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We consider the adaptive refinement of bivariate quartic C2-smooth box spline spaces on 
the three-directional (type-I) grid G . The polynomial segments of these box splines belong 
to a certain subspace of the space of quartic polynomials, which will be called the space 
of special quartics. Given a bounded domain � ⊂ R2 and finite sequence (G�)�=0,...,N of 
dyadically refined grids, we obtain a hierarchical grid by selecting mutually disjoint cells 
from all levels such that their union covers the entire domain. Using a suitable selection 
procedure allows to define a basis spanning the hierarchical box spline space. The paper 
derives a characterization of this space. Under certain mild assumptions on the hierarchical 
grid, the hierarchical spline space is shown to contain all C2-smooth functions whose 
restrictions to the cells of the hierarchical grid are special quartic polynomials. Thus, in this 
case we can give an affirmative answer to the completeness questions for the hierarchical 
box spline basis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Box splines and the functions contained in the spaces spanned by them form a very useful class of piecewise polynomial 
functions on regular grids. They possess a number of useful properties that make them well-suited for applications. It has 
been shown that box splines have small support (a few cells of the underlying grid), they are non-negative, they form a 
partition of unity, and that box splines are refinable, i.e., the box spline spaces on refined grids are nested (Böhm, 1983;
de Boor and Ron, 2008). Monographs and survey articles about box splines include (de Boor et al., 1993; de Boor and Ron, 
2008; Chui, 1988; Prautzsch and Boehm, 2002). Tensor-product B-splines are special instances of box splines also.

From the rich literature on box splines, we mention a few representative publications on three specific topics. Firstly, a 
substantial number of results on the approximation power of box splines is described in the literature, e.g. (Lyche et al., 2008;
Ron and Sivakumar, 1993). Secondly, several publications discuss techniques for the efficient manipulation of box spline 
bases. A general stable evaluation algorithm is devised in Kobbelt (1997). In Kim and Peters (2009) the problem of efficient 
evaluation of box splines is addressed by making use of the local Bernstein representation of basis functions on each triangle. 
Also, numerical integration schemes, which are important for applications, based on quasi-interpolation have been considered 
in Lamberti (2009), Dagnino et al. (2013).
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Using hierarchical splines is a well-established approach to adaptive refinement in geometric modeling (Forsey and Bartels, 
1988) and numerical analysis (Mustahsan, 2011; Schillinger et al., 2012; Vuong et al., 2011). Kraft (1998) introduced a basis 
for hierarchical tensor-product spline spaces using a selection mechanism for B-splines. More recently, a slight modification 
of this approach was shown to provide a basis with better properties, such as the partition of unity property, strong stability 
and full approximation power (Giannelli et al., 2012, 2014; Speleers and Manni, 2015). The hierarchical approach has been 
extended to Powell–Sabin splines, Zwart–Powell elements and B-spline-type basis functions for cubic splines on regular 
grids (Kang et al., 2014; Speleers et al., 2009; Zore and Jüttler, 2014).

Computations of the dimensions of spline spaces on partitions of a domain and constructions of suitable bases for 
such spaces are classical problems considered in the theory of multivariate splines (Wang, 2001; Zeng et al., 2015). The 
completeness question (i.e., how to construct a basis spanning the entire spline space on a partition of a domain) led to 
the introduction of polynomial splines over hierarchical T-meshes (PHT-splines) (Deng et al., 2006, 2008; Li et al., 2010). 
Bivariate splines over T-meshes are considered in Schumaker and Wang (2012). A graphical summary of the related literature 
has been given in Mokriš and Jüttler (2014, Fig. 1). Several publications have addressed the completeness questions for 
hierarchical spline spaces generated by tensor-product B-splines (Berdinsky et al., 2014; Giannelli and Jüttler, 2013; Mokriš 
et al., 2014). Given a hierarchical spline space, these publications derive sufficient conditions which guarantee that the 
associated basis (obtained by Kraft’s selection mechanism) spans the entire spline space on the partition of the domain 
which is determined by the hierarchical space.

The paper explores the hierarchical spline spaces generated by C2-smooth quartic box splines on nested type-I triangu-
lations of a bounded domain � ⊂ R

2, cf. Fig. 1. These functions form the mathematical basis of Loop’s subdivision scheme 
and are therefore used to construct the regular parts of the corresponding subdivision surfaces, cf. Loop (1987), Stollnitz et 
al. (1996). Moreover, it is known that any C2-smooth piecewise polynomial function of degree 4 on a type-I triangulation 
of R2 can be represented as a linear combination of box splines plus three (globally supported) truncated power (piece-
wise polynomial) functions of degree 4. However, the box splines suffice for representing all locally supported C2-spline in 
the space, cf. Chui and Wang (1984). On each cell of the triangulation, the space generated by the box splines spans a 
12-dimensional subspace of quartic bivariate polynomials. This subspace, which will be called the space of special quartics, 
is known to contain the cubic polynomials. The current manuscript follows the approach presented in Mokriš et al. (2014)
in order to establish the completeness of hierarchical C2-smooth quartic box splines with respect to special quartics.

Using a suitable selection procedure, which generalizes the hierarchical B-spline basis introduced by Kraft (1997) to 
quartic C2-smooth box splines, we define a basis spanning a hierarchical box spline space. We prove that the elements of the 
space can equivalently be characterized as the C2-smooth functions whose restrictions to the cells of the hierarchical grid 
(which consists of mutually disjoint cells from different levels covering the entire domain) are special quartic polynomials.

The remainder of this paper consists of five sections and an appendix. The next section recalls existing results concerning 
bivariate spline spaces on regular grids and C2-smooth quartic box splines. It also derives a characterization of C2-contacts 
between segments of special quartic polynomials by their box spline coefficients. Section 3 is devoted to the spaces of 
C2-smooth functions whose segments are special quartic polynomials on a multi-cell domain, where all cells belong to the 
same level. For certain multi-cell domains, which are said to be admissible, these spaces are spanned by the associated 
box splines. These domains are characterized by an offset condition in Section 4. Based on these results, the fifth section 
discusses the completeness of the hierarchical box spline basis on the associated hierarchical grids. Finally we conclude the 
paper. The Appendix A proves that the spaces spanned by the special quartic polynomials on each cell are simply restrictions 
of a globally defined subspace of the space of quartic polynomials.

2. Preliminaries

We recall existing results concerning C2-smooth quartic splines on regular type-I triangulations and characterize 
C2-smooth contacts between special quartic polynomials on adjacent triangular cells.

2.1. Bivariate splines on regular grids

We consider bivariate splines on a three-directional grid in the plane R2, see Fig. 1. Let us denote by Pd the linear space 
of polynomials in R[x, y] of degree less than d + 1.

Furthermore, we consider a partition G� of a polygonal domain � ⊂ R
2 into mutually disjoint cells, where each cell is 

an open set and the closure of the union of all cells equals �. In addition we choose a finite-dimensional linear space T of 
functions on R

2.

Definition 1. We define Sr(G�, T ) to be the space of Cr -smooth functions s on � with the property that their restrictions 
(denoted by the vertical bar s|�) to any cell � ∈ G� yields a function which is obtained by restricting a function in T to the 
cell, i.e.,

Sr(G�, T ) = {s ∈ Cr(�) : s|� ∈ T |�for all cells � ∈ G�}, (1)

where the linear space T |� contains the restrictions of the functions in T to the cell �.
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Fig. 1. The three-directional grid G .

We will call the above space a spline space, and its elements spline functions or simply splines. This definition is quite 
general and applies to any partition of a planar domain in R2 and to any linear space T . A typical choice is T = Pd , but 
other choices are also envisaged in this paper.

In a slight abuse of notation we will also use this definition for the case r = −1, where we obtain the space S−1(G�, T )

of disconnected splines on G� . Strictly speaking, these spline functions are well-defined only on the interior of the cells, ⋃
�∈G�

�, since they may take multiple values on edges and vertices.

Example 2. If T = Pd , we obtain the spline space formed by the Cr -smooth piecewise polynomials of (total) degree d. 
Typically, this space is used when considering triangulations of the domain. Alternatively one may consider bivariate tensor-
product polynomials T = Pd ⊗ Pd of bidegree (d, d), which are used in connection with partitions of the domain into 
axis-aligned boxes. Clearly, it is also possible to consider trigonometric polynomials T = span{1, cos kx, sin kx : k = 1, . . . , d}
or multivariate versions thereof. In this paper we are interested in a certain subspace T = P̂ of P4 which is generated by 
the polynomial segments of C2-smooth quartic box splines on type-I triangulations. �

Throughout this paper, we consider a particular triangulation that allows to construct splines with good properties. More 
precisely, we consider the bi-infinite grid in R2 with lines R × Z and Z × R, and the triangulation obtained by adding the 
north–east diagonals in the squares of the grid, see Fig. 1. This produces a three-directional grid which we denote by G . The 
grid G is a set which contains the elementary triangles (which are called cells) as its elements, where each of the triangles 
is considered as an open subset of R2.

This type of grid is called a type-I triangulation (e.g. Lai and Schumaker, 2007), and spline spaces on triangulations of this 
type have been studied thoroughly in the rich literature on this subject. In particular, they include box spline spaces, which 
are interesting due to their elegant construction and simple refinement algorithm.

All results concerning splines on type-I triangulation remain valid under affine transformations of the underlying grid G . 
For instance, these transformations include scalings of the grid (and we will use this fact later when constructing hierarchical 
spline spaces), but also affine mappings that transform all triangles into equilateral ones, a particular case which reveals the 
built-in symmetries of these spline spaces.

2.2. Quartic box splines

We restrict ourselves to polynomials P4 of degree up to four and we will denote this space simply by P . For each 
triangle � ∈ G , let us denote by P|� the linear space formed by the restrictions f |� of all polynomials f ∈P to �, i.e.,

P|� = { f |� : f ∈ P}.
For a given triangle �, any bivariate polynomial can be represented as a linear combination of the associated bivariate 
Bernstein polynomials on this triangle (Lai and Schumaker, 2007),

f |� =
∑

i+ j+k=4

ci jk B4
i jk , (2)

with real coefficients ci jk . Each Bernstein polynomial B4
i jk has an associated anchor point, which possesses the barycentric 

coordinates (i/4, j/4, k/4) with respect to the triangle. This representation of the polynomials is quite useful for the efficient 
evaluation of the functions and their derivatives at a given point (Kim and Peters, 2009; Lai and Schumaker, 2007).

The coefficients in Fig. 2, which are placed according to the associated anchor points, define a piecewise polynomial 
function, whose support is the set of these triangles. The multiple 1/24 of this function is the symmetric quartic box spline 
(cf. Lai and Schumaker, 2007 for more details). This box spline is a C2-smooth function on the three-direction grid and will 
be our main object of interest. It will be denoted by B. Note that this box spline forms the mathematical basis of Loop 
subdivision surfaces (Loop, 1987; Stollnitz et al., 1996).
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Fig. 2. Left: Support and the Bernstein coefficients of the scaled box spline 24B. The central vertex is located at the origin. Right: Graph of B over [0,4]2.

Fig. 3. The 1-ring of a triangle.

The translates

βi j(·) = B(· − (i, j)), (i, j) ∈ Z
2

are known to form a locally linearly independent set

B = {βi j : (i, j) ∈ Z
2} (3)

in the following sense: for any open subset A ⊂ R
2, the translates

B A = {βi j ∈ B : supp(βi j) ∩ A �= ∅}
restricted to A are linearly independent (Lai and Schumaker, 2007). Here supp( f ) denotes the support of the function f .

2.3. Contact of polynomial pieces

By construction, each translated box spline βi j is associated with the lattice point (i, j). For a cell � in G , let �̄ denote 
the closure of �. We consider the translates whose support contains the given cell �,

B� = {βi j : supp(βi j) ∩ � �= ∅}.
This set is formed by the 12 translates βi j , which are associated with the vertices of the 1-ring neighborhood of � in the 
three directional grid, see Fig. 3.

We now consider the linear space spanned by the restrictions of these translates to the given triangle,

V� = (span B�)|�. (4)

Since this space is a genuine subset of quartic polynomials (its dimension is only 12), we will call it the space of special 
quartics on �.

Remark 3. It can be shown that V� = P̂|� where

P̂ = span(P3 ∪ {x4 − 2x3 y, y4 − 2xy3}). (5)

In particular, it should be noted that P̂ is independent of the chosen cell �. The proof of this observation is postponed to 
the Appendix A. �



N. Villamizar et al. / Computer Aided Geometric Design 41 (2016) 47–61 51
Fig. 4. Active box splines on a square domain consisting of two triangles. Twelve functions are active (non-zero) on each triangle. Exactly ten of those are 
active on both triangles.

Any polynomial f |� ∈ V� has a unique representation

f |�(x) =
∑

β∈B�
λ

β
�( f |�)β(x), x ∈ �,

for certain coefficients λβ
�( f |�) ∈ R.

Now we consider two cells � and �′ which share an edge. The 1-rings around � and �′ have 10 vertices in common, 
or equivalently, B� , and B�′ share 10 elements, see Fig. 4.

The following notion of contact will be important in the sequel for the definition of spline spaces.

Definition 4. We say that two polynomials f |� ∈P� and f ′|�′ ∈P�′ have contact of order 2 (and write f |� ∼ f ′|�′ ), if

∀x ∈ �̄ ∩ �̄′, ∂ i+ j

∂xi∂ y j
f |�(x) = ∂ i+ j

∂xi∂ y j
f ′|�′(x) (6)

for all i and j with 0 ≤ i + j ≤ 2. The derivatives and values at points on the boundary of a triangle are obtained by 
one-sided limits.

This property of contact, or continuity of higher order, is a desired property in applications. The following lemma will 
help us to characterize the situation of contact of quartic box splines.

Lemma 5. Consider a domain � = � ∪ �′ consisting of two triangles meeting on one edge. Then dim S2(G�, P̂) = 14.

Proof. Let �(x, y) be the (implicit) equation of the line that contains the common edge of the two triangles.
Let ( f |�, f ′|�′) ∈ S2(G�, P̂), then

f |� − f ′|�′ = �3(ax + by + c),

since �(x, y)3|( f − f ′) is equivalent to f |� ∼ f ′|�′ . Therefore

f = f ′ + (Ax + B y + C)3(ax + by + c), (7)

where �(x, y) = Ax + B y + C , for A, B, C ∈R.
Since the grid G� has only three directions, we only need to consider the cases: (A, B, C) = (1, 0, t), (0, 1, t) or (1, −1, t), 

for t ∈ R.
If (A, B, C) = (1, 0, t), then (7) becomes

f = f ′ + ax4 + byx3 + p(a,b, c)

for a polynomial p ∈P3 that depends on a, b and c. Since f , f ′ ∈ P̂ , from Remark 3 we deduce that b = −2a, leading to

f = f ′ + a(x4 − 2x3 y) + p(a, c). (8)

The case (A, B, C) = (0, 1, t) is analogous to latter due to the symmetry of the generators of P̂ with respect to x and y.
It remains to consider (A, B, C) = (1, −1, t). In this case (7) becomes

f = f ′ + a(x4 − 3x3 y + 3x2 y2 − xy3) + b(yx3 − 3x2 y2 + 3xy3 − y4) + p(a,b, c) (9)
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for a polynomial p ∈ P3 that depends on a, b and c. Since f , f ′ ∈ P̂ , from Remark 3 we know that x2 y2 /∈ P̂ , then we 
deduce that b = a, leading to

f = f ′ + a(x4 − 2x3 y) − a(y4 − 2xy3) + p(a, c).

Thus, it follows from (8) and (9) that dim S2(G�, P̂) = 14. �
We now come to the characterization of contact of polynomial pieces.

Lemma 6 (Contact Characterization Lemma (CCL)). Consider two special polynomials f |� ∈ V� and f ′|�′ ∈ V�′ on two disjoint 
triangles �, �′ , and assume that the two triangles share an edge e = �̄ ∩ �̄′ . The two polynomials f |� and f ′|�′ have a contact of 
order 2 if and only if

∀ β ∈ B : β|e �= 0|e =⇒ λ
β
�( f |�) = λ

β

�′( f ′|�′). (10)

Proof. Firstly, we observe that f |� ∼ f ′|�′ is equivalent to

F = ( f |�, f |�′) ∈ S2(G�, P̂),

where � = � ∪ �′ . Secondly, noting that there are 14 box splines in B� (see Fig. 4) and in view of Lemma 5, we conclude 
that B� is a basis for S2(G�, P̂). Consequently, F ∈ S2(G�, P̂) if and only if there exist unique coefficients cβ ∈ R such that

F =
∑

β∈B�∪�′
cββ. (11)

Thirdly, we consider the restrictions of F to the two triangles,

F |� =
∑

β∈B�
λ

β
�( f )β, F |�′ =

∑
β∈B�′

λ
β

�′( f ′)β.

Due to the local linear independence of the box splines, the existence of the representation (11) is equivalent to

λ
β
�( f ) = cβ = λ

β
�( f ′) for β ∈ B� ∩ B�′ .

This completes the proof since B� ∩ B�′ coincides with the set of box splines that do not vanish on the common edge e. �
Remark 7. CCL cannot be generalized to two triangles with vertex–vertex contact. In fact, the dimension of the corresponding 
spline space, which is 18, is then always larger than the number of box splines (either 16 or 17, depending on the type 
vertex–vertex contact).

3. Special quartic splines on multi-cell domains

We now turn our attention to a domain consisting of a collection of cells and we establish conditions for obtaining a 
basis of the special quartics on the domain.

3.1. Piecewise polynomial functions on multi-cell domains

In the three-directional grid G , we will consider a finite set of cells (triangles) M ⊂ G . Any such set M corresponds to a 
bounded domain M, which is the closure of the union of its cells.

More precisely, we define the union operator U , which maps any element Q of the power set of R2 to a subset of R2,

U (Q ) =
⋃
c∈Q

c (12)

We can now formally define M as

M = U (M). (13)

If the domain M is connected, then we will say that the set M of triangles is also connected. We need a stronger version 
of connectivity which excludes vertex–vertex contacts of triangles.

Definition 8. A set M of triangles is said to be �-connected if it is connected and if additionally for any two triangles �, �′
in M , which have a common vertex v , �̄∩ �̄′ ⊇ {v}, there is a chain of triangles �0, �1, . . . , �m all in M such that �0 = �, 
�m = �′ and �̄i ∩ �̄i+1 = ei for some edge ei ∈ M that contains the vertex v , i.e. v ∈ ei , for i = 0, . . . , m − 1.
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Fig. 5. Example of a set M (in gray) which is connected but not �-connected.

Fig. 6. Example of sets of triangles obtained by adding and/or deleting certain triangles to the set M in Fig. 5. The additional triangles in each of the four 
cases appear in dark-gray. The four new sets satisfy Condition 9 i.e., each of its connected components is �-connected.

In particular, two triangles are �-connected triangles if they possess a common edge.
We require the following condition.

Condition 9. The set M is assumed to be a union of finitely many mutually disconnected finite sets of triangles, each of 
which is �-connected.

In particular, this condition on the set of triangles M implies that we do not allow “kissing vertices” in any connected 
component of M; or in other words, M is a triangulation of a 2-manifold M with boundary.

Example 10. The domain M = U (M) in Fig. 5 has only one component and it is not �-connected. In Fig. 6, the set of 
triangles M is modified in several ways by adding and deleting triangles and the different components (when more than 
one) are all �-connected, and hence the domains satisfy Condition 9. �

In the remainder of the paper, every set M is assumed to satisfy Condition 9. The set of the translates of box splines that 
act on the triangles M will be denoted as

B M = {βi j ∈ B : suppβi j ∩M◦ �= ∅},
where M◦ denotes the interior of M, see Fig. 7 for an example. These basis functions generate a space which we denote 
by

VM = span B M |M . (14)

In particular, when M contains just the single cell � then

VM = V{�} =V� = P̂|� ,

as in Remark 3.



54 N. Villamizar et al. / Computer Aided Geometric Design 41 (2016) 47–61
Fig. 7. Supports (shown in light gray) of three translates of the box splines B that act on a domain M (shown in dark gray).

Fig. 8. A domain with VM � S2(M, P̂).

For a finite set of triangles M ⊂ G , we consider the space of disconnected quartics S−1(M, P), and the space of discon-
nected special quartics S−1(M, P̂). For M = {�}, these two spaces coincide with P|� and with P̂ |� , respectively. It is obvious 
that S−1(M, P̂) ⊂ S−1(M, P) for any choice of M .

Given a disconnected special quartic f = ( f |�)�∈M ∈ S−1(M, P̂), we have a local representation

f |�(x) =
∑
β∈B

λ
β
�( f |�)β|�(x), x ∈ �,

in terms of the restriction of the box splines, for any � ∈ M . However, this representation is generally not available for 
general disconnected quartics.

Lemma 11. For a finite set of triangles M, and the corresponding disconnected space S−1(M, P̂), the space S2(M, P̂) is precisely

S2(M, P̂) = {f ∈ S−1(M, P̂) : ∀�,�′ ∈ M, f |� ∼ f |�′ }
where the relation ∼ is defined in Definition 4.

Proof. By the definition of the space of C2 splines given in (1), it is easy to deduce that S2(M, P̂) ⊂ S−1(M, P̂). Let 
f ∈ S−1(M, P̂), then f ∈ S2(M, P̂) if and only if f is a C2 function on M , or equivalently, if and only if for all pair of 
cells � and �′ in M satisfy (6) in Definition 4. �

The space S2(M, P̂) will be referred to as the special spline space on M .
As we shall see later, the special spline space S2(M, P̂) can be generated by box splines with support on M, but one 

may need to use several copies of some of these box splines, as shown in the following Example.

Example 12. The domain in Fig. 8 consists of two �-disconnected triangles. The space of disconnected special quartics 
consists of pairs of special polynomials, where the first and the second entry of each pair is associated with the first and 
the second triangle. Since the two triangles are disconnected, the special spline space is equal to the space of disconnected 
special quartics. Consequently, it has dimension 24 and is therefore not spanned by the 18 box splines whose support 
intersects this domain. �



N. Villamizar et al. / Computer Aided Geometric Design 41 (2016) 47–61 55
Fig. 9. A multi-cell, and three examples of box splines βi .

Fig. 10. Coefficient graphs associated to βi , i = 1,2,3 from Fig. 9.

Definition 13. For a spline β ∈ B M , the coefficient graph �β associated to β is defined as follows:

• The vertices of the graph �β are the cells � ∈ M such that � ⊆ suppβ .
• Two vertices of �β are connected by an edge if the corresponding cells �, �′ have a common edge and β|�̄∩�̄′ �= 0|�̄∩�̄′ .

We will write � ∈ �β to indicate that � corresponds to a vertex of �β .

Example 14. Let us consider the domain in Fig. 9, and the box splines βi (i = 1, 2, 3). The coefficient graphs �βi correspond-
ing to these box splines are given in Fig. 10. �
Proposition 15. An element f ∈ S−1(M, P̂) is in S2(M, P̂) if and only if the coefficients satisfy λβ

�( f |�) = λ
β

�′( f |�′ ), for all β ∈ B M , 
and all pair of cells �, �′ belonging to the same component of �β .

Proof. Suppose f ∈ S2(M, P̂), and β in B. If � = �0 and �′ = �d+1 are two cells in M corresponding to vertices in the 
same component of �β , then there is a chain of vertices v1, . . . , vd in �β corresponding to cells �1, . . . , �d in M , such that 
�i and �i+1 intersect in an edge, for i = 0, . . . , d. By Lemma 6, λβ

�i
( f |�i ) = λ

β
�i+1

( f |�i+1 ), and since this is valid for every 
0 ≤ i ≤ d, then the same follows for � and �′ .

Conversely, from a similar argument as before, if for any pair of triangles � and �′ in M with an edge e in common we 
have that λβ

�( f |�) = λ
β

�′ ( f |�′) for every basis function β ∈ B such that β|e �= 0, then by Lemma 6 every linear combination 
of the basis functions β is in S2(M, P̂). �
3.2. Box spline bases on multi-cell domains

Definition 16. For every β ∈ B and every connected component 	 of �β we define the function

β	(x) =
{

β(x) if x ∈ U (	),

0 otherwise.
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The set of these functions, for the different connected components of the graph �β , is denoted by 
, more precisely,


 =
⋃
β∈B

{β	| 	 is a connected component of �β}.

Theorem 17. The set 
, when restricted to M, forms a locally linearly independent basis for S2(M, P̂).

The proof is analogous to that of Theorem 2.12 in Mokriš et al. (2014).

Corollary 18. If the intersection of the support of each β with the multi-cell domain M is �-connected, then the functions in B M, when 
restricted to M, form a basis of S2(M, P̂).

Proof. If the condition is satisfied, then for each β ∈ B M the coefficient graph �β has either one component or it is empty. 
The result thus follows from Theorem 17. �
Example 19. The graph �β , associated to every β with non-empty intersection with the interior of M in Fig. 7, has only one 
component. From the previous Corollary, it follows that the functions in B M , restricted to M, form a basis for the special 
spline space S2(M, P̂) on the domain M. �
4. Admissible multi-cell domains

In view of the discussion in the previous section, we give the following definition.

Definition 20. A domain M = U (M) is said to be admissible, if the intersection of the support of any box spline with M is 
�-connected.

The following result is then obvious from Corollary 18:

Corollary 21. For any admissible domain M, the functions in B M when restricted to M form a basis of S2(M, P̂).

A subset of admissible domains can be characterized by the offsets of their boundaries.

Definition 22. We define the offset curve of a multi-cell domain M as follows: Consider any cell (triangle) in G \ M . If the 
boundary of this triangle shares a vertex with M, but both incident edges are not part of the boundary of M, then the 
opposite edge is added to the offset curve. We say that a domain M satisfies the offset condition if its offset is a simple 
closed curve or a collection of simple closed curves.

Proposition 23. If a domain satisfies the offset condition, then it is also admissible.

Proof. The proof follows from a careful case-by-case analysis. �
Remark 24. For the domain on the left in Fig. 11 the box splines in B M form a basis for S2(M, P̂). In this situation, when 
the holes in the domain are “sufficiently small”, they do not split the support of any basis function β ∈ B M and the result 
follows by Corollary 18. Consequently, the offset condition is not necessary for admissibility. �
5. Hierarchical box splines

We define the special spline spaces on a hierarchical grid and a hierarchical basis. We then prove the completeness of 
this basis under certain assumptions on the domain hierarchy.

5.1. Special spline spaces on hierarchical grids

Given an integer N ≥ 0, we consider the hierarchical grids

G� , � = 1, . . . , N

such that G�+1 is obtained from G� by one global, uniform dyadic refinement step, where the coarsest grid G1 = G is the 
one with vertices Z2 which has been described in Section 2. More precisely, the grid G�+1 = 1

2 G� is obtained by dividing all 
edges of triangles of G� into two edges and adding three new interior edges, thus every triangle is split into four smaller 
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Fig. 11. The offsets of the two domain boundaries in the picture are non-simple curves. The domain on the left is admissible, however one of the holes has 
a discontinuous offset. The domain on the right does not possess a simple offset, and furthermore it is not admissible since there are box splines (such as 
the one whose support is indicated) with a disconnected coefficient graph, see Fig. 10.

Fig. 12. Three levels of hierarchical grids.

ones, see Fig. 12. The index � will be called the level of the grid, and the number N specifies the number thereof. Each grid 
G� is a set of triangles of the same shape, and these triangles are open sets.

In addition to the union operator U , see (12), which transforms a set Q of subsets of R2 into the closed subdomain 
U (Q ) ⊂ R

2 covered by it, we define the triangulation operators T � which restrict the grid of level � to a given subset Q
of R2,

T �(Q) = {� ∈ G� : � ⊆ Q}.
When applied to subsets of the corresponding grids, these operators are the inverses of the union operator, i.e. for any 
M� ⊂ G� we have T �(U (M�)) = M� .

Let � be a domain of R2 aligned with level N . More precisely, its boundary ∂� is a union of edges from the grid G N , 
see the top right of Fig. 13. The hierarchical grid is defined by an inversely nested sequence of subdomains M� = U (M�)

thereof,

∅ = M0 ⊆ M1 ⊆ · · · ⊆ MN = �, (15)

which correspond to subsets of the corresponding grids, M� ⊂ G� . Thus the boundary ∂M� is a union of edges of the grid 
G� of the same level. These subdomains were called rings in Giannelli and Jüttler (2013). They are multi-cell domains (with 
respect to the grid) of level �.

The difference of two successive subdomains

D� = M� \M�−1

and the associated subset D� = T �(D�) of the grid of level � is called the refinement domain of level �, see Fig. 14. In particular 
we have D1 = M1 and D1 =M1.

Finally we collect the triangulations of the refinement area and arrive at the hierarchical grid

H =
N⋃

�=1

D�, (16)

see Fig. 15. This hierarchical grid, which collects triangles from all levels, provides a representation of the domain � = U (H)

as a hierarchical multi-cell domain. We use it to define the hierarchical special spline space

H = S2(H, P̂).
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Fig. 13. Nested sequence of domains M� and the corresponding multi-cell domains M� , � = 1,2,3 from Fig. 12.

Fig. 14. Refinement domains corresponding to the multi-cell domains M� in Fig. 13, � = 1,2,3.

Equivalently, the spline functions s ∈ H can be characterized by the fact that their restrictions to the subdomains belong to 
the corresponding spline spaces:

Lemma 25. A function s : � →R is an element of H if and only if

s|M� ∈ S2(M�, P̂).

holds for all � = 1, . . . , n.

The proof of this simple observation has been omitted.

5.2. Completeness of the hierarchical spline basis

We consider the box splines B� , which are associated with the grids G� , and the spaces spanned by them. Similar to the 
grids, these box splines can be obtained by a dilation,

B�+1 = {β(2 ·) : β ∈ B�}
from the coarsest basis B1 = B which has been defined in Section 2. For each subdomain M� we consider the box splines 
whose supports possess a non-empty intersection with M� ,

B�
M� = {β ∈ B� : supp β ∩M� �= ∅}.

The hierarchical spline basis is defined by a selection procedure which was proposed by Kraft (1998) for tensor-product 
B-splines. We select box splines from all levels,

K � = {
β� ∈ B�

� : suppβ� ∩M�−1 = ∅}
,
M
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Fig. 15. Hierarchical multi-cell domain � = U (H), obtained as the union of refinement areas Di (i = 1,2,3) from Fig. 14.

and collect them into the hierarchical spline basis

K =
N⋃

�=1

K �.

The linear independence of this set of functions is implied by the local linear independence of the box splines at each level, 
see Giannelli and Jüttler (2013), Kraft (1998).

Finally we provide a sufficient condition for the completeness of the hierarchical spline basis.

Theorem 26. The hierarchical spline basis K spans the hierarchical spline space H if each subdomain M� is admissible with respect to 
the grid of level �.

Proof. The proof follows standard arguments already presented in Giannelli and Jüttler (2013), Mokriš et al. (2014), for the 
case of hierarchical tensor B-spline bases. Any spline function s ∈ H admits a representation

s = (h1 + · · · + hN)|�,

where h� ∈ span B�
M� with the property that

h�|M� = s|M� − (h1 + . . . + h�−1)|M� , (17)

for � = 1, . . . , N . This is proved by induction with respect to �.
For any given level �, all functions hk|M� of lower levels k < � are contained in S2(M�, P̂), since

span Bk
Mk |M� ⊂ S2(M�, P̂).

Lemma 25 implies s|M� ∈ S2(M�, P̂). Consequently, the right-hand side of Eq. (17) is contained in S2(M�, P̂). Since the 
subdomain M� is admissible, we conclude that h� ∈ span B�

M� according to Corollary 21. In particular, choosing � = N in Eq. 
(17) implies the first equation.

Moreover, the construction of the functions h� ensures that

h�|M�−1 = 0|M�−1 .

Since the box splines possess the property of local linear independence we can conclude that h� ∈ span K � . This completes 
the proof. �
6. Conclusion

We extended the discussion of the completeness of hierarchical spline spaces from Mokriš et al. (2014) to the case 
of hierarchies of bivariate quartic C2-smooth box splines on type-I triangulations. There are two main differences to the 
original approach, which was formulated for tensor-product splines.

First, since box splines do not span the whole space of quartic polynomials, a special polynomial subspace – the special 
quartics – had to be introduced. In some sense this situation generalizes the tensor-product case, where the B-splines span 
a polynomial space of a given (coordinate-wise) bi-degree, instead of the space of bivariate polynomials of a given total 
degree.
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Fig. 16. The two cells in the fine grid G� are both contained in a cell of the grid G0.

Second, the constraints on the domains are entirely different, due to the differences in the characterization of contacts 
between polynomial pieces. For bivariate tensor-product splines, both edge-edge and vertex–vertex contacts could be char-
acterized easily by the equality of spline coefficients. In the present case, however, this was possibly solely for edge-edge 
contacts. Consequently, the completeness of hierarchical splines requires more severe restrictions to the hierarchical grid.

The hierarchical box spline basis does not form a partition of unity. Similar to the approach presented in Giannelli et al.
(2012), this property can be recovered with the help of a suitable truncation procedure. Also, in Mokriš et al. (2014) it is 
described a decoupling procedure that allows to relax the assumptions regarding the hierarchical grid. This approach can be 
extended to the box spline case as well. Finally it is also possible to combine truncation and decoupling as in Mokriš and 
Jüttler (2014).

Appendix A

We show that the space V� defined in Eq. (4) is the restriction of a global space to the triangle, as pointed out in 
Remark 3. In order to prove this result we use the notation introduced in Section 5. The following proof is not restricted to 
quartic box splines.

Proposition 27. Consider a global polynomial f ∈ P defined in R2 . If f |� ∈ V� for some � ∈ G� , then f |�′ ∈ V�′ for any other cell 
�′ in the grid G�.

Proof. We observe that if �, �′ ∈ G� then both cells are contained in a bigger triangle �̃ of a grid which we denote as G0, 
see Fig. 16. We denote by V0

�̃ the restriction of the span of the corresponding box splines (associated with the grid G0) to 

the cell �̃. Similarly we denote with V�� and V�
�′ the span of the corresponding box splines (associated with the grid G�) 

restricted to these triangles. Clearly, we have that

dimV
0
�̃ = dimV

�� = dimV
�
�′

because of the symmetry and the scaling invariance of the box spline construction. The box spline spaces on the different 
levels are nested, hence

V
0
�̃|� ⊆ V

�� and V
0
�̃|�′ ⊆ V

�
�′ .

Since V0
�̃ is a subspace of a polynomial space we also know that

dimV
0
�̃ = dimV

0
�̃|� = dimV

0
�̃|�′ .

Combining these observations confirms that V�� = V
0
�̃|� and V�

�′ =V
0
�̃|�′ , as we wanted to show. �

We may therefore define P̂ to be this global polynomial space. In the special case of C2 quartic box splines, the above 
result may be seen directly by using the representation of the polynomial pieces in the monomial basis. For the sake of 
completeness we report the coefficients of 12βi , βi ∈ β� with respect to the basis (5) of P̂ in the matrix
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 y y2 y3 x xy xy2 x2 x2 y x3 x4 − 2x3 y y4 − 2xy3

β1 0 0 0 0 0 0 0 0 0 0 0 −1

β2 0 0 0 2 0 0 0 0 0 0 0 1

β3 0 0 0 0 0 0 0 0 0 2 −1 2

β4 1 2 0 −6 2 6 6 0 0 −4 2 −1

β5 1 4 6 0 −2 −6 −6 0 0 2 −1 −1

β6 0 0 0 0 0 0 0 0 0 0 1 −1

β7 1 −2 0 6 4 −6 −12 6 6 −4 −1 −1

β8 6 0 −12 0 0 12 12 −12 −12 8 −1 2

β9 1 2 0 0 −4 −6 0 6 6 −4 1 0

β10 0 0 0 −2 0 0 6 0 −6 2 −1 1

β11 1 −4 6 0 2 −6 −6 0 12 −4 2 −1

β12 1 −2 0 0 −2 6 0 0 −6 2 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Each row corresponds to a box spline, following the numbering in Fig. 3. The grid size is 1 and the origin is located at 
vertex no. 8.
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