatorial rigidity

In this paper, a geometric constraint system is a multivariate polynomial (usually bilinear or quadratic) system G(x, δ) = 0, 
representing constraints with parameters δ between geometric primitives in R2 represented collectively as x ∈ R

n . When 
the type of constraint (system) is fixed, the system is simply represented as (G, δ), where G is the underlying constraint 
(hyper)graph G = (V , E) with the vertices V representing the geometric primitives in R2 and (hyper)edges E representing 
the constraints, each with an associated parameter δ. For example, a bar–joint system or linkage (G, δ), is a graph G = (V , E)

with fixed length bars as edges, i.e. δ : E →R; this represents the distance constraint system ‖xu − xv‖2 = δu,v for (u, v) ∈ E , 
where xu ∈R

2 represents the coordinates of u ∈ V .

2 Visit http://cise.ufl.edu/~tbaker/drp/index.html.

http://cise.ufl.edu/~tbaker/drp/index.html
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In all types of geometric constraint systems we consider in this paper, a Cartesian realization or solution G(p) of (G, δ)
is an assignment of coordinates or Euclidean transformations (poses), p : V → R

2 or R3, to the vertices of G satisfying the 
constraints with parameters δ, modulo orientation preserving isometries (Euclidean rigid body motions).

Although the realization space itself depends on the constraint parameters δ, many relevant generic properties of the 
constraint system G(x, δ) are defined to be properties of the constraint (hyper)graph G and do not depend on δ (or they 
hold for all but a measure zero set of δ values). Many of these are properties of the Jacobian �xG(x, δ), often called the 
appropriate rigidity matrix of G (a matrix of indeterminates). For example, the bar–joint rigidity matrix of the graph G = (V , E)

is a matrix of indeterminates representing the Jacobian of the distance map ‖xu − xv‖2 for (u, v) ∈ E . The matrix has 2
columns per vertex in V and one row per edge in E , where the row corresponding to edge (u, v) contains the 2 coordinate 
indeterminates for xu − xv (resp. xv − xu) in the 2 columns for u (resp. v), i.e. 4 non-zero entries per row.

One important property of a generic constraint system or (hyper)graph3 is rigidity, i.e. the realizations or solutions of the 
corresponding constraint system being generically isolated and zero-dimensional. The result by Asimow and Roth (1978)
shows a constraint (hyper)graph is rigid if and only if it is generically infinitesimally rigid, i.e. the number of independent 
rows of its appropriate rigidity matrix is at least the number of columns less the number of rigid body motions, which is 3 
for 2D bar–joint systems.

Geometric constraint systems can also have inequalities in addition to equations, where the parameters in δ are small 
intervals rather than exact values. In this case, the definition of rigidity is approximate; the solutions are isolated, small, 
full-dimensional connected components.

Other generic constraint system or (hyper)graph properties are mentioned here. A constraint (hyper)graph G is inde-
pendent if its appropriate rigidity matrix of indeterminates has independent rows (i.e. the determinant of some square 
submatrix is not identically zero). It is isostatic (minimally rigid, well-constrained) if it is both rigid and independent. It is 
flexible if it is not rigid, underconstrained if it is independent and not rigid, or overconstrained if it is not independent.

Defining the combinatorial independence of a subset of edges E ′ ⊆ E to be the independence of corresponding rows 
in the rigidity matrix of indeterminates, we obtain the rigidity matroid of a constraint (hyper)graph G = (V , E). There are 
various results on combinatorial characterization of independence, rigidity, and rigidity matroids for different types of (hy-
per)graphs. For bar–joint rigidity matroids, the famous Laman’s theorem (Laman, 1970) states that the underlying graph 
is isostatic if and only if |E| = 2|V | − 3 and |E ′| ≤ 2|V ′| − 3 for every induced subgraph with at least 2 vertices. The re-
sult by Lovasz and Yemini (1982) shows that all 6-vertex-connected graphs are rigid in the plane. For bar–body rigidity 
matroids, Tay (1976) proved that the underlying multigraph is isostatic if and only if it can be decomposed as 3 edge 
disjoint spanning trees. White and Whiteley (1987) gave the same characterization using a different technique to study 
the algebraic–geometric conditions of genericity, called pure condition. Lee et al. (2007) defined the (k, l)-sparsity matroid, 
where a hypergraph G is called (k, l)-sparse if |E ′| ≤ k|V ′| − l for any induced subgraph (V ′, E ′) with at least 2 vertices, 
and (k, l)-tight if it is (k, l)-sparse and |E| = k|V | − l. In general, given a d-uniform hypergraph, a (k, l)-sparsity condition is 
matroidal as long as l ≤ dk − 1.

In this paper, a qusecs is any independent geometric constraint system of one of 3 types: bar–joint (defined formally in 
Section 2.1), body–hyperpin (defined formally in Section 5), and pinned line-incidence (defined formally in Section 6).

We note that the remainder of this section and Sections 3 and 4 we only consider bar–joint qusecs and graphs. Relevant 
formal analogies for the other 2 types of qusecs and (hyper)graphs are given along with their materials applications in 
Sections 5 and 6.

2.2. Decomposition–recombination (DR-)plans

Definition 1 (DR-plan). A decomposition–recombination (DR-)plan (Hoffman et al., 2001a) of graph G is defined as a forest 
that has the following properties:

1. Each node represents a rigid subgraph of G .4

2. A root node is a vertex-maximal rigid subgraph of G .
3. A node is the subgraph of G induced by the union of its children.
4. A leaf node is a single edge.

Note that this definition permits the same rigid subgraph to appear in multiple nodes of the DR-plan. Not permitting 
such duplication would, in general, require the DR-plan to be defined as a directed acyclic graph instead of a forest.

Definition 2 (Complete DR-plan). A DR-plan is complete if it satisfies an additional property: for an internal node C , its 
children are all of the rigid vertex-maximal proper subgraphs of C (which makes Property 3 of a DR-plan implicit).

Definition 3 (Optimal DR-plan). A DR-plan is optimal if it minimizes the maximum fan-in over all nodes in the forest.

3 We refer to these as properties of the constraint system or as properties of the underlying (hyper)graph interchangeably.
4 Nodes will be referred to interchangeably as “the node that represents or contains the (sub)graph C” and as simply “C”.
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Fig. 2. (a) A graph, Gdemo , used to illustrate concepts throughout this and the next section. (b) The complete DR-plan of Gdemo. Dashed lines indicate that 
the children repeat the same pattern as the others shown on this level. The children of triangles (3 edges) are omitted. (c) The canonical DR-plan of Gdemo , 
which is optimal (see Section 3). The children of triangles are omitted.

Remark 4. More than one node (leaf) in a DR-plan forest may represent the same subgraph (vertex) of G . For a given graph, 
there could be exponentially many DR-plans – and even optimal DR-plans – in the size of the graph. A complete DR-plan is 
unique but may not be (and is usually not) optimal. DR-plans of self-similar graphs are self-similar.

See Figs. 2, 3, 6, and 10 for examples of DR-plans and how their properties relate to each other.

2.3. Previous work on DR-plans

We now briefly survey existing techniques for detecting rigidity and creating DR-plans of 2D constraint systems. The 
limitations of these techniques directly motivate the contributions of the next section.

2.3.1. Finding (vertex)-maximal, generically rigid subsystems
Fast, graph-based algorithms exist (pebble-game Jacobs and Hendrickson, 1997; Hoffmann et al., 1997; Jermann et al., 

2006; Lee and Streinu, 2007), for locating all maximal, generically rigid subsystems (formally defined in Section 2.1). When 
the input itself is rigid, these algorithms do nothing, i.e. compute the identity function.

However, both for self-similar or just aperiodic 2D qusecs, it is imperative to recursively decompose rigid systems into 
their rigid subsystems, down to the level of geometric primitives, in order to understand or design properties at all scales, 
such as (formally defined in 2.1) rigidity, flexes, distribution of external stresses, boundary conditions for isostaticity, as well 
as behavior under constraint variations.

2.3.2. Optimal recursive decomposition (DR-planning)
Recursive decomposition of geometric constraint systems has been formalized (Hoffman et al., 2001a, 2001b) and well-

studied (Lomonosov, 2004; Sitharam, 2005; Jermann et al., 2006) as the Decomposition–Recombination (DR-)planning problem 
(formally defined in Section 2.1). For the abovementioned classes of 2D qusecs, generic rigidity is a combinatorial property 
and hence each level of the decomposition should, in principle, be achievable by a graph-based algorithm without involving 
the geometric information in the constraint system. Since many such decompositions can exist for a given constraint system, 
criteria defining desirable or optimal DR-plans and DR-planning algorithms were given in Hoffman et al. (2001a). We con-
jecture (in Section 7.1) that one such decomposition, a version of Frontier (Hoffman et al., 2001a, 2001b; Lomonosov, 2004;
Sitharam, 2005), which is a bottom-up, polynomial time method, also generates optimal DR-plans for independent systems.

However, for overconstrained 2D qusecs, even when restricted to bar–joint systems, the optimal DR-planning problem 
was shown to be NP-hard (Lomonosov, 2004; Sitharam, 2005). The NP-hardness of the optimal DR-planning problem for 2D 
bar–joint graphs is partly the consequence of possibly exponential number of DR-plans. On the other hand, although the 
complete DR-plan is unique it could have large average fan-in and exponentially many nodes making it far from optimal.

2.3.3. DR-plans for special classes and with other criteria
For a special class of 2D qusecs, namely tree-decomposable systems (Owen, 1991; Fudos and Hoffmann, 1997;

Joan-Arinyo et al., 2004) common in computer aided mechanical design (which includes ruler-and-compass and Henneberg-I 
constructible systems), all DR-plans turn out to be optimal. This satisfies the Church–Rosser property, leading to highly ef-
ficient DR-planning algorithms. For general 2D qusecs, alternate criteria were suggested such as cluster minimality requiring 
parent systems to have a minimal set of at least 2 rigid proper subsystems as children (i.e. the union of no proper subset 
of size at least 2 child subsystems forms a rigid system); and proper maximality, requiring child subsystems to be maximal 
rigid proper subsystems of the parent system. See Section 2.1 for formal definitions.

While polynomial time algorithms were given to generate DR-plans meeting the cluster minimality criterion (Lomonosov, 
2004), no such algorithm is known for the latter criterion.
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3. Main result: canonical DR-plan, optimality, and algorithm

The goal of this section is to develop an O (n3) time complexity algorithm for finding an optimal DR-plan. To this end, 
we first introduce a canonical DR-plan to capture those aspects of an optimal DR-plan that mimic the uniqueness of a 
complete DR-plan, and we show that the nonunique aspects do not affect optimality for independent (underconstrained 
or isostatic) graphs. While useful for proving optimality, the canonical DR-plan is difficult to work with algorithmically. 
Therefore, we define the pseudosequential DR-plan which is derived from the canonical and is still optimal. However, the 
pseudosequential DR-plan lacks the essential uniqueness of the complete DR-plan. From the pseudosequential, we derive 
the sequential DR-plan, which can be found in the same time complexity and is essentially unique.

In this section and in Section 4, any reference to a graph G without further specification is assumed to be isostatic 
(i.e. well-constrained or (k, l)-tight). Furthermore, we only consider unions and intersections of graphs that are induced 
subgraphs of a single parent graph G . In this case unions and intersections are well defined. For example, the union (resp. 
intersection) of F1 = (V 1, E1) and F2 = (V 2, E2) is the subgraph of G induced by V 1 ∪ V 2 (resp. V 1 ∩ V 2).

3.1. Canonical DR-plan

Definition 5 (Canonical DR-plan). A canonical DR-plan is a DR-plan that satisfies the additional two properties:

1. Children are rigid vertex-maximal proper subgraphs of the parent.
2. If all pairs of rigid vertex-maximal proper subgraphs intersect trivially then all of them are children, otherwise exactly 

two that intersect non-trivially are children.

Definition 5 gives the canonical DR-plan a surprisingly strong Church–Rosser property, which is made explicit in Theo-
rem 6, the main result of this section.

Theorem 6 (Canonical is optimal). A canonical DR-plan exists for a graph G and any canonical DR-plan is optimal if G is independent.

Proof. We show the existence of a canonical DR-plan by constructing it as follows:
Let P com

G be the complete DR-plan of the rigid 2D bar–joint graph G . For all nodes C with children C1, . . . , CN retain 
children nodes according to the following rules:

(a) If Ci ∩ C j is trivial then retain all C1, . . . , CN as children.
(b) If Ci ∩ C j is rigid then select any two out of C1, . . . , CN as children.

This directly satisfies Properties (1) and (2) of a canonical DR-plan (see Definition 5), because all the nodes in P com
G are 

rigid vertex-maximal proper subgraphs, which we shorten to clusters. To show that a canonical DR-plan is, in fact, a DR-plan: 
for Rule (a) above, since we start with a complete DR-plan, if we preserve all the children it is still a DR-plan; for Rule (b) 
above, we know that the union must be rigid as well and it cannot be anything other than C , otherwise we would have 
found a larger rigid proper subgraph of C , contradicting vertex-maximality.

Note that if we begin with an isostatic graph, “rigid” can be replaced with “isostatic” throughout the construction and 
preserve the above properties. The rigid proper subgraphs of an isostatic graph must be isostatic themselves.

Next we show that a canonical DR-plan is optimal.
First, note that any DR-plan of G , P G , without Property (1) of a canonical DR-plan can always be modified (by introducing 

intermediate nodes) to satisfy Property (1) without increasing the max fan-in, since any child (a rigid proper subgraph) of 
node C in P G is the subgraph of some cluster of C . Thus, without loss of generality, we can assume that an optimal DR-plan 
satisfies Property (1) of a canonical DR-plan.

The proof of optimality of a canonical DR-plan is by induction on its height. The base case trivially holds for canonical 
DR-plans of height 0, i.e. for single edges. The induction hypothesis is that canonical DR-plans of height t are optimal for 
the root node. For the induction step consider a canonical DR-plan P can

C rooted at node C with height t + 1. Notice that 
P can

C contains a canonical DR-plan P can
Ci

for the graphs Ci corresponding to each of C ’s descendant nodes. Thus, from the 
induction hypothesis, we know that the P can

Ci
is optimal for Ci .

To carry out the induction step, it is sufficient to demonstrate a set of nodes S (of height at most t) that must be present 
in any DR-plan P C of graph C that satisfies Property (1), including a known optimal one; and furthermore, for any such 
DR-plan P C , either (Claim 1) S must be the set of children of C ; or (Claim 2) all the ancestors A of S that are descendants 
of C have the minimum possible fan-in of 2.

We show the two claims below. The first claim is that for a node C whose clusters have trivial pairwise intersections, 
any DR-plan of C that satisfies Property (1) must also satisfy Property (2) at C , i.e. the set of children S of C consists of 
all clusters of C . Because this is the only choice, it is the minimum fan-in at C for any DR-plan for C with Property (1), 
including a known optimal one. The second claim shows that in the case of nodes C whose rigid, vertex-maximal proper 
subgraphs have non-trivial pairwise intersections, every canonical DR-plan of C that uses any possible choice of two such 
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subgraphs of C as children results in a minimum possible fan-in of 2 in the ancestor nodes A leading to the same maximal 
antichain S of descendants D of C . The antichain is maximal in the partial order of rigid subgraphs of C under containment. 
I.e. S satisfies the property that every proper vertex-maximal rigid subgraph of C is a superset of some D in S; this follows 
from properties of maximal antichains that no element of S is contained in the union of other elements of S; and the 
union of elements of S is C . Thus any DR-plan that satisfies Property (1) and hence contains two or more of the rigid 
vertex-maximal proper subgraphs of C as children must also contain every element of S . The two claims complete the 
proof of the induction step and thus the proof that every canonical DR-plan is optimal.

Proof of Claim 1. Let the set of clusters of node C be C1, . . . , CN . If the pairwise intersection of clusters is trivial, all of the 
clusters must be children of C in an optimal DR-plan

We prove this claim by showing that the union of no subset of the children can be C , thereby requiring all of them to 
be included as children.

We prove by contradiction. Assume to the contrary that there is a strict subset S of the clusters such that U , the union 
of all elements in S , is isostatic. If U �= C , then we found a larger proper subgraph contradicting vertex-maximality of the 
clusters in set S . So, it must be that U = C . However, since Ci ∩ C j is trivial then for Ck /∈ S we know, by Lemma 8, Item 3, 
U ∩ Ck must be one or more vertices, i.e. disconnected trivial subgraphs. By definition of a DR-plan, Ck = C ∩ Ck and we 
know that U = C so Ck = U ∩ Ck . Thus, Ck is (i) a collection of disconnected vertices, and (ii) an isostatic subgraph of C , 
which is impossible. As C is isostatic, this means the union of no proper subset of C1, . . . , CN is isostatic, nor is it equal 
to C , proving Claim 1.

Furthermore, since a canonical DR-plan has nodes with proper rigid vertex-maximal subgraphs as children, if, as in this 
case, their pairwise intersection is trivial, it follows that any node has at most as many children as a DR-plan without this 
restriction, because the union of the children must contain all edges of the parent. Therefore, the canonical DR-plan is the 
optimal choice in this case of trivial intersections.

Proof of Claim 2. Let the set of clusters of node C be C1, . . . , CN . If some pair of clusters has an isostatic (non-trivial) 
intersection, then choosing any two as children (minimum possible fan-in) will result in the same maximal antichain of 
descendants of node C .

To prove Claim 2, notice that if Ci ∩ C j is isostatic, then, by Observation 7, Ci ∪ C j is also isostatic. This means that, by 
Lemma 8, Point 2, the union of any two children of C is C itself. Thus, any two children can be chosen to make a canonical 
DR-plan and that is the minimum fan-in possible for a node of the DR-plan.

However, to guarantee that any two are the optimal choice, it must ensure minimum fan-in over all descendants leading 
up to a common maximal antichain S of subgraphs.

Let I denote the intersection of all the clusters; we call this the core. Let Ri be the graph induced by the edge set of 
C minus the edge set of Ci ; we call these the appendages.5 Note that C is the core plus all appendages, and cluster Ci is 
the core plus all appendages except Ri . Suppose Ci and C j , where i �= j, are taken to be the children of node C . The N − 1
clusters of Ci are the core plus all appendages except Ri and R j , for each j �= i. The pairwise intersection of any of these 
clusters of Ci will clearly be isostatic, so any two of them are viable children of node Ci . Beginning with node C , this pattern 
repeats for N − 1 levels. Every node in this subtree rooted at C has a fan-in of two (the minimum possible) up through 
this level. At level N − 1, we have a set of nodes where each node is the core plus some appendage (with every appendage 
appearing at least once). Thus, regardless of the sequence of choices of Ci and C j , and of their descendants at each level, 
the DR-plan has the optimal fan-in of two for every node for N − 1 levels, and the collection of last level nodes contain the 
same maximal antichain of subgraphs (for all choices). �

This proof of the theorem relies on the following crucial observation and lemma. These will be used again in the appli-
cation sections (Sections 5 and 6) of the paper, with modifications to work for other types of qusecs.

Observation∗ 7. If Fi and F j are isostatic subgraphs of an independent graph then the following hold: (1) Fi ∪ F j is not 
trivial; (2) Fi ∪ F j is underconstrained if and only if Fi ∩ F j is trivial; (3) Fi ∪ F j is isostatic if and only if Fi ∩ F j is isostatic; 
and (4) Fi ∩ F j is not underconstrained.

The following key properties hold at the nodes of a canonical DR-plan.

Lemma∗ 8. Let C be an isostatic node of a canonical DR-plan with distinct children C1, C2, . . . , CN . Assume i �= j. Then

1. Ci ∪ C j is isostatic if and only if Ci ∪ C j = C.
2. If Ci ∪ C j is isostatic, then for all k, Ci ∪ Ck is isostatic. Alternatively, if Ci ∪ C j = C , then for all k, Ci ∪ Ck = C.
3. If Ci ∩ C j is trivial, then for all k, Ci ∩ Ck is trivial.

5 Core and appendage are used in Section 3.2 and are more formally defined in Definitions 12 and 20.
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Fig. 3. (a) A sequence of doublets (C2 × C3) intersecting on triangles, where the edges of the triangles are replaced by K3,3’s. This pattern continues inwards 
for a total of N triangles, indicated by the dashed arrows. (b) A canonical DR-plan of G , drawn as a DAG. G \ {ai , bi , ci} is shorthand for G difference those 
nodes and all of the nodes in the corresponding K3,3 subgraphs. Below the third level, the obvious pattern continues until only the individual doublets 
are present (fourth level) with the ellipses indicating the remaining doublets between those shown. Decomposition of one of these doublets is shown. 
The dashed lines indicated that this exact decomposition (of the similar nodes on the level) is repeated. Further decomposition of K3,3 subgraphs into the 
separate 9 edges is omitted from the figure.

Remark 9. The first item in the above lemma generalizes to the union of any number of children, C1, . . . , Ck , resulting in the 
desirable property of cluster minimality (defined in Hoffman et al., 2001a and in Section 2.3) holding for canonical–optimal 
DR-plans.

Example 10 (DR-plan for self-similar structure). This example details the decomposition of the graph in Fig. 3, a canonical 
DR-plan of G . It begins with the whole (isostatic) graph as the root. The graph G has only two isostatic vertex-maximal 
subgraphs: G without the outermost triangle composed of K3,3 graphs (triangle 1) and G without the inner triangle (trian-
gle N). These intersect on G without triangle 1 and N which is clearly isostatic. As explained in the proof of Theorem 6, 
since there are only 2 possible children, their intersection must be a node 2 levels below the parent. As expected, it is on 
the third level, as a child of both of G ’s children.

Both of G ’s children are similar to G , but containing only N − 1 triangles. Therefore, the canonical DR-plans of these 
children follow the same pattern. This continues downward until the individual doublets are reached (there will be multiple 
occurrences of the same doublets at this level, but they can be represented as the same node in a DAG).

Further decomposition of one of these doublets is shown. The three edges between the triangles and the triangles 
themselves all intersect trivially pairwise. By Theorem 6, part 1, they must all be children in the DR-plan. Similarly, the 
triangles decompose into their three trivially intersecting K3,3’s. Then the K3,3 subgraphs decompose into their separate 9 
edges.

The self-similar nature of this graph is evident in the canonical DR-plan. Many structures are repeated throughout the 
DR-plan, allowing for shared computation in both decomposition and recombination.

3.2. Algorithm

The algorithm for finding an optimal DR-plan relies on key structural properties of canonical DR-plans that are revealed 
by the proof of Theorem 6. We begin by redefining the canonical DR-plan in a recursive manner and also by recursively 
defining the new pseudosequential DR-plan to highlight the similarities. We show that this pseudosequential DR-plan is 
optimal (i.e. has the smallest maximum fan-in over all nodes) and has at most the same overall size (i.e. number of unique 
nodes) as a canonical DR-plan, and is in general smaller. By ensuring that no two nodes contain the same subgraph, the 
pseudosequential DR-plan is more malleable for algorithmic purposes.

Definition 11 (Canonical DR-plan). A canonical DR-plan of an isostatic G is recursively defined as follows:

1. Base case: When G is a single edge, the canonical DR-plan for G is G itself.
2. In case the pairwise intersections of the proper vertex-maximal rigid subgraphs Ci of G are all trivial, take the children 

of G to be the roots of the canonical DR-plans for Ci .
3. In case there are two proper vertex-maximal rigid subgraphs Ci and C j of G with non-trivial intersection, take the 

children of G to be the roots of the canonical DR-plans for Ci and C j .

Now we define the pseudosequential DR-plan in a manner analogous to Definition 11.

Definition 12 (Pseudosequential DR-plan, appendage, partner). A pseudosequential DR-plan of an isostatic G is recursively de-
fined as follows:
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1. Base case: When G is an edge, the pseudosequential DR-plan for G is G itself.
2. In case the pairwise intersections of the proper vertex-maximal rigid subgraphs Ci of G are all trivial, take the children 

of G to be the roots of the pseudosequential DR-plans for Ci .
3. In case there are two proper vertex-maximal rigid subgraphs Ci and C j of G with non-trivial intersection, take the 

children of G to be the roots of pseudosequential DR-plans for C j \ Ci (called an appendage), and Ci (called its partner).

Remark 13 (Size of pseudosequential DR-plan). Any rigid subgraph appears in at most one node of a pseudosequential DR-plan. 
Also, if an edge e of G belongs in the rigid subgraph at any two nodes A and B of a pseudosequential DR-plan, then either 
A ⊂ B or B ⊂ A. Since the leaves of pseudosequential DR-plan tree are the O (|V (G)|) edges of the independent input graph, 
this implies the size of the DR-plan is O (|V (G)|).

Observation 14 (Pseudosequential is optimal). Any pseudosequential DR-plan of an independent graph is optimal.

Proof. We need to show the statement: (*) the max fan-in (i.e. number of children) of any pseudosequential DR-plan 
for an independent graph G is no larger that of some canonical DR-plan for G . By Theorem 6, this would imply that the 
pseudosequential DR-plan is optimal.

Recall that both pseudosequential and canonical DR-plans are defined recursively. We will prove the statement (*) by 
induction on the height of a pseudosequential DR-plan for G . The base case (height of 0, i.e. single edges) trivially holds. 
Induction hypothesis: (*) holds for independent graphs G with pseudosequential DR-plans of height h.

Induction step: a pseudosequential DR-plan of height h + 1 rooted at a node G consists of pseudosequential DR-plans 
(of height at most h) rooted at the children of G , which we call the set C . It is sufficient to show (a) the children C will 
exist somewhere in some canonical DR-plan, and (b) |C | is less than or equal to the max fan-in of some canonical DR-plan. 
Given (a), then by the recursive definition of canonical DR-plans, these nodes are the roots of canonical DR-plans, thus the 
induction hypothesis applies to the nodes in C . Additionally given (b), the proof of the induction step of (*) is complete.

Case (1): When the isostatic vertex-maximal proper subgraphs of G have trivial intersections, the children of G in any 
canonical DR-plan are the same set C of children in any pseudosequential DR-plan. Thus both conditions (a) and (b) are 
immediately satisfied.

Case (2): When the isostatic vertex-maximal proper subgraphs of G have non-trivial intersections, the children C are 
the isostatic components of some appendage, Ai , and its partner. The partner will be a child of G in some canonical 
DR-plan. Furthermore, in any canonical DR-plan there will be some node N − 1 levels below G (where N is the number of 
appendages) containing the core (the common intersection of all the isostatic vertex-maximal proper subgraphs of G) plus 
appendage Ai . In some canonical DR-plan, the children of this node will be the components of Ai and the core. This node 
has the same fan-in as G in the pseudosequential DR-plan, satisfying (b), and, along with the partner (a child of G), shows 
that some canonical DR-plan has all the nodes in C , thereby satisfying (a). �
Definition 15 (Branch). Given a pseudosequential DR-plan P G for an isostatic graph G , and an edge e ∈ G , the 
Branch(G, e, P G) is the subtree of the DR-plan consisting of the path from the root containing G to the leaf contain-
ing e, together with the children of all the nodes on this path, which are the leaves of Branch(G, e, P G). See Fig. 4 for 
examples.

Observation 16 (Pseudosequential DR-plan recursively from branches). A pseudosequential DR-plan P G for an isostatic graph G
is obtained from Branch(G, e, P G) by recursively attaching to each of its leaves L a pseudosequential DR-plan P L for L.

The next two lemmas are the crux of our O (|V |3) algorithm to find a pseudosequential DR-plan.

Lemma 17 (Branch leaves from components). Let G be isostatic, e be an edge in G, and Components(G \ e) be the set of maximal rigid 
components of G \ e. Then there is a pseudosequential DR-plan P G for G such that Components(G \ e) is exactly the set of leaves of 
Branch(G, e, P G) (minus e itself).

Proof. Follows from the structure of a pseudosequential DR-plan and the definition of Branch(G, e, P G). �
Lemma 18 (Branch from branch leaves). For an isostatic graph G containing an edge e, the Branch(G, e, P G) for a pseudosequential 
DR-plan P G can be constructed from Components(G \ e), i.e. from the set of leaves of Branch(G, e, P G), by carrying out – for each 
leaf L – one computation of Components(G \ f ), where f is any edge in L.

Proof. First note that in order to obtain Branch(G, e, P G) from the set of subgraphs at its leaves, it is sufficient to find the 
subgraphs at the nodes along the path from G to e in P G . Once these non-leaf nodes of the branch are known, the branch 
leaves can be organized by parent node (and level) thereby obtaining the branch.
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Fig. 4. This figure illustrates the notion of a branch, how it relates to the components of G \ e, and the variety of cases discussed in the proof of Lemma 18. 
Each subfigure is Branch(G, e, P G ) for some edge e (resp. Branch(G, f , P G )), the white nodes are the path from G to e (resp. f ), and the black nodes 
are the set Components(G \ e) (resp. G \ f ). In subfigures (b), (c), and (d), nodes are labeled with the case they fall under in the proof of Lemma 18
if they are chosen to be D (given the choice of L discussed below), any unlabeled node falls under Case (1b). (a) has nodes labeled L1 and L2 (L′

1 will 
be discussed later), from which different edges f are taken in subsequent figures. Note that the node labeled ‘Core+A1+A2’ is a subgraph of G that has 
2 isostatic vertex-maximal proper subgraphs intersecting non-trivially. The core is the intersection of these subgraphs and Ai is an appendage. (b) uses 
f = L1. (c) uses an arbitrary f ∈ L2. (d) uses an f in the core in L3. (e) uses an f in the appendage A1 in L3. Note that this contains a node D that has 
Case (3). With this D , D ∪ L3 is ‘Core+A1+A2’ and D ∩ L3 is ‘Core’. The leaves labeled L′

3 in (a) are the leaves that will allow us to find the node on the 
path from G to e that is their sibling (the parent of e).

For a leaf L and edge f ∈ L, we can classify the component D ∈ Components(G \ f ) as being one of the following cases:
Case (1): D and L are edge disjoint, and D contains (1a) no elements, (1b) exactly one element, or (1c) more than one 

element of Components(G \e). Case (2): D and L have non-empty intersection of edge sets, and D is (2a) a proper subgraph 
or (2b) not a subgraph of L. Note that this list is exhaustive. If D and L are edge disjoint, D cannot contain subgraphs of 
elements of Components(G \ e). If D and L have non-empty intersection of edge sets, D cannot be exactly L.

Now observe that it is impossible for all D ∈ Components(G \ f ) to be Case (1b), as this would imply f = e.
Case (1a) implies that D = e, and is therefore a sibling of L and an element on the path from G to e. Furthermore, we 

can classify the rest of the leaves (i.e. Components(G \ e)) as children of the ancestors of D .
Similarly, Case (1c) implies that D is a sibling of L on the path from G to e. It also allows us to partition the leaves 

as either children of L (those components which are subgraphs of D) or as children of the ancestors of D . This case 
occurs when the siblings of L in (any pseudosequential DR-plan) P G have either (1c1) trivial pairwise intersection or (1c2) 
non-trivial pairwise intersections, but the edge f is in their common intersection, i.e. the core.

Case (2a) implies that D is a leaf in Branch(L, f , P L) to be used in the next level of recursion of the algorithm.
Case (2b) implies that D is the partner to the appendage containing f . Node D will also contain some other leaves from 

Components(G \ e), namely the siblings of L and their descendants. In this case, D ∪ L is a node along the path from G to 
e with the leaves contained in L being its descendants, L being its child, and all other components in Components(G \ e)
being children of the ancestors of D ∪ L in Branch(G, e, P G). In addition, D ∩ L is a leaf of Branch(L, f , P L) to be used in 
the next recursion level of the algorithm.

One subtle obstacle to overcome in Case (2b) is that the newly found node along the path from G to e is the parent of L
as opposed to a sibling of L as in Case (1a) and (1c). On the surface, this is problematic because the sibling D ′ of L along the 
path from G to e may never be found. However a closer inspection of Case (2b) reveals that L is the partner of an appendage 
A containing e, and A, being underconstrained by Observation 7 and Lemma 8, must have maximal rigid components with 
nontrivial intersections, which means that there must be another sibling of D ′ that is a leaf L′ of Branch(G, e, P G). Hence 
for some edge f ′ in L′ , Components(G \ f ′) will find D ′ within Case (1a) or (1c).

Since each node along the path from G to e is found by the above procedure, the proof is complete. See Fig. 4 for 
examples of the cases. �
Theorem 19 (Complexity of the algorithm). Computing a pseudosequential DR-plan for a graph G has time complexity O (|V (G)|3).

Proof. The previous two lemmas and the O (|V (G)|2) complexity of the pebble game algorithm for computing
Components(G \ e) show that the procedure for computing Branch(G, e, P G) given G and e takes time O (M|V (G)|2), using 
M Components() computations, where M is the number of leaves L of Branch(G, e, P G). Furthermore, in the process, the 
leaves of all the branches Branch(L, f , P L) have already been computed. Recursive computation of a pseudosequential DR-
plan P G as in Observation 16 now proceeds by computing branches Branch(L, f , P L) for each leaf L of Branch(G, e, P G). 
Since each node of P G appears as the leaf L of a branch exactly once during the above recursive procedure, overall one 
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Fig. 5. Two pseudosequential DR-plans of the same isostatic input graph, further decomposition of the diamonds is omitted. (a) also satisfies Property (4) 
of Definition 20 and is therefore a sequential DR-plan as well. The core and the appendages are marked in the figure. (b) uses an alternative decomposition 
of the partner of appendage 1; since the isostatic vertex-maximal proper subgraphs of this node have non-trivial intersections as well, there is a choice in 
which appendage to decompose first. This choice pushes appendage 2 of the input graph further down the plan and the core is not present.

O (|V (L)|2) computation of Components() is carried out for each of the O (|V (G)|) nodes L of P G , resulting in an overall 
complexity of O (|V (G)|3). �
3.3. The ‘essentially unique’ sequential DR-plan

The class of sequential DR-plans is defined as a subset of pseudosequential and satisfies all properties discussed in the 
previous section. Furthermore, we show that a sequential DR-plan can always be obtained from a pseudosequential DR-plan. 
A sequential DR-plan is desirable because it is ‘essentially’ unique, and illustrates that the canonical DR-plan in fact retains 
the essential uniqueness of a complete DR-plan.

Definition 20 (Sequential DR-plan, core). A sequential DR-plan is a pseudosequential DR-plan that additionally satisfies the 
following requirement:

4. Let C be a node and Cs the set of its siblings in a sequential DR-plan. If there is a descendant D of C , with siblings Ds

possessing the property that C ∪ Cs \ Ds is rigid, then for the contiguous sequence of nodes D ′ on the path from C to 
D , we require that C ∪ Cs \ D ′

s be rigid, where D ′
s is the set of siblings of D ′ . Here C , D and D ′ are the partners of the 

appendages Cs , Ds and D ′
s .

Take an independent graph with a sequential DR-plan (i.e. Property (4) holds). Now, if the parent of C ∪ Cs falls under 
Property (2) of Definition 12, while C ∪ Cs falls under Property (3) of Definition 12, then the lowest descendant D as above 
is called the core of C ∪ Cs .

For sequential DR-plans of independent graphs, Property (3) of Definition 12 appears asymmetric with respect to i
and j; but in fact, i and j can be switched, using the appendage Ci \ C j instead. Let C1, C2, . . . , CN be a complete list 
of proper vertex-maximal rigid subgraphs of C . Their pairwise intersections must all be nontrivial, and their common 
intersection, called a core, is isostatic by Lemma 8. Denote by Ai the ith appendage, where Ai = C j \ Ci , for any j �= i. 
Note that Ci = C \ Ai ; and Ci = ⋂

i Ci
⋃

j �=i A j . Choosing a particular ordering of the Ci , i.e. choosing the maximal rigid 
components of a particular appendage, say A1, and its partner C1 to be the children of C simply pushes down the nodes 
corresponding to the appendages A2, A3, . . . , AN to a lower level of the sequential DR-plan and the corresponding partners 
are created as C1 ∩ C2, C1 ∩ C2 ∩ C3, . . .; the last appendage, AN , will always have the core, 

⋂
i Ci , as its partner. Thus, we 

come to the following conclusion.

Remark 21 (Essential uniqueness of sequential DR-plans). Modulo the ordering of appendages and the corresponding partners, 
the sequential DR-plan is unique.

For an example of a pseudosequential DR-plan that is not sequential (i.e. Property (4) does not hold), see Fig. 5. Note 
that the core is not present in the pseudosequential DR-plan (Fig. 5b) and the order of the appendages cannot be easily 
changed. Nevertheless, we will now show that a sequential DR-plan can be found from any pseudosequential DR-plan in 
linear time (in the size of the input graph), making it a worthwhile tool in practice.



12 T. Baker et al. / Computer Aided Geometric Design 40 (2015) 1–25
Fig. 6. Both figures are canonical and cluster-minimal DR-plans of the same singly overconstrained rigid graph. Further decomposition of the bottom level 
is omitted (indicated by tree edges) and dashed lines indicate a decomposition similar to the other nodes on the same level. (a) is an optimal DR-plan, 
with a fan-in of 5. (b) has a fan-in of 9 and is non-optimal, shown by the preceding counter-example.

Lemma 22 (Pseudosequential to sequential DR-plan). Any pseudosequential DR-plan for an independent graph can be converted to a 
sequential DR-plan (satisfying Property (4)) in time O (|V (G)|).

Proof. For independent graphs, note that Properties (2) and (3) of Definition 12 automatically imply that the following holds 
for a pseudosequential DR-plan: for a node G that falls under Property (2), there is no child C of G = C ∪ Cs for which there 
is a descendant D with siblings Ds possessing the property that C ∪ Cs \ Ds is rigid; for a node G that falls under Property 
(3), such a descendant D exists for a unique child C of the node G = C ∪ Cs , as well as for unique children of all D ′ on the 
path from C to D . Furthermore, for all such D ′ , it automatically holds that D ′ ∪ D ′

s \ Ds is rigid. We call this Property (4′)
(since it is a parallel property of Property (4) of Definition 20).

Given a pseudosequential DR-plan of an independent graph where nodes with Property (3) of Definition 12 are labeled, 
we show how to enforce Property (4) of Definition 20, for a node C ∪ Cs with Property (3), i.e. when there is a descendant 
D with siblings Ds possessing the property that C \ Ds ∪ Cs is rigid.

Let D be any such descendant where Property (4) does not hold and let D∗ (with siblings D∗
s ) be the highest node along 

the path from C to D where C ∪ Cs \ D∗
s is not rigid. Since we know that C ∪ Cs \ Ds is in fact rigid by the hypothesis of 

Property (4), and since Property (4′) holds for D∗ , i.e. D∗ ∪ D∗
s \ Ds , we “switch D∗

s with Ds” by setting up the partners and 
appendages along the path from D∗ to D as follows.

At the level of each partner node D ′ on the path starting from D to a child of D∗ the appendage becomes parent(D ′)s

and the new partner becomes D ′ ∪ D ′
s \ Ds (which we know to be rigid by Property (4′)). In particular, at the level of the 

partner node D the appendage becomes parent(D)s and the new partner remains D . However, at the next higher level the 
old partner node parent(D) = D ∪ Ds becomes the new partner D ∪ parent(D)s of the new appendage is parent(parent(D))s .

At the level of the node D∗ , the appendage becomes Ds and the partner becomes D∗ ∪ D∗
s \ Ds (which we know to be 

rigid by Property (4)).
Once the above switch has been completed, moving Ds up the path from D to C , it is unnecessary to inspect any of the 

siblings of any of the nodes along this path. This is because C is the unique child of C ∪ Cs for which such a descendant D
even exists, and the same uniqueness holds for every node that is on the path from C to D .

Note that in the same iteration, the algorithm can simultaneously perform the above process on all such descendants 
of C for which Property (4) does not hold, since they must all be on the same descending path from C . Once Property (4) 
has been enforced for all such descendants of C , the algorithm has found the core for C ∪ Cs , namely the last node in a 
contiguous path of nodes D ′ starting down from C , for which C ∪ Cs \ D ′

s is rigid. The order of appendages of all of these 
nodes are interchangeable (with appropriate partners) as indicated in Remark 21.

The algorithm then proceeds to the next node C ∪ Cs with Property (3), for which there is a descendant D with siblings 
Ds possessing the property that C \ Ds ∪ Cs is rigid and for which Property (4) does not hold.

This process continues until Property (4) always holds, resulting in a sequential DR-plan. It is clear that the algorithm 
visits any given node of the sequential DR-plan at most O (1) times resulting in a linear time complexity. �
3.4. Overconstrained graphs and NP-hardness of optimal DR-planning

For overconstrained (not independent) graphs, a canonical DR-plan is still well-defined. However, it may be far from 
optimal. The proofs of Theorem 6, Observation 7, and Lemma 8 all fail for overconstrained graphs. It is important to note 
that, regardless whether the graph is overconstrained, if every node in a canonical DR-plan R has clusters whose pairwise 
intersection is trivial, then the DR-plan is the unique one satisfying Property (2), and since we know that there is an optimal 
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DR-plan that satisfies Property (2), R is in fact optimal. The problem arises when some node in a DR-plan has clusters whose 
pairwise intersection is non-trivial. In this case, an arbitrary choice of a pair of clusters as children of an overconstrained 
node in a canonical DR-plan may not result in an optimal DR-plan. This is in contrast to independent graphs, which, as 
shown in Theorem 6, exhibit the strong Church–Rosser property that any choice yields an optimal DR-plan. A good source 
of examples of overconstrained graphs with canonical DR-plans that are not optimal are graphs whose cluster-minimal 
DR-plans that are not optimal. The example shown in Fig. 6 is a canonical, cluster-minimal DR-plan that is not optimal; an 
optimal DR-plan is also shown in the figure. The root cause of the NP-hardness is encapsulated in this figure: because the 
different choices of vertex-maximal subgraphs for overconstrained input do not incur the same fan-in, finding the optimal 
DR-plan becomes a search problem with a combinatorial explosion of options.

As mentioned earlier, the Modified Frontier algorithm version given in Lomonosov (2004) runs in polynomial time and 
finds a cluster-minimal DR-plan for any graph. Similarly, the algorithm given above finds a canonical DR-plan also for any 
input graph. However neither of these DR-plans may be optimal for overconstrained graphs as shown in Fig. 6.

While the canonical DR-plan is optimal only if the input graph is independent, when there are only k overconstraints for 
some fixed k, we can still find the optimal DR-plan using a straightforward modification of the above algorithm. However, 
the time complexity is exponential in k.

This exponential growth of time complexity for overconstrained graphs is in fact captured in the proof of NP-hardness 
of optimal DR-planning in Sitharam (2005), Lomonosov (2004).

4. Recombination and problem relationships

In this section, we consider the optimal recombination problem of combining specific solutions of subsystems in a DR-plan 
into a solution of their parent system I (without loss of generality, at the top level of the DR-plan). In the case of isostatic 
qusecs, the parent system I is isostatic (the root of the DR-plan), and we seek solution(s) (among a finite large number of 
solutions) with a specific orientation or chirality. In the case of underconstrained qusecs the subsystems are the multiple roots of 
the DR-plan, the parent system I is underconstrained, and we typically seek an efficient algorithmic description of connected 
component(s) of solutions with a specific orientation or chirality.

The main barrier in recombination when given an optimal DR-plan (of smallest possible size or max fan-in) for a system 
S , is that the number of children of the root (resp. number of roots of the DR-plan) – and correspondingly the size and 
complexity of the (indecomposable) algebraic system I to be solved – could be arbitrarily large as a function of the size 
of S . This difficulty can persist even after optimal parametrization of the indecomposable system I as in Sitharam et al.
(2010a) to minimize its algebraic complexity.

4.1. Previous work

We now briefly survey existing techniques for handling the complexity of recombination of DR-plans for qusecs. The 
limitations of these techniques directly motivate the contributions in this section.

4.1.1. Optimal recombination and solution space navigation
For the entire DR-plan, finding all desired solutions is barely tractable even if recombination of solved subsystems is 

easy for each indecomposable parent system in the DR-plan. This is because even for the simplest, highly decomposable 
systems with small DR-plans, the problem of finding even a single solution to the input system at the root of the DR-plan 
is NP-hard (Saxe, 1979) and there is a combinatorial explosion of solutions (Borcea and Streinu, 2004). Typically, however, 
the desired solution has a given orientation type, in which case, the crux of the difficulty is concentrated in the algebraic 
complexity of (re)combining child system solutions to give a solution to the parent system at any given level of the DR-plan. 
For fairly general 3D constraint systems, there are algorithms with formal guarantees that uncover underlying matroids to 
combinatorially obtain an optimal parameterization to minimize the algebraic complexity of the indecomposable parent 
(sub)systems that occur in the DR-plan (Sitharam et al., 2010a, 2010b; Sitharam, 2006), provided the DR-plan meets some 
of the abovementioned criteria.

However, the generality of these algorithms trades-off against efficiency, and, despite the optimization, the best algo-
rithms can still take exponential time in the number of child subsystems (which can be arbitrarily large even for optimal 
DR-plans) in order to guarantee all solutions of a given orientation type, even for a single (sub)system in a DR-plan. They 
are prohibitively slow in practice. We note that, utilizing the DR-plan and optimal recombination as a principled basis, 
high performance heuristics and software exists (Sitharam et al., 2006) to tame combinatorial explosion via user interven-
tion.

4.1.2. Configuration spaces of underconstrained systems
For underconstrained 2D bar–joint and body–hyperpin qusecs obtained from various subclasses of tree-decomposable 

systems, algorithms have been developed to complete them into isostatic systems (Joan-Arinyo et al., 2003; Sitharam, 2005;
Gao et al., 2006; Sitharam and Gao, 2010) and to find paths within the connected components (Sitharam et al., 2011a;
Hidalgo and Joan-Arinyo, 2011) of standard Cartesian configuration spaces. Most of the algorithms with formal guar-
antees leverage Cayley configuration space theory (Sitharam and Gao, 2010; Sitharam et al., 2011a, 2011b) to charac-
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terize subclasses of graphs and additional constraints that control combinatorial explosion, and provide faithful bijec-
tive representation of connected components and paths. These algorithms have decreasing efficiency as the subclass of 
systems gets bigger, with highest efficiency for underlying partial 2-tree graphs (alternately called tree-width 2, series-
parallel, and K4 minor avoiding), moderate efficiency for 1 degree-of-freedom (dof) graphs with low Cayley complexity 
(which include common linkages such as the Strandbeest, Limacon, and Cardioid), and decreased efficiency for general 
1-dof tree-decomposable graphs. While software suites exist (Key Curriculum, 1995; Porta et al., 2014; Siemens, 1999;
Todd, 2007), no such formal algorithms and guarantees are known for non-tree-decomposable systems.

4.2. Optimal modification for recombination

In the following, we formulate the problem of optimal modification of an indecomposable algebraic system I at some node 
of a (possibly optimal) DR-plan into a decomposable system with a small DR-plan (low algebraic complexity). Leveraging 
recent results on Cayley configuration spaces, our approach to the optimal modification problem achieves the following:

(a) Small DR-plan. We obtain a parameterized family of systems IλF – one for each value λF for the parameters F , all of 
which have small DR-plans. Thus, given a value v for λF , the system I v can potentially be solved or realized easily once 
the orientation type of the solution is known (when the DR-plan size is small enough).

(b) Solution preservation. Moreover, the union of solution spaces of the systems in the family IλF is guaranteed to contain 
all of I ’s solutions.

(c) Efficient search. Finally, the so-called Cayley or distance parameter space λF is convex or otherwise easy to traverse in 
order to search for I ’s solution (or connected component) of the desired orientation type. For the case when the modi-
fication (number of Cayley parameters) is bounded, this approach provides an efficient algorithm for recombination. We 
first define the decision version of the problem of optimal modification for decomposition. The standard optimization 
versions are straightforward.

Optimal Modification for Decomposition (OMD) problem. Given a generically independent graph G = (V , E) with no non-
trivial proper isostatic subgraph (indecomposable) and 2 constants k and s, does there exist a set of at most k edges E1 and 
a set of non-edges F such that the modified graph H = (V , E \ E1 ∪ F ) has a DR-plan of size at most s? The OMDk problem 
is OMD where k is a fixed bound (not part of the input). We say that such a tuple (G, s) is a member of the set OMDk . We 
loosely refer to graphs G as OMD with appropriately small k and s or OMDk with appropriately small s.

It is immediately clear that indecomposable graphs G that belong in OMDk for small k and s lend themselves to modi-
fication into decomposable graphs satisfying Criteria (a) and (b) above. However, it is not clear how Criterion (c) is met by 
OMD graphs. Before we consider this question, we discuss previous work on recombination of DR-plans.

4.3. Using convex Cayley configuration spaces

Next we provide the necessary background to describe a specific approach for achieving the requirements (a)–(c) men-
tioned above, by restricting the class of reduced graphs G ′ = G \ E1 and their isostatic completions H in the above definition 
of the OMD problem, and using a key theorem of Convex Cayley configuration spaces (Sitharam and Gao, 2010). This theo-
rem characterizes the class of graphs H and non-edges F (Cayley parameters), such that the set of vectors λF of attainable 
lengths of the non-edges F is always convex for any given lengths δ for the edges of H (i.e. over all the realizations of 
the bar–joint constraint system or linkage (H, δ) in 2 dimensions). This set is called the (2-dimensional) Cayley configuration 
space of the linkage (H, δ) on the Cayley parameters F , denoted �F (H, δ) and can be viewed as a “projection” of the Carte-
sian realization space of (H, δ) on the Cayley parameters F . Such graphs H are said to have convexifiable Cayley configuration 
spaces for some parameters F (short: H is convexifiable).

To state the theorem, we first have to define the notion of 2-sums and 2-trees. Let H1 and H2 be two graphs on disjoint 
sets of vertices V 1 and V 2, with edge sets E1 and E2 containing edges (u, v) and (w, x) respectively. A 2-sum of H1 and 
H2 is a graph H obtained by taking the union of H1 and H2 and identifying u = w and v = w . In this case, H1 and H2 are 
called 2-sum components of H . A minimal 2-sum component of H is one that cannot be further split into 2-sum components. 
A 2-tree is recursively obtained by taking a 2-sum of 2-trees, with the base case of a 2-tree being a triangle. A partial 2-tree
is a 2-tree minus some edges. Partial 2-trees have an alternate characterization as the graphs that avoid K4 minors, and are 
also called series-parallel graphs.

Theorem 23. (See Sitharam and Gao, 2010.) H has a convexifiable Cayley configuration space with parameters F if and only if for 
each f ∈ F all the minimal 2-sum components of H ∪ F that contain both endpoints of f are partial 2-trees. The Cayley configuration 
space �F (H, δ) of a bar–joint system or linkage (H, δ) is a convex polytope. When H ∪ F is a 2-tree, the bounding hyperplanes of this 
polytope are triangle inequalities relating the lengths of edges of the triangles in H ∪ F .

The idea of our approach to achieve the criteria (a)–(c) begins with the following simple but useful theorem.
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Fig. 7. (a) The K3,3 with two labeled edges, e1 and e2. (b) The K3,3 with e1 and e2 removed (dashed lines) and rearranged to illustrate that it is now a 
partial 2-tree. (c) The K3,3 with {e1, e2} removed and { f1, f2} (bold lines) added to make a 2-tree, showing that the K3,3 is at least OMD2. (d) The K3,3

with only e2 removed (dashed line). (e) The K3,3 with e2 removed and f3 (bold line) added to make a low Cayley complexity graph, showing that the K3,3

is OMD1.

Theorem 24. Given an indecomposable graph G, let G ′ be a spanning partial 2-tree subgraph in G with k fewer edges than G. Then 
(G, 2) belongs in the set OMDk.

Proof. The proof follows from the fact that 2-trees are well decomposable and have simple DR-plans of size 2. We know 
that G can be reduced by removing k edges to create a partial 2-tree G ′ which can then be completed to an (isostatic) 2-tree 
by adding some set of non-edges F . Thus the modified graph H = G ′ ∪ F has a DR-plan of size 2, proving the theorem. �

We refer to such graphs G in short as k-approximately convexifiable, where the reduced graphs G ′ and isostatic comple-
tions H are convexifiable. As observed earlier, since graphs such as G are in OMDk , Criteria (a) and (b) are automatically 
met for small enough k. Criterion (c) is addressed as described in the following efficient search procedure which clarifies 
the dependence of the complexity on the number and ranges of Cayley parameters F .

Theorem∗ 25 (Efficient search). For an indecomposable, k-approximately convexifiable graph G = (V , E), let G ′ = (V , E ′ = E \ D) be 
a spanning partial 2-tree subgraph where |D| ≤ k. Let F be a set of non-edges of G such that H = (V , E ′ ∪ F ) is a 2-tree. Each solution 
p (or connected component of a solution space) of (G, δ) of an orientation type σp can be found in time O (log(W )) where W is the 
number of cells of desired accuracy (discrete volume) of the convex polytope �F (G ′, δ′

E). The (discrete) volume W is exponential in |F |
and polynomial in the (discrete range) of the parameters in F .

Note that a major advantage of the convex Cayley method is that it is completely unaffected when δ are intervals of 
values rather than exact values (Sitharam and Gao, 2010).

Example 26 (Using Cayley configuration space). A graph G = K3,3 cannot be decomposed into any nontrivial isostatic graphs, 
i.e. its DR-plan has a root and 9 children corresponding to the 9 edges. Solving or recombining the system (G, δ) correspond-
ing to the root of this DR-plan involves solving a quadratic system with 8 equations and variables. Instead of simultaneously 
solving this system, we could instead use the fact that G = K3,3 is in OMD2: remove the edges e1, e2 in Fig. 7 to give 
a partial 2-tree G ′ . Now add the non-edges f1, f2 to give a 2-tree H with a DR-plan of size 2. The Cayley configuration 
space � f (G ′, δE\e) is a single interval of attainable length values λF for the edge f . When δ is generic, i.e. does not ad-
mit collinearities or coincidences in the realizations of (G, δ), the realization space of (H, 〈δE\e, λ f 〉) has 16 solutions qp

λ f

(modulo orientation preserving isometries), with distinct orientation types σp (two orientation choices for each of the 4 
triangles) that can be obtained by solving a sequence of 4 single quadratics in 1 variable (DR-plan of size 2). By subdivided 
binary search in the interval λ f ∈ � f (G ′, δE\e), the desired solution p of (G, δ) is found when the length of the nonedge e
in the realization qp

λ f
is δe .

In fact, we can show that G = K3,3 is in OMD1 by removing a single edge to reduce (as shown in Fig. 7) to a tree-
decomposable graph of low Cayley complexity (which includes the class of partial 2-trees). In Section 4.4, we discuss this 
issue of why the largest class of reduced graphs is desirable.

4.4. Optimized modification by enlarging the class of reduced graphs

It is possible in principle to decrease k for an OMDk graph (i.e. the number of edges to be removed to ensure an isostatic 
completion that is decomposable with a small DR-plan) by considering reduced graphs G ′ (and modified graphs H) that 
come from a larger class than partial 2-trees but nevertheless have convex Cayley configuration spaces at least when the 
realization space is restricted to a sufficiently comprehensive orientation type. In particular, the so-called tree-decomposable 
graphs of low Cayley complexity (Sitharam et al., 2011a, 2011b) include the partial 2-trees and many others that are not partial 
2-trees. See an illustration in Fig. 7. These too result in DR-plans of size 2 or 3, putting G in the class OMDk and thus meet-
ing Criteria (a) and (b). The Criterion (c) is met – for example when k = 1 – because 1-dof Cayley configuration spaces of 
linkages based on such graphs G ′ are known to be single intervals when a comprehensive orientation type σp of the sought 
solution p is given. In addition, the bounds of these intervals are of low algebraic complexity. More precisely, the bounds 
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can themselves be computed using a DR-plan of size 2 or 3, i.e. the computation of these bounds is tree-decomposable. 
Alternatively, the bounds are in a simple quadratic or radically solvable extension field over the rationals, or they can be 
computed by solving a triangularized system of quadratics.

4.5. Problem relationships

In this section we provide a unified view of the various problems studied in the previous 2 sections, along with formal 
reductions between them. We discuss their relationship to other known problems and results as well as open questions.

4.5.1. Special classes of small DR-plans
As seen in the previous section, 2-trees and tree-decomposable graphs have not only small, but also special DR-plans 

that permit easy solving – essentially by solving a single quadratic at a time.
The restricted optimal DR-planning problem requires DR-plans of one of these types, which reduces to recognizing if the 

input graph is a 2-tree or a tree-decomposable graph for which simple near-linear time algorithms are available (Valdes et 
al., 1979; Fudos and Hoffmann, 1997) and the DR-plan is a by-product output of the recognition algorithm.

In the recombination setting, the corresponding restricted OMDk problem requires the reduced graph G ′ and its isostatic 
completion H to be 2-trees as in Section 4.3 or to be a low Cayley complexity tree-decomposable graph as in Section 4.4. 
Clearly these problems have deterministic polynomial time algorithms in n, but the algorithms run in time exponential in k.

We discuss the complexity of the restricted OMD problem (when k is part of the input) in the open-problem Section 7.1.

4.5.2. Optimal modification, completion and recombination: previous work and formal connections
The OMD problem is closely related to a well-studied problem of completion of an underconstrained system to an 

isostatic one with a small DR-plan.

Observation 27. The (decision version of) the optimal completion problem (OC) from Sitharam (2005), Joan-Arinyo et al.
(2003), Zhang and Gao (2006) is OMD0.

In fact, a restricted OC problem was studied by Joan-Arinyo et al. (2003) requiring the completion to be tree-
decomposable.

We now connect the OMD problem to the informal optimal recombination (OR) problem mentioned as motivation at the 
beginning of Section 4.

In order to connect the OR problem to OMD, when the input graph is the isostatic graph at the DR-plan root, we do 
not consider the case where the two child solved subgraphs (corresponding to already solved subsystems) have a nontrivial 
intersection (in this case the recombination is trivial). We only consider the case where no two child solved subgraphs 
(resp. two root subgraphs when the input graph is underconstrained) share more than 1 vertex. We replace such solved 
subgraphs by isostatic graphs as follows. If a solved subgraph shares at most one vertex with the remainder of the graph, 
simply replace it by an edge one of whose endpoints is the shared vertex. Otherwise, replace it by a 2-tree graph of the 
shared vertices. Finally, we add the additional restriction to the OM problem that when any edge in a solved subgraph is 
chosen among the k edges to be removed, in fact the entire solved subgraph must be removed and all of its edges must be 
counted in k.

This reduction is used also for adapting algorithms for optimal DR-planning, recombination, completion, OMD, and other 
problems from bar–joint systems to so-called body–hyperpin, defined in Section 5, by showing that the problems for the 
latter are reduced to the corresponding problems on bar–joint systems.

5. Application: finding completions of underconstrained glassy structures from underconstrained to isostatic

We can use qusecs DR-plans to design materials such as disordered graphene and silica bi-layers (Wilson et al., 2013;
Heyde, 2013). We investigate a more specific problem in a somewhat more general setting: the problem of finding boundary 
conditions (additional constraints) to add to an underconstrained monolayer to make it isostatic. This can be done in a 
number of ways: (1) pin together 2 underconstrained monolayers in such a way that the resulting bi-layer becomes isostatic 
(see Fig. 8); (2) pin the boundary of (or in general, add constraints to) a layer (possibly a genus 0 monolayer) so that it 
becomes isostatic; or (3) design a broader class of structures to ensure they are isostatic, self-similar (via some subdivision 
rule) and in addition isostatic at each level of the subdivision (see Fig. 9).

In all cases, we are specifically interested in how to add additional constraints such that the resulting isostatic structure 
has a small DR-plan; this way a realization can be found, allowing efficient stress, flex and other property design related to 
the rigidity matrix. To answer these questions, we first introduce the qusecs that are used to model these materials. In this 
section, we discuss Item (2) in detail.

5.1. Body–hyperpin qusecs

Definition 28 (Body–hyperpin qusecs). A body–hyperpin qusecs is a constraint system where the objects are rigid bodies and 
the constraints are incidences of object subsets at a common point, i.e. a pinning of bodies.
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Fig. 8. Example of a single monolayer of a silica (silicon and oxygen) glassy structure. This can be viewed as a triangle–multipin qusecs where the silicon 
atoms are the triangles and the oxygen atoms are the pins. Not shown here are other monolayers stacked on this one. Each silicon atom has the structure 
seen to the right, and so binds to another oxygen atom in an adjacent monolayer. Pictures taken from Wikimedia Commons (2006, 2008).

Fig. 9. Examples of self-similarity via repeated subdivision. In (a) (Canon et al., 2001), there is a simple subdivision scheme that does not guarantee 
isostaticity. In (b), a more complicated scheme is used, ensuring that the resulting graph is isostatic but not tree-decomposable.

Remark∗ 29. A body–hyperpin qusecs is a special case of bar–joint qusecs of the previous sections of the paper. As such, 
the DR-planning for isostatic systems discussed in Section 3 is unchanged and the results of Section 4 still go through with 
minor modifications.

For the remainder of this section, we deal only with the DR-plan of such qusecs. Hence, we refer only to the combi-
natorics or underlying hypergraph of the qusecs. We now introduce 2 sub-classes of body–hyperpin graphs for modeling 
Examples 4 and 5 in Section 1, for which the optimal completion problem is significantly easier.

Definition 30 (Body–pin graph). A body–pin graph is a body–hyperpin graph with the following conditions: (1) each pin is 
shared by at most two bodies; and (2) no two bodies share more than one pin.

Such a body–pin graph, GBP , can also be seen as a body–bar graph, GBB , where the bodies of GBB are the original bodies 
of GBP and each pin between bodies in GBP are replaced with 2 bars in GBB between the same bodies. Such body–bar 
graphs with 1 and 2-dof can be characterized by being (3, 4) and (3, 5)-tight respectively (Lee and Streinu, 2007; Streinu 
and Theran, 2009) (defined in Section 2.1). See Fig. 10b.

Definition 31 (Triangle–hyperpin graph). A triangle–hyperpin graph is a body–hyperpin graph where each body is a triangle, 
i.e. it shares pins with at most 3 other bodies. This is also represented as a hyper-graph where each pin is a vertex and each 
triangle represents a tri-hyperedge. For such hypergraphs, 1- and 2-dof can be characterized by (2, 4)- and (2, 5)-tightness 
respectively (Lee and Streinu, 2007; Streinu and Theran, 2009).

Body–pin graphs are of particular interest to us in the context of Example 4 in Section 1. Triangle–multipin graphs can 
be used to represent the silica bi-layers and glassy structures described in Example 5 of Section 1, where each triangle is 
the junction of “disks” in the plane (see Fig. 8). Typically, these systems are not isostatic, so to relate the work of this paper 
to the systems, we define a slightly different kind of DR-plan using the notion of (k, l)-sparsity and tightness.

Definition 32 ((k, l)-tight DR-plan). A (k, l)-tight DR-plan is one in which each child node is either a vertex maximal proper 
(k, l)-tight subgraph of the parent node or it is trivial. In our case, the trivial nodes are the bodies.

Provided such (k, l)-sparse graphs are matroidal (conditions given in Lee and Streinu, 2007), the notion of a canonical 
DR-plan extends directly to the case when the hypergraph is (k, l)-sparse (i.e. independent) using the straightforward notion 
of trivial and non-trivial intersections and (k, l)-tightness conditions as in Section 3. In particular, we define canonical 
DR-plans with similar properties for the 1 and 2-dof body–pin and triangle–hyperpin systems defined above.

Observation∗ 33. For the 1-dof body–pin graphs described above that are (3, 4)-sparse, a (3, 4)-tight canonical DR-plan 
exists where every node of a (3, 4)-sparse graph satisfies one of the following: (1) its children are 2 proper vertex-maximal 
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Fig. 10. (a) A 1-dof body–pin graph. (b) The corresponding body–bar graph, explained in Definition 30. (c) The 1-dof DR-plan for the graph. In this case, to 
obtain an isostatic system, we would need to add a body and 2 pins to one of the nodes in the second level. (d) The result of adding one such body to the 
bold-faced node.

Fig. 11. (a) Microfibrils of carboxymethylated nanocellulose adsorbed on a silica surface (Wikimedia Commons, 2010). (b) Cross-linking of cellulose mi-
crofibrils (Wikimedia Commons, 2007c). (c) An isostatic pinned line-incidence graph, representing fibrils and their attachments.

1-dof graphs that intersect on another 1-dof graph; or (2) its children are all of the proper maximal 1-dof subgraphs, 
pairwise sharing at most one body.

As in Section 3, a strong Church–Rosser property holds, making all canonical DR-plans optimal:

Observation∗ 34. When the input is independent, all (3, 4)-tight canonical DR-plans are optimal. We can find such a DR-plan 
in the same time complexity as the (2, 3)-tight case for bar–joint graphs discussed in Section 3.

The abovementioned algorithm exists because such (3, 4)-tight graphs are matroidal and have a pebble game (Lee and 
Streinu, 2007).

The above discussion leads to the main theorem:

Theorem∗ 35. Given a 1-dof body–pin or triangle–multipin graph and corresponding 1-dof DR-plan, there is a quadratic algorithm for 
the 1-dof optimal completion problem of Section 4.

Observation∗ 36. For the 2-dof case, provided an analogous statement to Observation 34 holds, then Theorem 35 holds for 
the 2-dof systems.

Remark 37. While the proof for Theorem 35 gives us a DR-plan for the isostatic completion with minimum fan-in (a reason-
able measure of algebraic complexity), a more nuanced measure that treats solutions of 1-dof and 2-dof systems as 1 or 2 
parameter families would no longer be optimized by the algorithm given in that proof. In particular, the complexity of the 
standard algorithm in the k-dof case would be exponential in k (even if the case were matroidal and an optimal DR-plan is 
known).

6. Application: finding optimal DR-plans and realizations for cross-linking microfibrils

The canonical DR-plan of Section 3 can additionally be applied to analyze and solve the structure of cross-linking collagen 
microfibrils in animals, cellulose microfibrils in plant cell walls, and actin filaments in the cytoskeleton by modeling these 
structures as a third type of qusecs, pinned line-incidence systems.

Collagen is an important protein material in biological tissues with highly elastic mechanical properties (Buehler, 2008). 
Cellulose is the most important constituent of the cell wall of plants (see Fig. 11a) (Fall et al., 2013; Smith, 1971). Both 
of these substances consist of a large number microfibrils, each of which is cross-linked at 2 places with usually 3 other 
fibrils, where the cross-linking is like an incidence constraint that the crosslinked fibrils can slide against each other while 
remaining incident (see Fig. 11b).
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6.1. Modeling the fibrils as a pinned line-incidence system

The cross-linking microfibrils can be modeled as a pinned line-incidence constraint system in R2, where incidence con-
straints are used instead of distance constraints.

Definition 38 (Pinned line-incidence system). A pinned line-incidence system (G, δ) is a graph G = (V , E) together with param-
eters δ specifying |E| pins with fixed positions in R2, such that each edge is constrained to lie on a line passing through the 
corresponding pin, i.e. δ : E →R

2.

A pinned line-incidence graph G is rigid if |E| = 2|V | and |E ′| ≤ 2|V ′| for every induced subgraph (V ′, E ′) (Sitharam et 
al., 2014). Note that no trivial motion exists since the pins have fixed positions on the plane. Euclidean transformations are 
not factored out. In particular, both a single vertex and a single edge are underconstrained graphs.

In the case of microfibril cross-linking, each fibril is attached to some fixed larger organelle/membrane at one site. 
Consequently, each fibril can be modeled as an edge of the graph, with the attachment being the corresponding pin. The 
two cross-linkings in which the fibril participates are modeled as the two vertices in V defining the edge.

Fig. 11c shows an example of a pinned line-incidence graph, where the gray ovals denote pins representing attachments 
of fibrils, and the vertices a1, a2, . . . , c3 represent cross-linkings. The graph is isostatic, with 12 vertices and 24 edges/pins.

6.2. Optimal DR-plan for pinned line-incidence systems

In this section, we will adapt the results in Section 3 to give the canonical DR-plan for pinned line-incidence graphs. 
First, we note that an isostatic pinned line-incidence graph can be disconnected, being the disjoint union of two or more isostatic 
subgraphs. This is because the pins have fixed positions on the plane. We define a trivial graph to be a single vertex and 
make the following modification to the definition of the canonical DR-plan:

Definition 39 (DR-plans of pinned line-incidence systems). The DR-plan of a pinned line-incidence graph G is one in which (1) 
each child node of a non-leaf node C is either a connected rigid vertex-induced subgraph of C , or an edge not contained in 
any proper rigid subgraph of C , and (2) a leaf node is a single edge.

The canonical DR-plan of G is one in which the child rigid subgraphs are connected, isostatic vertex-maximal subgraphs 
of the parent.

Theorem 6 holds for pinned line-incidence graphs with this modified definition. The proof is similar to the original proof 
(in Section 3) using the same set of lemmas and the following modified version of Observation 7, which can be proved 
using a simple counting based argument.

Observation 40. Let Fi and F j be subgraphs of the same isostatic graph F , where each of them can be either a single edge 
or a connected isostatic subgraph. There are only two possible cases: (1) at least one of Fi , F j is an edge, if and only if 
Fi ∪ F j is underconstrained, if and only if Fi ∩ F j is trivial; and (2) both Fi and F j are isostatic, if and only if Fi ∪ F j is 
isostatic, if and only if Fi ∩ F j is isostatic.

Given Observation 40, Lemma 8, Points 1 and 3, straightforwardly extend to pinned line-incidence graphs. The proof of 
Point 2 for pinned line-incidence graphs is given in Appendix A.4.1. Thus it is straightforward to adapt the proof of Theo-
rem 6 to pinned line-incidence graphs. Consequently, we can efficiently find the optimal DR-plan for pinned line-incidence 
graphs using basically the same algorithm as for bar–joint graphs.

Note that the recombination problem for pinned line-incidence systems is trivial. Since the pins are given fixed posi-
tions in the plane, the solutions of an isostatic subsystem will automatically be consistent with the solutions of the other 
subsystems.

7. Open problems and conclusion

7.1. Open problems

The results of this paper lead to a number of open problems. The first set of problems are from Section 3:

Open Problem 1. Is there a more efficient algorithm than O (|V |3) to find the canonical DR-plan of isostatic 2D bar–joint 
graphs?

Conjecture 41. The Modified Frontier Algorithm (MFA) (Lomonosov, 2004) finds a canonical, and hence optimal, DR-plan.
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The difficulty of proving Conjecture 41 arises from the fact that MFA, although running in time O (n3), is a bottom-up 
algorithm, involving complex data structures. However, a proof of optimality, even if it exists, would not be possible without 
the new notion of a canonical DR-plan at hand. The intuition for this conjecture comes from the similarity of the DR-plan 
generated by MFA to that of the pseudosequential decomposition described in the proof of Theorem 19. Since it is known 
(Lomonosov, 2004) that the DR-plan generated by MFA is cluster-minimal, an alternate conjecture is the following.

Conjecture 42. For independent graphs, cluster-minimal DR-plans are optimal. In fact, for independent graphs, cluster-minimality and 
canonical are equivalent properties of a DR-plan.

Open Problem 2. Although generic rigidity is a property of graphs, and moreover, in the case of qusecs, generic rigidity 
has a combinatorial sparsity and tightness-based characterization, the original definition of independence in the rigidity 
matroid requires an algebraic notion of independence of vectors of indeterminates over R. Thus the definition of the DR-plan 
requires algebra over the reals. In fact, the recursive decomposition problem is not tied to geometric constraint graphs or 
an algebraic–geometric or mechanical notion of rigidity, and can be defined for any graph using the notion of an abstract 
rigidity matroid (Graver et al., 1993). This is a type of matroid with two additional matroid axioms; abstract rigidity matroids 
can be defined in a purely graph-theoretic manner, with no need for algebra in their definition. However, such abstract 
rigidity need not have a sparsity characterization. On the other hand, there are sparsity matroids that do not correspond to 
any notion of abstract rigidity. However, when an abstract rigidity matroid is also a sparsity matroid, then the techniques of 
this paper directly apply and we can obtain purely combinatorially defined recursive decompositions of graphs.

A few natural open questions concern the following common theme that runs through the optimal recombination and 
later sections of the paper:

Open Problem 3. For fixed k, we have polynomial time optimal DR-planning (Section 3), recombination (modification) in the 
presence of k overconstraints, optimal modification for decomposition OMDk(G) when at most k constraints are removed 
(Section 4), and also optimal completion using at most k ≤ 2 constraints in the body–pin and triangle–multipin cases for 
a somewhat different optimization of the DR-plan (Section 4.5). However, in the running time of all of these algorithms, 
k appears in the exponent. Can k be removed from the exponent?

One problem in the above theme is from Section 5.

Open Problem 4. What is the complexity of the optimal completion problem when the given graph has more than 2-dofs? 
Our proof for the 1- and 2-dof cases relied heavily on the matroidal properties of their corresponding (k, l)-tightness. For 
higher number of dofs, the (k, l) characterization is no longer matroidal (Lee and Streinu, 2007). As a result, the major 
obstacle is that there is no easy way of obtaining an optimal or canonical k-dof DR-plan in general. Even assuming such a 
DR-plan is available, if higher dofs had the same characteristics, Observation 37 raises questions about the correct measure 
of DR-plan size that captures algebraic complexity for recombining graphs with many dofs (this is not an issue in the 
isostatic case). Unless some restrictions can be found and taken advantage of, the k-dof optimal completion problem would 
have complexity exponential in k.

Another problem from the above theme is from Section 4

Open Problem 5. What is the complexity of the restricted OMD (optimal modification for decomposition) problem? This 
has the potential to be difficult. For example, when the isostatic completion is required to be a 2-tree the restricted OMD 
problem is reducible to the maximum spanning series-parallel subgraph problem shown by Cai and Maffray (1993) to be 
NP-complete even if the input graph is planar of maximum degree at most 6. However, since the OMD problem has other 
input restrictions such as not having any proper isostatic subgraphs, it is not clear if the reverse reduction exists and hence 
it is unclear whether the OMD problem is NP-complete.

The same holds for the restricted OMD problem where the isostatic completion is required to be a tree-decomposable 
graph of low Cayley complexity (i.e. have special, small DR-plans). One potential obstacle to an indecomposable graph G ’s 
membership in the restricted OMDk for small k is if G is tri-connected and has large girth. In fact, 6-connected (hence rigid) 
graphs with arbitrarily large girth have been constructed in Servatius (2000).

The next is the reverse direction of Observation 27 in Section 4.5.

Open Problem 6. Is the OMD (optimal modification for decomposition) problem reducible to the OC (optimal completion) 
problem?
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7.2. Conclusion

We have clarified the main source of complexity for the optimal DR-plan and recombination problems. For the former 
problem, when there are no overconstraints (as is the case for 2D qusecs whose realizations are many common types of 
layered materials), we defined a canonical DR-plan and showed that any canonical DR-plan is guaranteed to be optimal, 
a strong Church–Rosser property. This gives an efficient (O (n3)) algorithm to find an optimal DR-plan that satisfies other 
desirable characteristics.

We have also described a novel method of efficiently realizing a 2D qusecs from the optimal DR-plan by modifying the 
otherwise indecomposable systems at nodes of a DR-plan. These results rely on a recent theory of convex Cayley configura-
tion spaces. Relationships and reductions between these and previously studied problems were formally clarified.

We then modeled specific layered materials using extensions of the above theoretical results including the motivating 
Examples 1–5 in the introduction.

Finally, we detailed a number of open problems that were motivated by the work in this paper.

Appendix A. Proofs

A.1. Proofs from Section 3

A.1.1. Proof of Observation 7

Proof. For (1), simply note that if Fi ∪ F j were trivial, then, by definition, Fi and F j must be trivial.
For the next parts, we use the quantity d(G) = 2|V | − |E|, which we call density. For (2), observe that underconstrained 

subgraphs of isostatic graphs must have density less than 3. For (3), observe that, given an isostatic graph, a subgraph with 
density 3 must also be isostatic. Then, use the fact that, by definition, d(Fi ) = 3 and d(F j) = 3. Then it is straightforward 
application of the inclusion–exclusion d(Fi ∩ F j) = d(Fi) + d(F j) − d(Fi ∪ F j).

For (4), because subgraphs of an isostatic graph can only be trivial, underconstrained, or isostatic, all cases have already 
been exhausted. �
A.1.2. Proof of Lemma 8, Point 1

Proof. Assume Ci ∪ C j �= C . This would contradict the proper vertex-maximality of Ci, C j . In the reverse direction, we know 
C is either a non-leaf node (isostatic by definition of a DR-plan) or G itself (isostatic by definition of the problem). Thus, 
Ci ∪ C j = C is isostatic. �
A.1.3. Proof of Lemma 8, Point 2

Proof. Take two children of node C , called Ci and C j . Let Ri be the graph induced in node C by the edge set of C minus 
the edge set of child Ci (C \ Ci for convenience); let R j = C \ C j . Let Di, j = Ci ∩ C j = C \ (Ri ∪ R j). Let R ′

i ⊂ Ri , R ′
j ⊂ R j , and 

D ′
i, j ⊂ Di, j , and take these proper subgraphs to be non-empty.

If there are two children (N = 2) then the proof is simple, it follows from the definition of a DR-plan: the union of the 
children is the parent which is isostatic. Assume that N > 2 and take a third child, called Ck . We want to determine what 
Ck can be, in terms of i and j. Ck can possibly be composed of an element from {∅, D ′

i, j , Di, j}, an element from {∅, R ′
i, Ri}, 

and an element from {∅, R ′
j, R j}, for a total of 27 cases. We will exhaustively show that it must be Ri ∪ R j ∪ D ′

i, j . First, we 
make the following observation:

Observation 43. If Ci ∪ C j is isostatic, then there can be no edges in C between the vertices of Ri and R j .

Proof. Lemma 8, Point 1, shows that Ci ∪ C j must equal the parent graph C . �
• 3 cases: Ck cannot be C = Ri ∪ R j ∪ Di, j , Ci = R j ∪ Di, j , or C j = Ri ∪ Di, j . This is by definition.
• 13 cases: Ck cannot be a proper subgraph of Ci and C j or else Ck would not be vertex-maximal. These are the graphs 

R ′
i ∪ Di, j , R ′

j ∪ Di, j , Di, j , Ri ∪ D ′
i, j , R j ∪ D ′

i, j , R ′
i ∪ D ′

i, j , R ′
j ∪ D ′

i, j , D ′
i, j , Ri , R j , R ′

i , R ′
j , and ∅.

• 2 cases: Ck cannot contain Ci or C j as proper subgraphs, or else they are not vertex-maximal. These are the graphs 
R ′

i ∪ R j ∪ Di, j and Ri ∪ R ′
j ∪ Di, j respectively.

• 4 cases: Ck cannot be Ri ∪ R j , R ′
i ∪ R j , Ri ∪ R ′

j , or R ′
i ∪ R ′

j because these are all disconnected (Observation 43) and 
cannot be isostatic.

• 1 case: Ck = R ′
i ∪ R ′

j ∪ Di, j is not possible. Since Ci ∪ Ck = R ′
i ∪ R j ∪ Di, j �= C we have from Lemma 8, Point 1, that Ci ∪ Ck

cannot be isostatic. We also know it cannot be trivial because it contains isostatic subgraphs. This means it must be 
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underconstrained. From Observation 7, we know that Ci ∩ Ck = R ′
j ∪ Di, j must then be trivial. This is impossible because 

Di, j is isostatic, thereby contradicting the assumption that Ck is isostatic.
• 1 case: Ck = R ′

i ∪ R ′
j ∪ D ′

i, j is not possible. Since Ci ∪ Ck �= C (and C j ∪ Ck �= C ), we know by the same logic as the 
previous case that the Ci ∩ Ck must be trivial (a single node). However, Ci ∩ Ck = R ′

j ∪ D ′
i, j . This causes a contradiction, 

the intersection cannot be trivial because R ′
j and D ′

i, j are not empty sets and are disjoint.
• 2 cases: Ck = R ′

i ∪ R j ∪ D ′
i, j and Ck = Ri ∪ R ′

j ∪ D ′
i, j are not possible. The proof mirrors the previous case, except here 

you must choose Ci and C j respectively.
• 1 case: Ck = Ri ∪ R j ∪ D ′

i, j is all that remains.

Since Di, j ⊂ Ci, C j it means that Ck ∪ Ci = Ck ∪ C j = C , thus proving Point 2. The alternative phrasing of this point is 
straightforward from Point 1. �
A.1.4. Proof of Lemma 8, Point 3

Proof. Assume there is some k such that Ci ∩Ck is not trivial. By Observation 7, Ci ∩Ck must be isostatic. Then, by Lemma 8, 
Point 2, the intersection between any two children must be isostatic. This means that Ci ∩ C j is isostatic. Therefore, such a 
k cannot exist and all intersections are trivial. �
A.2. Proofs from Section 4

A.2.1. Proof of Theorem 25

Proof. The Cartesian realization space of (H, 〈δE ′ , λF 〉) is computed easily with a DR-plan of size 2, and is the union of 
2t solutions (modulo orientation preserving isometries) each with a distinct orientation type, where t is the number of 
triangles in the 2-tree H ; here δS is the restriction of the length vector δ to the edges in S . A desired solution p (or 
connected component of a solution space) of (G, δ) of an orientation type σp can be found by a subdivided binary search 
of the Cartesian realization space of (H, 〈δE ′ , λF 〉) of orientation type σp , as λF ranges over the discretized convex polytope 
�F (G ′, δ′

E ) with bounding hyperplanes described in Theorem 23. A solution p is found when the lengths for nonedges in D
match δD . �
A.3. Proofs from Section 5

A.3.1. Proof of Remark 29

Proof. We can replace each body that has only one pin by a single vertex. A body with 2 pins can be replaced by an edge. 
In general, a body with n pins can be replaced by a 2-tree on n vertices. When finding a DR-plan, we treat each body 
as trivial, so they become the leaves of the DR-plan. The optimal recombination problem and approach of Section 4 are 
unchanged. The optimal completion via the optimal modification problem in Section 4 now has an additional restriction 
that all edges in the 2-tree representation of the bodies must be removed together, not individually. �
A.3.2. Proof of Observation 33

Proof. The existence of this canonical DR-plan follows from the same arguments as in the proof of Theorem 6. The only 
difference is the definition of a trivial intersection. In this case, when two subgraphs share more than 1 body, they become 
rigid (in fact over constrained). Sharing a pin is not considered an intersection. Such a structure is viewed as two subgraphs 
each sharing 1 body with a third 1-dof subgraph which essentially just consists of those two bodies pinned together. �
A.3.3. Proof of Theorem 35

Proof. Suppose we are given a body–pin graph and its corresponding body–bar graph G and have obtained the 1-dof 
DR-plan T . Each node of T is then a vertex-maximal proper 1-dof subgraph of G .

To make the graph isostatic, we need only add one body and pin it to 2 other bodies. Doing so will cause G to become 
(3, 3)-tight.

We adopt the following algorithm. Choose the 2 bodies to pin to by choosing a node b in T and looking at its children. 
From Observation 34, we know that the children can only share a single pin or a subgraph. Pin the new body to bodies in 
two separate children. Doing so will ensure that all children of b will have 1-dof and all ancestors of b (including b) will 
now be isostatic.
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Such a pinning covers all possible ways of adding a new body. Assume a new body b is added to the input graph and 
pin it to bi and b j to make it isostatic. Then, there is a lowest 1-dof node v in T such that bi and b j appear in v . Thus, 
pinning v in the manner described yields an equivalent isostatic DR-plan to pinning b to bi and b j .

For each node b, assign a size of the Tb denoted |Tb|. |Tb| = max
v∈Tb

FanIn(v). We are looking for b that minimizes |Tb|. 
Denote the sub-tree of T rooted at v by T v and the number of leaves in a tree T by NL(T ). Note that FanIn(b) = NL(T b)

because no descendant of b is isostatic. Similarly, for any ancestor w of b, FanIn(w) = NL(T w) − NL(T b′
) + 1, where b′ is 

the child leading to b. All other nodes are not isostatic and hence do not appear in the isostatic DR-plan.
The node to be pinned is always the deepest nontrivial node of some path in T . Suppose a node b is pinned that has a 

nontrivial child v . Then, FanInb(b) = NL(T b) = NL(T v) + n, where n is essentially the number of leaves between b and v . If 
we had instead chosen to pin v , then FanInv(b) = NL(T b) −NL(T b′

) +1 ≤ FanInb(v). And for each ancestor w of b, FanIn(w)

is unchanged, meaning |T v | ≤ |Tb|. Thus we only have to check the deepest non-trivial nodes.
Running the above algorithm brute force gives running time quadratic in the number of bodies of the given body–pin 

system.
For the multi-triangle pin graphs, we can do the same thing, except we need to add a single triangle to one of the nodes 

to cause it to become isostatic. �
A.3.4. Proof of Observation 36

Proof. The only difference from the 1-dof case is that now we need to remove 2-dofs from our graph. Start with a 2-dof 
DR-plan T . Like in the previous proof, we need to add a body and 2 pins to 2 nodes to obtain an isostatic DR-plan.

Suppose we pin 2 distinct nodes vi and v j . Then, there must exist a common ancestor a of vi and v j . Then, in T vi ,v j , 
FanInvi ,v j (a) = NL(T a). However, if we chose to pin one of vi and v j twice, then FanInv(a) = NL(T a) − NL(T a′

) + 1. Thus 
FanInv(a)′ ≤ FanInvi ,v j (a). All ancestors of a are unchanged. So |T v | ≤ |T vi ,v j |.

Thus the only choice is to pin a single node twice. Hence, we can run the same algorithm as the 1-dof case and simply 
pin twice instead of once. �
A.3.5. Proof of Observation 37

Proof. An isostatic graph has 3 parameters that define its position and orientation. These are the Euclidean motions. A 1-dof 
graph has 4 parameters: the 3 Euclidean motions and a dof parameter. A 2-dof has 5 parameters. The number of parameters 
roughly correlates with the algebraic complexity of obtaining a realization.

Thus, starting with a T as described in the proof for Remark 35, when a node b is pinned, the same structure is 
preserved as before. Suppose v is an isostatic node after pinning b. Then, the children of v (except one if v �= b) have 1-dof. 
The realization complexity for v is simply that of realizing each of its children. In general, the number of parameters for v
will be NP(v) = 4NC1(v) + 3, if v �= b and NP(b) = 4NC1(b), where NCk(v) is the number of k-dof children of v .

Minimizing the algebraic complexity requires minimizing the maximum NP(v) for any node v . In this case, it is not 
possible to always choose to pin a node closest to a leaf in the tree, because it could have high fan-in. So we try brute force 
by pinning all nodes to pick the one with the lowest algebraic complexity. This algorithm is still quadratic for the 1-dof 
case.

For the 2-dof situation, there are more cases to consider. If we pin the same node twice as above, we have NP(v) =
5NC2(v) + 3 for any ancestor v �= b and NP(b) = 5NC2(b). If we pin a node v and one of its ancestors v ′ , then any nodes 
between v ′ and v will be 1-dof, any nodes above v ′ will be isostatic, and nodes below v will be 2-dof. Note that solving 
or realizing v ′ will also realize v . Next, we need to consider nodes above and including v ′ in our complexity: NP(v ′) =
5NC2(v ′) + 4 and NP(a) = 3 + 5NC2(a) for a an ancestor of v ′ .

The only remaining case is pinning two nodes that are incomparable, i.e. do not have a descendant/ancestor relationship. 
The only change from the previous case is that for the lowest common ancestor of the nodes v ′ , NP(v ′) = 2 ∗ 4 + 5NC2(v ′). 
For any ancestor a of v ′ , we still have NP(a) = 3 + 5NC2(a).

Like the 1-dof case, we again cannot simply choose the nodes deepest in the tree to pin. However, neither can we assume 
pinning one node twice will give us the best algebraic complexity. Hence, we will need to check each pair of nodes to pin. 
This makes our brute–force algorithm O (b3), where b is the number of bodies. �
A.4. Proofs from Section 6

A.4.1. Proof of Lemma 8, Point 2 — for 2-dimensional pinned line incidence graphs

Proof. We use the same notation as in the original proof of Lemma 8, Point 2, given above. Without loss of generality, all 
graphs are the induced graphs on C .

First notice that since Ci ∪ C j is isostatic, by Observation 40, both Ci and C j are connected isostatic vertex-maximal 
proper subgraphs of C . Since C j ∪ C j = C , there are no edges in C that is not contained in an isostatic subgraph, so C does 
not have any single-edge child node, and Ck is a connected isostatic vertex-maximal proper subgraph of C .
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We analyze all the possible cases for Ck .

• 1 case: Ck = R ′
i ∪ R ′

j ∪ Di, j is not possible. Since Ck ∪ Ci = R ′
i ∪ R j ∪ Di, j �= C we have from Lemma 8, Point 1, that Ck ∪ Ci

cannot be isostatic. By Lemma 40, it must be underconstrained, so one of Ci and Ck must be an edge, contradicting the 
assumption that both Ci and Ck are isostatic.

• 1 case: Ck = R ′
i ∪ R ′

j ∪ D ′
i, j is not possible. The proof is similar to the previous case.

• 2 cases: Ck = R ′
i ∪ R j ∪ D ′

i, j and Ck = Ri ∪ R ′
j ∪ D ′

i, j are not possible. The proof is similar to the previous case.

All remaining cases are similar to the original proof for 2D bar–joint graphs. �
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