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their implicit equations and double points. We also extend the explicit formula for the 
μ-bases of conic sections to μ-bases for rational curves of degree n in n-dimensions.
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1. Introduction

μ-bases for rational curves are important since we can use μ-bases to implicitize rational planar curves (Chen and Wang, 
2003). Moreover, μ-bases for rational curves in arbitrary dimensions can be applied to locate and analyze their singularities 
(Song et al., 2007; Jia and Goldman, 2009, 2012; Shi and Chen, 2010). There are fast algorithms to compute μ-bases for 
rational curves based mainly on Gaussian Elimination (Chen and Wang, 2003; Song and Goldman, 2009). However, we do 
not know what the μ-bases look like before we run the algorithm; this drawback prevents us from finding closed formulas 
for the singularities or the implicit equation for rational curves based on the method of μ-bases.

Here we give explicit formulas for the μ-bases of conic sections and planar rational cubic curves. As fundamental objects 
in Computer Aided Geometric Design and Computer Graphics, conic sections and planar rational cubic curves have a wide 
range of applications, for example, in animation control and font design. Implicit equations for planar rational cubic curves 
will also help us when we deal with intersection algorithms (Sederberg and Parry, 1986; Thomassen, 2005).

Special attention has been devoted to computing implicit equations for planar rational cubic curves. Sederberg et al.
(1985) treat planar rational cubic curves as monoids, that is, degree n curves with a singular point of order n − 1. 
This approach simplifies the derivation of the implicit equation. Floater (1995) proves that the implicit equation of ev-
ery planar rational cubic curve can be represented by linear combinations of six basis functions. Using the results of 
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Busé and Jouanolou (2003), one can also derive a closed formula for the implicit equation of a rational cubic curve 
P(t) = (x(t), y(t), w(t)) as the determinant of 3 × 3 matrix by inspecting the Bezoutian matrix:

M = x · Bez(y(t), w(t)) + y · Bez(w(t), x(t)) + w · Bez(x(t), y(t))

(see Section 4 for further details). In contrast, using our explicit formulas for μ-bases of planar rational cubic curves, we 
derive two closed formulas – one as the determinant of a sparse 3 ×3 Sylvester matrix and one as the determinant of a 2 ×2
Bezoutian matrix – for the implicit equations of planar rational cubic curves. Moreover, we also provide closed formulas for 
the double point of planar rational cubic curves. Explicit formulas for implicit equations of planar rational cubic Bézier 
curves are also presented recently in Barrowclough (2014). But our explicit formulas for these implicit equations based on 
μ-bases are more compact. Moreover, using μ-bases for planar rational cubic curves, we get explicit formulas for their 
double points in a simpler, more straightforward way.

This paper is structured in the following fashion. In Section 2 we review the notion of μ-bases for planar rational curves. 
We give the explicit formulas for the μ-bases and closed form expressions for the implicit equations of conic sections and 
planar rational cubic curves in Section 3 and Section 4. We also provide explicit formulas for the double point of planar 
rational cubic curves in Section 4. Section 5 extends the explicit formula for the μ-bases of conic sections to μ-bases for 
rational curves of degree n in n-dimensions. We close in Section 6 with some observations about our methods.

2. μ-bases for planar rational curves

In this section we briefly review the concept of μ-bases for planar rational curves. We begin with the notion of syzygies.
Consider a real planar rational curve

P(t) = (
x(t), y(t), w(t)

)
in homogeneous form, where gcd

(
x(t), y(t), w(t)

) = 1. A syzygy of P(t) is a vector of polynomials L(t) = (
l0(t), l1(t), l2(t)

)
such that L(t) ·P(t) ≡ 0. The set of all syzygies of P(t) is a free module with two generators over the ring R[t] of polynomials 
in t with real coefficients (Chen and Wang, 2003). A μ-basis for the planar rational curve P(t) is a special basis for this free 
module.

Definition 1. Two syzygies u0(t), u1(t) are a μ-basis for a rational curve P(t) if

1) deg(u0(t)) + deg(u1(t)) = deg(P(t)),
2) u0(t) × u1(t) = λP(t) for some nonzero constant λ.

There are also several other equivalent definitions of a μ-basis for the curve P(t) (see Chen and Wang, 2003 for more 
details). For example, 2) in Definition 1 can be replaced by

2′) u0(t) and u1(t) are R[t]-linearly independent.

Every planar rational curve has a μ-basis. Moreover, there is an algorithm for computing μ-bases based on Gaussian 
elimination (Chen and Wang, 2003). In contrast, we shall find closed formulas for a μ-basis of conic sections and planar 
rational cubic curves.

One important property of μ-bases is that the implicit equation of the planar rational curve P(t) can be calculated as

f (x, y, w)σ = Rest
(
u0(t) · (x, y, w),u1(t) · (x, y, w)) = 0, (1)

where σ is the degree of the parametrization P. Thus both the parametric and implicit equations of the curve P(t) can be 
retrieved from its μ-basis u0(t), u1(t). Moreover, we can also compute the singular points of a planar rational curve P(t)
from its μ-basis (Chen et al., 2008; Jia and Goldman, 2009).

From the viewpoint of geometry, if l(t) = (l0(t), l1(t), l2(t)) is a syzygy of P(t), we call

l(t) · (x, y, w) = l0(t)x + l1(t)y + l2(t)w = 0 (2)

a moving line that follows the curve P(t) because the point P(t) = (x(t), y(t), w(t)) lies on the line l(t) · (x, y, w) = 0. The 
line (2) changes as the parameter t varies, thus (2) represents a family of lines. If all the lines in the family pass through a 
common point, the common point is called an axis and the moving line is called an axial moving line.

When deg(l(t)) = 1, the moving line (2) is a linear moving line. One simple case of an axial moving line is a linear 
moving line. Since a linear moving line l(t) · (x, y, w) = 0 can be rewritten as 

(
l0 + l1t

) · (x, y, w) = 0, it is easy to check 
that l0 × l1 is the axis of this moving line. Thus every linear moving line is an axial moving line.

Let l(t) · (x, y, w) = 0 be an axial moving line for P(t) with an axis A = (x0, y0, w0). Then since for all t the axis A lies 
on the line l(t) · (x, y, w) = 0,

l(t) · A = l(t) · (x0, y0, w0) ≡ 0.
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On the other hand, l(t) · P(t) ≡ 0. So the axis A is also a point on the curve P(t). Moreover, singular points of a planar 
rational curve are also related to its axial moving lines.

Theorem 2. (See Song et al., 2007.) A is a singular point of order k ≥ 2 of a planar rational curve P(t) of degree n if and only if there is 
a moving line of degree n − k with axis A that follows the curve P(t).

In this paper, our investigations of planar rational curves focus only on conic sections and planar rational cubic curves. 
Moreover, all the rational curves studied in this paper are assumed to be non-degenerate. It is well known that there are 
no singular points on non-degenerate conic sections and there is always exactly one double point (i.e., a singular point of 
order 2) on every non-degenerate planar rational cubic curve. So by Theorem 2, for every non-degenerate planar rational 
cubic curve there is a linear moving line that follows the curve, and the axis of this linear moving line is the unique double 
point of the cubic curve.

3. μ-bases for conic sections

In this section we shall find explicit formulas for a μ-basis of an arbitrary conic section. We shall then use this μ-basis 
to derive a closed formula for the implicit equation of a conic section from its rational quadratic parametrization.

Consider a non-degenerate conic in homogeneous form

P(t) = p0 + p1t + p2t2, (3)

where pi ∈ R
3. The three coefficient vectors p0, p1, p2 must be linearly independent, that is, (p0 × p2) · p1 �= 0. Otherwise 

there is a constant vector � �= 0 such that

� ⊥ pi, i = 0,1,2.

So � · P(t) ≡ 0. Hence the conic P(t) degenerates into the line � · (x, y, w) = 0.
Let u0(t), u1(t) be a μ-basis for the conic P(t). From the definition of a μ-basis,

deg(u0(t)) = deg(u1(t)) = 1.

Next we shall show how to find explicit formulas for two degree one syzygies of the conic (3).
Computing the outer product of p2 and P(t), we get

p2 × P(t) = (p2 × p0) + (p2 × p1)t.

Moreover p2 × P(t) follows P(t) since (p2 × P(t)) ⊥ P(t). Thus we have found an explicit formula for one degree one syzygy 
of the conic P(t). To get a second degree one syzygy for P(t), we compute the outer product of p0 and P(t). It is easy to see 
that

p0 × P(t)

t
= (p0 × p1) + (p0 × p2)t.

Moreover p0×P(t)
t also follows P(t) since p0×P(t)

t ⊥ P(t). Thus, p0×P(t)
t is also a degree one syzygy for P(t).

Next we shall show p0×P(t)
t and p2 × P(t) are a μ-basis for the conic P(t).

Computing the outer product of p0×P(t)
t and p2 × P(t) yields

(p0 × P(t)

t

) × (
p2 × P(t)

)
= (

(p0 × p1) + (p0 × p2)t
) × (

(p2 × p0) + (p2 × p1)t
)

= ((p0 × p2) · p1)P(t). (4)

Let |abc| denote the scalar triple product (a × b) · c. It is well known that

|abc| = det(abc),

where det(abc) is the determinant of the 3 × 3 matrix whose columns are the three vectors a, b, c ∈ R
3. Then (4) can be 

rewritten as

(p0 × P(t)

t

) × (
p2 × P(t)

) = |p0p2p1| · P(t).

Since p0, p1, p2 are linearly independent, |p0p2p1| �= 0. Therefore it follows from the definition of a μ-basis that

p0×P(t)
t = (p0 × p1) + (p0 × p2)t

p2 × P(t) = (p2 × p0) + (p2 × p1)t (5)
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are a μ-basis for the conic P(t). Moreover by Equation (1), a closed form expression for the implicit equation of the conic 
curve P(t) is

F (x, y, w) ≡ det

(
(p0 × p1) · X (p0 × p2) · X
(p2 × p0) · X (p2 × p1) · X

)
= 0,

where X = (x, y, w). Notice that this determinant is exactly the Bézout resultant of the rational parametrization in Equa-
tion (3).

Remark 1. By inspecting the matrix

M = x · Bez(y(t), w(t)) + y · Bez(w(t), x(t)) + w · Bez(x(t), y(t)), (6)

where Bez( f (t), g(t)) represents the Bezoutian matrix associated with the two polynomials f (t), g(t), one can find a differ-
ent way to get the implicitization matrix (Busé and Jouanolou, 2003):

(
(p0 × p1) · X (p0 × p2) · X
(p2 × p0) · X (p2 × p1) · X

)
. (7)

However, it is not so obvious that one can rewrite the matrix M in the form (7) if there is no advance notice. On the other 
hand, the matrix (7) follows directly after we get the closed formula of the μ-basis in Equation (5).

Example 1. Consider a conic P(t) = p0 + p1t + p2t2, where

p0 = (3,2,−2),p1 = (0,2,1),p2 = (−3,4,1).

Then

(p0 × p1) + (p0 × p2)t = (6,−3,6) + (10,3,18)t,

(p2 × p0) + (p2 × p1)t = (−10,−3,−18) + (2,3,−6)t

are a μ-basis for P(t). Indeed

(
(p0 × p1) + (p0 × p2)t

) × (
(p2 × p0) + (p2 × p1)t

)
= |p0p2p1| · P(t) = 24P(t).

Moreover,

F (x, y, w) ≡ det

(
6x − 3y + 6w 10x + 3y + 18w

−10x − 3y − 18w 2x + 3y − 6w

)
= 0,

is the implicit equation of the conic P(t).

Remark 2. When the conic curve is expressed in terms of the Bernstein basis

P(t) =
2∑

i=0

pi B2
i (t) =

2∑
i=0

pi
2!

i!(2 − i)! (1 − t)2−iti,

let p̂i = 2!
i!(2−i)! pi, i = 0, 1, 2. Then

p̂0 × P(t)

t
= (p̂0 × p̂1)(1 − t) + (p̂0 × p̂2)t,

p̂2 × P(t)

1 − t
= (p̂2 × p̂0)(1 − t) + (p̂2 × p̂1)t.

are a μ-basis for the conic P(t). Moreover, the implicit equation of the conic curve P(t) is

F (x, y, w) ≡ det

(
(p̂0 × p̂1) · X (p̂0 × p̂2) · X
(p̂2 × p̂0) · X (p̂2 × p̂1) · X

)
= 0,

where X = (x, y, w).
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4. μ-bases for planar rational cubic curves

In this section we shall find explicit formulas for a μ-basis of an arbitrary planar rational cubic curve. We shall then use 
this μ-basis to find a closed formula for the double point and the implicit equation of the planar rational cubic curve.

Consider a non-degenerate planar rational cubic curve in homogeneous form

P(t) = p0 + p1t + p2t2 + p3t3, (8)

where pi ∈ R
3. Notice that p0 �= 0 and p3 �= 0 otherwise the cubic curve P(t) will degenerate into a conic or a line. Set

M = (p0p1p2p3),

where M is the 3 × 4 matrix whose columns are the four vectors p0, p1, p2, p3. For the rational cubic curve P(t) to be 
non-degenerate we must have

Rank(M) = 3. (9)

If Rank(M) < 3, there is a constant vector � �= 0 such that � · pi = 0, i = 0, . . . , 3. Hence � · P(t) ≡ 0. Thus the cubic curve 
will degenerate into the line � · (x, y, w) = 0.

Again by inspecting the matrix (6) based on Busé and Jouanolou (2003), one can derive the following closed formula for 
the implicitization matrix of the cubic curve P(t):⎛

⎝ (p0 × p3) · X (p0 × p2) · X (p0 × p1) · X
(p1 × p3) · X (p0 × p3 + p1 × p2) · X (p0 × p2) · X
(p2 × p3) · X (p1 × p3) · X (p0 × p3) · X

⎞
⎠ . (10)

On the other hand, from (1) we can derive two different closed formulas for the implicitization matrices of the cubic curve 
P(t) based on an explicit μ-basis for the cubic curve P(t).

Let u0(t), u1(t) be a μ-basis for the rational cubic curve P(t) with deg(u0(t)) ≤ deg(u1(t)). From the definition of a 
μ-basis, we know that deg(u0(t)) + deg(u1(t)) = deg(P(t)). Thus for any μ-basis of the planar rational cubic curve P(t),

deg(u0(t)) = 1, deg(u1(t)) = 2.

Express u0(t) and u1(t) in the power basis:

u0(t) = u00 + u01t,

u1(t) = u10 + u11t + u12t2.

Then

u0(t) · X = u00 · X + (u01 · X)t,

u1(t) · X = u10 · X + (u11 · X)t + (u12 · X)t2,

where X = (x, y, w).
Calculating the Sylvester matrix of u0(t) ·X and u1(t) ·X with respect to t yields an alternative form of the implicitization 

matrix for the cubic curve P(t):⎛
⎝ u00 · X 0 u10 · X

u01 · X u00 · X u11 · X
0 u01 · X u12 · X

⎞
⎠ . (11)

Notice that the matrix in (11) is sparser than the matrix in (10). Moreover, calculating the Bezoutian matrix of u0(t) · X and 
u1(t) · X with respect to t yields a different implicitization matrix with smaller size for the cubic curve P(t):(

X(uT
00u12 − uT

11u01)XT u01XT

−X(uT
10u01)XT u00XT

)
. (12)

Next we shall show case by case how to find explicit μ-bases for non-degenerate planar rational cubic curves. We shall 
consider three distinct cases.

4.1. Case 1: p0 × p3 = 0

Suppose p0 × p3 = 0. Consider

p3 × P(t) = (
(p3 × p1) + (p3 × p2)t

)
t.

In this case p3 × p1 �= 0, p3 × p2 �= 0. Otherwise Rank(M) < 3 which contradicts condition (9). Thus when p0 × p3 = 0,
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p3 × P(t)

t
= (p3 × p1) + (p3 × p2)t (13)

is a degree one syzygy for P(t) because p3 × P(t) · P(t) ≡ 0.
On the other hand, P(t) can be rewritten as (p0 + p1t) + (p2 + p3t)t2, so it is easy to check that

(p0 + p1t) × (p2 + p3t) (14)

also follows P(t). Expanding (14) yields

(p0 + p1t) × (p2 + p3t)

= p0 × p2 + (p1 × p2)t + (p1 × p3)t
2.

Computing the outer product of (13) and (14) and recalling that by assumption p0 × p3 = 0, we get(
(p3 × p1) + (p3 × p2)t

) × (
(p0 + p1t) × (p2 + p3t)

) = |p3p1p2| · P(t) (15)

where |p3p1p2| is a nonzero constant, otherwise p1, p2, p3 are linearly dependent and Rank(M) < 3, which again contradicts 
condition (9). Thus from the definition of a μ-basis,

u0(t) = (p3 × p1) + (p3 × p2)t,

u1(t) = p0 × p2 + (p1 × p2)t + (p1 × p3)t2 (16)

are a μ-basis for the rational cubic curve P(t) when p0 × p3 = 0.
Hence by (11), the determinant of the Sylvester matrix⎛

⎝(p3 × p1) · X 0 (p0 × p2) · X
(p3 × p2) · X (p3 × p1) · X (p1 × p2) · X

0 (p3 × p2) · X (p1 × p3) · X

⎞
⎠ , (17)

represents the implicit equation of the rational cubic curve P(t). In addition, by (12), the determinant of the Bezoutian 
matrix(

X
(
(p3 × p1)T (p1 × p3) − (p3 × p2)

T (p1 × p2)
)
XT (p3 × p2)XT

−X
(
(p0 × p2)T (p3 × p2)

)
XT (p3 × p1)XT

)
, (18)

also represents the implicit equation of the cubic curve P(t).
Since(

(p3 × p1) + (p3 × p2)t
) · p3 ≡ 0,

it follows that p3 is the axial point of the linear moving line 
(
(p3 × p1) + (p3 × p2)t

) · (x, y, w) = 0. Hence by Theorem 2, 
p3 is the unique double point of the rational cubic curve P(t).

Example 2. Consider the planar rational cubic curve

P(t) = p0 + p1t + p2t2 + p3t3,

where p0 = (3, 2, −2), p1 = (0, 2, 1), p2 = (−3, 4, 1), p3 = 2p0. Clearly p0 × p3 = 0. Moreover,

p3 × p1 = (12,−6,12), p3 × p2 = (20,6,36)

p0 × p2 = (10,3,18), p1 × p2 = (−2,−3,6), p1 × p3 = (−12,6,−12).

So in this case, by (17) and (18), the determinants of the matrices⎛
⎝12x − 6y + 12w 0 10x + 3y + 18w

20x + 6y + 36w 12 − 6y + 12w −2x − 3y + 6w
0 20x + 6y + 36w −12x + 6y − 12w

⎞
⎠

and (−104x2 + 216yx − 336xw − 18y2 + 216yw − 360w2 20x + 6y + 36w
200x2 + 120yx + 720xw + 18y2 + 216yw + 648w2 12x − 6y + 12w

)

both represent the implicit equation of the cubic curve P(t).
In addition by (16),

(p3 × p1) + (p3 × p2)t = (12 + 20t,−6 + 6t,12 + 36t),

(p0 + p1t) × (p2 + p3t) = (10 − 2t − 12t2,3 − 3t + 6t2,18 + 6t − 12t2)
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are a μ-basis for the cubic curve P(t). Indeed(
(p3 × p1) + (p3 × p2)

) × (
(p0 + p1t) × (p2 + p3t)

)
= |p3p1p2| · P(t) = −48P(t).

Finally, p3 = (6, 4, −4) is the unique double point of the cubic curve P(t).

4.2. Case 2: p0 × p3 �= 0

Suppose p0 × p3 �= 0. To construct two syzygies for P(t), set

Q(t) = p3 × P(t) = (p3 × p0) + (p3 × p1)t + (p3 × p2)t
2, (19)

Q̂(t) = p0 × P(t)

t
= (p0 × p1) + (p0 × p2)t + (p0 × p3)t

2. (20)

It is easy to check that both Q(t) and Q̂(t) follow P(t). Thus we get two syzygies for P(t). The relation between these two 
syzygies is explained in the following lemma.

Lemma 3. Consider a non-degenerate planar rational cubic curve P(t). If p0 × p3 �= 0, Q(t) and Q̂(t) are R[t]-linearly independent.

Proof. Calculating the outer product of Q(t) and Q̂(t) yields

Q(t) × Q̂(t) = (p3 × P(t)) × (p0 × P(t)

t

)
= (|p0p1p3| + |p0p2p3|t

)
P(t). (21)

If Q(t) × Q̂(t) ≡ 0, |p0p1p3| = |p0p2p3| = 0. But |p0p1p3| and |p0p2p3| cannot be zero simultaneously. Otherwise,

p2 = τ0p0 + τ1p3, p1 = τ2p0 + τ3p3,

for some constants τi, i = 0, 1, 2, 3. Thus Rank(M) ≤ 2 < 3 which contradicts condition (9). Therefore,

Q(t) × Q̂(t) �≡ 0.

Equivalently, Q(t), Q̂(t) are R[t]-linearly independent. �
Q̂(t) is a degree two syzygy for P(t) if p0 × p3 �= 0. But Q̂(t) may sometimes have a linear factor.

Lemma 4. Consider a non-degenerate planar rational cubic curve (8). Suppose p0 × p3 �= 0. Let Q̂(t) be defined as in (20). Then Q̂(t)
can be factored into α(t)l(t) for some linear polynomial α(t) if and only if

� = |p0p1p3|2 − |p0p1p2| · |p0p2p3| = 0.

Moreover, if � = 0, then α(t) = γ (|p0p1p3| + |p0p2p3|t) for some nonzero constant γ .

Proof. (⇒) If Q̂(t) = α(t)l(t) for some degree one polynomial α(t),

Q̂(t0) = (p0 × p1) + (p0 × p2)t0 + (p0 × p3)t
2
0 = 0,

where t0 is the root of α(t). Calculating the dot product of Q̂(t0) with p3 and p2 yields

Q̂(t0) · p3 = |p0p1p3| + |p0p2p3|t0 = 0, (22)

Q̂(t0) · p2 = |p0p1p2| − |p0p2p3|t2
0 = 0. (23)

From (22), we get

|p0p2p3|t0 = −|p0p1p3| (24)

Substituting (24) into (23) yields

|p0p1p2| + |p0p1p3|t0 = 0 (25)

Since t0 satisfies (22) and (25) simultaneously, it follows that � = 0.
(⇐) Suppose � = 0. Then

|p0p2p3| �= 0.
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In other words, p0, p2, p3 are linearly independent. Otherwise |p0p2p3| = |p0p1p3| = 0. Thus both p1 and p2 can be repre-
sented by linear combinations of p0, p3 in the case of p0 × p3 �= 0. So Rank(M) = 2 which contradicts condition (9).

But if � = 0, there is a real parameter t0 that simultaneously satisfies (22) and (25). Hence the real parameter t0 also 
satisfies (23), since (23) can be expressed by a linear combination of (22) and (25) as

Q̂(t0) · p2 = (|p0p1p2| + |p0p1p3|t0
) − t0(|p0p1p3| + det(p0p2p3)t0).

Thus there is a real parameter t0 that satisfies (22) and (23) simultaneously. From (22) and (23), we get Q̂(t0) ⊥
p2, Q̂(t0) ⊥ p3. On the other hand, from the definition of Q̂(t), Q̂(t0) ⊥ p0. But p0, p2, p3 are linearly independent, so 
Q̂(t0) = 0. Thus Q̂(t) has a linear factor γ1(t − t0) for some nonzero constant γ1.

The parameter t0 also satisfies (22), so

|p0p1p3| + |p0p2p3|t = |p0p2p3|(t − t0).

Hence

α(t) = γ (|p0p1p3| + |p0p2p3|t),
where γ = γ1/|p0p2p3|. �
4.2.1. Case 2.1: p0 × p3 �= 0 and � = 0

If � = 0, then it follows from Lemma 4 that Q̂(t) can be expressed as

Q̂(t) = (|p0p1p3| + |p0p2p3|t) · (l0 + l1t),

where l0, l1 ∈R
3. Recall that Q̂(t) is defined as

Q̂(t) = (p0 × p1) + (p0 × p2)t + (p0 × p3)t
2.

So

l0 = p0 × p1

|p0p1p3| , l1 = p0 × p3

|p0p2p3| .

Thus

L0(t) = Q̂(t)/(|p0p1p3| + |p0p2p3|t) = l0 + l1t (26)

is a degree one syzygy for P(t). Since by Lemma 3, Q(t), Q̂(t) are R[t]-linearly independent, it is easy to show that L0(t), Q(t)
are also R[t]-linearly independent. Thus in the case of � = 0,

u0(t) = L0(t), u1(t) = Q(t)

are a μ-basis for P(t).
Again by (11) and (12), the determinant of the Sylvester matrix⎛

⎝ l0 · X 0 (p3 × p0) · X
l1 · X l0 · X (p3 × p1) · X

0 l1 · X (p3 × p2) · X

⎞
⎠ , (27)

and the determinant of the Bezoutian matrix(
X
(
lT
0 (p3 × p2) − (p3 × p1)

T l1
)
XT l1XT

−X
(
lT
1 (p3 × p0)

)
XT l0XT

)
, (28)

both represent the implicit equation of the cubic curve P(t).
Using (26), it is easy to check that

L0(t) · p0 ≡ 0,

so p0 is the axis of the linear moving line L0(t) · (x, y, w) = 0. Thus again by Theorem 2, p0 is the unique double point of 
the rational cubic curve P(t).

Example 3. Consider the planar rational cubic curve

P(t) = p0 + p1t + p2t2 + p3t3,

where

p0 = (3,2,−2),p1 = (14,0,−2),p2 = (−3,4,1),p3 = (−2,−2,0).
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After a straightforward calculation, we find that

|p0p1p3| = 52, |p0p1p2| = −104, |p0p2p3| = −26.

Hence � = |p0p1p3|2 − |p0p1p2||p0p2p3| = 0. Now

p3 × p0 = (4,−4,2),p3 × p1 = (4,−4,28),p3 × p2 = (−2,2,−14),

l0 = p0 × p1

|p0p1p3| = ( − 1

13
,−11

26
,− 7

13

)
, l1 = p0 × p3

|p0p2p3| = ( 2

13
,− 2

13
,

1

13

)
.

So in this case, we can get a degree one syzygy

L0(t) = l0 + l1t = ( − 1

13
+ 2

13
t,−11

26
− 2

13
t,− 7

13
+ 1

13
t
)

and a degree two syzygy

Q(t) = p3 × p0 + (p3 × p1)t + (p3 × p2)t
2

= (4 + 4t − 2t2,−4 − 4t + 2t2,2 + 28t − 14t2).

It is also easy to check that

L0(t) × Q(t) = −P(t).

Hence L0(t), Q(t) are a μ-basis for P(t). Clearing the denominator in L0(t), we get

L̃0(t) = 26L0(t) = (4t − 2,−4t − 11,2t − 14).

Hence L̃0(t), Q(t) are also a μ-basis for P(t).
By (11) and (12), the determinants of the matrices⎛

⎝−2x − 11y − 14w 0 4x − 4y + 2w
4x − 4y + 2w −2x − 11y − 14w 4x − 4y + 28w

0 4x − 4y + 2w −2x + 2y − 14w

⎞
⎠

and (−12x2 + 50xy − 64xw − 38y2 + 246yw + 140w2 4x − 4y + 2w
−16x2 + 32xy − 16xw − 16y2 + 16yw − 4w2 −2x − 11y − 14w

)

both represent the implicit equation of the cubic curve P(t).
In addition, p0 = (3, 2, −2) is the unique double point of the rational cubic curve P(t).

4.2.2. Case 2.2: p0 × p3 �= 0 and � �= 0
If � �= 0, we cannot get a degree one syzygy directly from Q̂(t) as in (26). Instead set

L1(t) = (p0 × q0) + (p3 × q1)t, (29)

where

q0 = λ0p1 + λ1p2 + λ2p3, q1 = −λ1p0 − λ2p1 + λ3p2,

λ0 = |p1p3p2|, λ1 = |p0p2p3|, λ2 = −|p0p1p3|, λ3 = −|p0p1p2|. (30)

Now it is straightforward to check that

L1(t) · P(t) ≡ 0.

Thus L1(t) follows P(t). Calculating the outer product of L1(t) and Q̂(t), we find that
(
(p0 × q0) + (p3 × q1)t

) × (
(p0 × p1) + (p0 × p2)t + (p0 × p3)t

2)
= � · P(t).

Since by assumption � �= 0, it follows from the definition of a μ-basis that

u0(t) = L1(t), u1(t) = Q̂(t) (31)

are a μ-basis for P(t).
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Again by (11) and (12), the determinant of the Sylvester matrix⎛
⎝(p0 × q0) · X 0 (p0 × p1) · X

(p3 × q1) · X (p0 × q0) · X (p0 × p2) · X
0 (p3 × q1) · X (p0 × p3) · X

⎞
⎠ (32)

and the determinant of Bezoutian matrix(
X
(
(p0 × q0)

T (p0 × p3) − (p0 × p2)
T (p3 × q1)

)
XT (p3 × q1)XT

−X
(
(p3 × q1)

T (p0 × p1)
)
XT (p0 × q0)XT

)
(33)

both represent the implicit equation of the cubic curve P(t).
In addition, since 

(
(p0 × q0) × (p3 × q1)

) · L1(t) ≡ 0, it follows that

(p0 × q0) × (p3 × q1)

is the axis of the linear moving line L1(t) · (x, y, w) = 0. Thus by Theorem 2, 
(
(p0 × q0) × (p3 × q1)

)
is the unique double 

point of the rational cubic curve P(t).

Example 4. Consider the planar rational cubic curve

P(t) = p0 + p1t + p2t2 + p3t3,

where p0 = (3, 2, −2), p1 = (0, 2, 1), p2 = (−3, 4, 1), p3 = (−2, −2, 0). After a straightforward calculation, we get

λ0 = |p1p3p2| = −10, λ1 = |p0p2p3| = −26,

λ2 = −|p0p1p3| = 6, λ3 = −|p0p1p2| = 24,

so � = −588 �= 0. Hence

q0 = λ0p1 + λ1p2 + λ2p3 = (66,−136,−36),

q1 = −λ1p0 − λ2p1 + λ3p2 = (6,136,−34),

p0 × q0 = (−344,−24,−540), p3 × q1 = (68,−68,−260),

p0 × p1 = (6,−3,6), p0 × p2 = (10,3,18), p0 × p3 = (−4,4,−2).

Thus by (32) and (33), the determinants of the matrices⎛
⎝−344x − 24y − 540w 0 6x − 3y + 6w

68x − 68y − 260w −344x − 24y − 540w 10x + 3y + 18w
0 68x − 68y − 260w −4x + 4y − 2w

⎞
⎠

and (
696x2 − 804xy + 4224xw + 108y2 − 108yw + 5760w2 68x − 68y − 260w

−408x2 + 612xy + 1152xw − 204y2 − 372yw + 1560w2 −344x − 24y − 540w

)

both represent the implicit equation of the cubic curve P(t).
In addition by (31),

L1(t) = (p0 × q0) + (p3 × q1)t = (−344 + 68t,−24 − 68t,−540 − 260t)

Q̂(t) = (p0 × p1) + (p0 × p2)t + (p0 × p3)t
2

= (6 + 10t − 4t2,−3 + 3t + 4t2,6 + 18t − 2t2)

are a μ-basis for P(t). Computing the outer product of L1(t) and Q̂(t) yields

L1(t) × Q̂(t) = � · P(t) = −588P(t).

Finally, (p0 × q0) × (p3 × q1) = 16(−1905, −7885, 1564). So the point (−1905, −7885, 1564) is the unique double point 
of the rational cubic curve P(t).

Remark 3. When the planar rational cubic curve is expressed in terms of the Bernstein basis

P(t) =
3∑

pi B3
i (t) =

3∑
pi

3!
i!(3 − i)! (1 − t)3−iti,
i=0 i=0
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let p̂i = 3!
i!(3−i)! pi, i = 0, . . . , 3 and set

Q(t) = p3 × P(t)

1 − t
= (p3 × p0)(1 − t)2 + (p3 × p1)(1 − t)t + (p3 × p2)t

2,

Q̂(t) = p0 × P(t)

t
= (p0 × p1)(1 − t)2 + (p0 × p2)(1 − t)t + (p0 × p3)t

2.

We can prove in a similar fashion that

• If p̂0 × p̂3 = 0, then

(p̂3 × p̂1)(1 − t) + (p̂3 × p̂2)t, (p̂0(1 − t) + p̂1t) × (p̂2(1 − t) + p̂3t)

are a μ-basis for the planar rational cubic curve P(t). Moreover, p3 is the unique double point of P(t).
• If p̂0 × p̂3 �= 0 and �̂ = |p̂0p̂1p̂3|2 − |p̂0p̂1p̂2| · |p̂0p̂2p̂3| = 0, then

L0(t) = Q̂(t)/(|p̂0p̂1p̂3|(1 − t) + |p̂0p̂2p̂3|t),Q(t)

are a μ-basis for the planar rational cubic curve P(t). Moreover, p0 is the unique double point of P(t).
• If p̂0 × p̂3 �= 0 and �̂ �= 0, then

L1(t) = (p̂0 × q̂0)(1 − t) + (p̂3 × q̂1)t, Q̂(t)

are a μ-basis for the planar rational cubic curve P(t), where

q̂0 = λ0p̂1 + λ1p̂2 + λ2p̂3, q̂1 = −λ1p̂0 − λ2p̂1 + λ3p̂2,

λ0 = |p̂1p̂3p̂2|, λ1 = |p̂0p̂2p̂3|, λ2 = −|p̂0p̂1p̂3|, λ3 = −|p̂0p̂1p̂2|.
Moreover, (p̂0 × q̂0) × (p̂3 × q̂1) is the unique double point of P(t).

5. μ-bases for rational space curves

In this section, we shall generalize our result about μ-bases for conics in 2-dimensions to degree n (n ≥ 3) rational 
curves in n-dimensions by constructing explicit μ-bases for degree n rational curves in n-dimensions (e.g., rational cubic 
curves in 3-dimensions).

5.1. Definition of μ-bases for rational space curves

Since in Section 2 we gave the definition of μ-bases only for planar rational curves, we need to recall here the concept 
of μ-bases for rational space curves. Consider a real rational space curve

F(t) = (
f0(t), f1(t), . . . , fn(t)

)
, (n ≥ 3),

in homogeneous form, where gcd
(

f0(t), f1(t), . . . , fn(t)
) = 1. The curve F(t) is a rational curve in n-dimensions. A syzygy

of F(t) is a vector of polynomials L(t) = (
l0(t), l1(t), . . . , ln(t)

)
such that L(t) · F(t) ≡ 0. The set of all syzygies of F(t) is once 

again a free module over R[t] with a basis consisting of n generators (Cox et al., 1998). There are also several equivalent 
definitions for a μ-basis of a rational space curve F(t) (Song and Goldman, 2009). One simple definition of μ-bases for 
rational space curves is as follows.

Definition 5. (See Song and Goldman, 2009.) Consider a rational curve F(t) in n-dimensions. A set of n syzygies 
u0(t), . . . , un−1(t) of F(t) is a μ-basis for F(t) if

1) deg(u0(t)) + · · · + deg(un−1(t)) = deg(F(t)),
2) [u0(t), . . . , un−1(t)] = λF(t) for some nonzero constant λ.

Here the outer product [u0(t), . . . , un−1(t)] of n vectors u0(t), . . . , un−1(t) is the (n + 1)-tuple defined by

[u0(t), . . . ,un−1(t)] = det

⎛
⎜⎜⎜⎝

e0 e1 · · · en

u0,0 u0,1 · · · u0,n
...

...
...

...

un−1,0 un−1,1 · · · un−1,n

⎞
⎟⎟⎟⎠ ,

where e0, e1, . . . , en are the unit vectors along the coordinate axes, and ui, j denotes the j-th element of ui(t).
Every rational space curve has a μ-basis. Moreover, the method to compute μ-bases for planar rational curves, which 

is based on Gaussian Elimination (Chen and Wang, 2003), has also been generalized to compute μ-bases for rational space 
curves in n-dimensions (Song and Goldman, 2009).
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5.2. μ-bases for degree n rational space curves in n-dimensional space

Next we shall show how to find μ-bases for degree n rational space curves in n-dimensions.
Consider a non-degenerate degree n rational curve in n-dimensions

F(t) = (
f0(t), f1(t), . . . , fn(t)

)
, (n ≥ 3),

in homogeneous form. The curve F(t) can be expressed in terms of the power basis

F(t) = p0 + p1t + . . . + pntn,

where pi ∈ R
n+1. Let

M̃ = (p0,p1, . . . ,pn), (34)

be the (n + 1) × (n + 1) matrix whose columns are the n + 1 vectors p0, p1, . . . , pn . For F(t) to be a non-degenerate rational 
space curve we must have Rank(M̃) = n + 1. That is,

det(M̃) �= 0. (35)

Otherwise if det(M̃) = 0, there is a constant vector � �= 0 such that � · pi = 0, i = 0, . . . , n. Hence � · F(t) ≡ 0. Thus the 
rational space curve F(t) will degenerate into a rational curve that lies in the (n − 1)-dimensional hyperplane perpendicular 
to the vector �.

Notice that F(t) = ( f0(t), f1(t), . . . , fn(t)) can be rewritten as

( f0(t), f1(t), . . . , fn(t)) = (1, t, t2, . . . , tn)M̃T ,

where M̃T is the transpose of the matrix M̃ (34). Moreover the (n + 1) × n matrix

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

t 0 · · · 0
−1 t · · · 0

0 −1
...

...
... t

0 0 · · · −1

⎞
⎟⎟⎟⎟⎟⎟⎠

satisfies

(1, t, t2, . . . , tn)R = 0.

Thus the columns of the matrix R are orthogonal to (1, t, . . . , tn) and form a μ-basis for the normal curve (1, t, . . . , tn). 
Similarly, the columns of the matrix (M̃T )−1 R are orthogonal to F(t) and form a μ-basis for the curve F(t). There are 
several efficient methods to compute the inverse of the matrix M̃T in practice, e.g., solving the linear system corresponding 
to M̃T .

Our goal here, however, is to find an explicit formula for a μ-basis of the curve F(t). To find such an explicit formula, 
we can simply compute the adjoint matrix of M̃T . It is easy to verify that the adjoint matrix of M̃T is

(M̃T )∗ = (
c0,−c1, . . . , (−1)ici, . . . , (−1)ncn

)
,

where

ci = [p0, . . . ,pi−1,pi+1,pi+2, . . . ,pn], i = 0, . . . ,n.

Hence

(M̃T )∗R = (c1 + c0t, c2 + c1t, . . . , cn + cn−1t).

Therefore,

c1 + c0t, c2 + c1t, . . . , cn + cn−1t (36)

is an explicit μ-basis for the curve F(t).
Alternatively, we can also reconstruct an explicit formula for a μ-basis of the rational space curve F(t) as we did for 

conic curves in Section 3. Set

Li(t) = [p0, . . . ,pi−1,F(t),pi+2, . . . ,pn]
ti

, i = 0, . . . ,n − 1.

Li(t) follows F(t) since

[p0, . . . ,pi−1,F(t),pi+2, . . . ,pn] ⊥ F(t).
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After a simple computation, it is easy to show that Li(t) can also be expressed by

Li(t) = ci+1 + cit, i = 0, . . . ,n − 1.

Obviously, L0(t), . . . , Ln−1(t) are equal to (36).

Example 5. Consider the rational cubic space curve F(t) = p0 + p1t + p2t2 + p3t3, where

p0 = (1,3,3,−2),p1 = (1,2,−2,−1),p2 = (0,0,2,1),p3 = (−1,−3,1,−2).

F(t) is a rational curve in 3-dimensions. After a straightforward calculation, we find that

det(M̃) = det
(
(pT

0 ,pT
1 ,pT

2 ,pT
3 )

) = 12.

Set

L0(t) = [F(t),p2,p3] = (−36 − 10t,12 + 5t, t,−2t),

L1(t) = [p0,F(t),p3]
t

= (44 − 36t,−16 + 12t,4,4),

L2(t) = [p0,p1,F(t)]
t2

= (−14 + 44t,7 − 16t,−1 + 4t,2 + 4t).

By construction, Li(t) · F(t) ≡ 0, i = 0, 1, 2. On the other hand,

[L0(t),L1(t),L2(t)] = det(M̃)2F(t) = 144F(t).

Thus L0(t), L1(t), L2(t) are indeed a μ-basis for the rational cubic space curve F(t).

Remark 4. Conics discussed in Section 3 are a special case of degree n rational curves in n-dimensions where n = 2.

Remark 5. When a degree n rational curve in n-dimensions (n ≥ 2) is expressed in terms of the Bernstein basis

F(t) =
n∑

i=0

pi Bn
i (t) =

n∑
i=0

pi
n!

i!(n − i)! (1 − t)n−iti,

where pi ∈ R
n+1. Set p̂i = n!

i!(n−i)! pi, i = 0, . . . , n, and let

ci = [p̂0, . . . , p̂i−1, p̂i+1, . . . , p̂n], i = 0, . . . ,n.

Then once again we can prove that

Li(t) = ci+1(1 − t) + cit, i = 0, . . . ,n − 1,

are a μ-basis for F(t).

6. Conclusion

We have constructed explicit formulas for μ-bases of planar rational cubic curves and degree n rational curves in 
n-dimensions (n ≥ 2). But the formulas for the μ-bases of planar rational cubic curves are not so concise as the formu-
las for the μ-bases of conic sections. We need to treat several different cases of the planar rational cubic curve. So we 
can imagine that it will be harder and harder to write down explicit formulas for the μ-bases of rational planar curves of 
arbitrary degree: there are more and more cases and many more conditions to consider.

We also generalized our results to these rational curves expressed in terms of the Bernstein basis, so we can also write 
down their μ-bases directly without messy conversions between the power basis and the Bernstein basis.
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