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In the paper two new approaches for construction of parametric polynomial approximants 
of a unit circle are presented. The obtained approximants have better approximation 
properties than those given by other methods, i.e., smaller radial error, symmetry, and 
exponential error decay.
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1. Introduction

A circle arc is a basic object in CAGD and in many applications. Conics are the oldest curves, and are used in architecture, 
robotics, and in many other fields. The unit circle has a nice parameterization

c(t) = (cos t, sin t), t ∈ [0,2π).

In CAGD, parametric polynomial and rational curves and splines are fundamental objects. A circle arc does not have a 
parametric polynomial representation, however, it can be represented by using a quadratic rational Bézier curve. The whole 
circle can thus be represented by a quadratic rational spline, e.g. as a NURBS. A natural question is, whether it is possible 
to obtain a good parametric polynomial approximation of a circular arc.

A lot of papers study good approximation of circular segments with the radial error as the parametric distance. Quadratic 
Bézier approximants are considered in Mørken (1991), and their generalizations to the cubic case can be found in Dokken et 
al. (1990) and Goldapp (1991). The quartic case is systematically studied in Ahn and Kim (1997), Kim and Ahn (2007) and 
Hur and Kim (2011), and quintic Bézier approximants are derived in Fang (1998, 1999). Recently, quartic G1 approximants 
were analyzed in Kovač and Žagar (2014).

General results on Hermite type approximation of conic sections by parametric polynomial curves of odd degree are 
given in Floater (1995, 1997). The results hold true only asymptotically, i.e., for small segments of a particular conic section. 
Hermite approximation of ellipse segments by cubic parametric Bézier curves is studied in Dokken (2003) and also in 
Dokken (1997).

In recent years some quite surprisingly good approximations of the whole circle were obtained. An approach based on 
Taylor approximation was improved by idea of geometric interpolation and a construction of polynomial approximants for 
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Fig. 1. Quintic parametric polynomial approximant from Lyche and Mørken (1994) (gray), parametric approximant of the same degree given in Jaklič et al.
(2013) (blue), quintic Taylor approximant (blue dashed), and the new quintic approximant (red). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

all odd degrees was obtained in Lyche and Mørken (1994). The construction that covered also even degrees was presented 
in Jaklič et al. (2007a). By looking at the problem from a different perspective, it turned out that the obtained construction 
was just one of several solutions of a nonlinear problem, and that there exist better solutions. In Jaklič et al. (2013), the 
best such solution was presented, which gives a good approximation of a conic section. It has many nice properties, it is 
symmetric, shape preserving, it gives a high order approximation of the whole circle c , and for higher degrees it circles the 
circle several times before it deviates from c . Furthermore, it is given in a closed form.

In this paper, a novel parametric polynomial approximant for the whole circle is presented, that gives a better approx-
imation. It has many desired properties, such as symmetry and high order approximation. Another approach is presented 
that yields even (slightly) better results. Since solving of nonlinear equations and systems are involved, unfortunately the 
solutions could not be given exactly.

As a motivation, consider Fig. 1. Here a parametric quintic polynomial approximant of the unit circle, given in Lyche and 
Mørken (1994), Jaklič et al. (2007a) as(

1 − 2 t2 + 2 t4

2 t − 2 t3 + t5

)

is shown together with the quintic approximant from Jaklič et al. (2013) (with radial error 0.08999)(
1 − (3 + √

5)t2 + (1 + √
5)t4

(1 + √
5)t − (3 + √

5)t3 + t5

)
,

and the quintic Taylor approximant, together with the new quintic approximant(
0.99947004 − 3.87624490 t2 + 1.87807588 t4

2.79286220 t − 3.43427162 t3 + 0.69240320 t5

)
,

which is visually indistinguishable from the unit circle (the radial error is 0.00052). Note that also the new quartic approx-
imant gives a better result than the quintic approximant from Jaklič et al. (2013) with radial error 0.0109 (see Fig. 2).

Our goal is to construct parametric polynomials xn and yn of degree ≤ n, which yield a good approximation of the whole 
unit circle

cos2(t) + sin2(t) = 1.

Let us consider the expression

x2
n(t) + y2

n(t) = 1 + ε(t). (1)

Here, ε is a polynomial of degree ≤ 2n. Since the circle does not have a parametric polynomial parameterization, every 
polynomial approximation (xn, yn) yields a deviation ε from the unit circle with the implicit equation

x2 + y2 = 1.
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Fig. 2. Quartic parametric polynomial approximant from Jaklič et al. (2013) (blue), quartic Taylor approximant (blue dashed), and the new quartic approx-
imant (red). The circle is drawn black-dashed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

So, in some sense, ε should be small to obtain a good approximation. Let us be more precise. We will consider the radial 
error

e(t) :=
√

x2
n(t) + y2

n(t) − 1

on some interval [−t∗, t∗]. There are several problems:

• the choice of ε ,
• how to obtain xn and yn from the equation (1),
• how to compute an appropriate t∗ .

Furthermore, the solution should be symmetric, have a nice shape resembling the circle, and the error should be as small as 
possible. In Jaklič et al. (2013), the choice ε(t) = t2n was analyzed and a nice approximation in a closed form was obtained, 
which enables precise error analysis and applications. Its disadvantage is, that it is a one-sided approximation of the circle, 
and has only one (multiple) contact with the circle at t = 0, and is thus Taylor-like in its nature.

There are some more natural choices. An idea right at hand would be to take xn and yn as Taylor expansion of cos and 
sin up to the degree n. This yields a good local approximation near 0, but the approximation quickly deviates from the circle 
(see Fig. 2 and Jaklič et al., 2007b).

A quite similar expression to (1) is connected to Pell’s equation

T 2
n (t) − (t2 − 1)U 2

n−1(t) = 1,

where Tn and Un are Chebyshev polynomials of the first and second kind. Thus

T 2
n (t) + U 2

n−1(t) = 1 + t2U 2
n−1(t).

Unfortunately this solution does not give a good approximation of the circle (see Fig. 3).
One of promising ways is to use the equation of an ellipse in the polar form

r(t,a) = 1

1 + a cos t

and take ε(t) as Taylor expansion of 
√

r(t,a) − 1 up to degree 2n. The results of such a choice are good, but another choice 
will give even better results.

In this paper, we will tackle the case ε(t) = a T2n(t), where 0 < a < 1 is an unknown parameter. Best solutions for n ≤ 9
are obtained. They can be given in a closed form, but computation of the optimal parameter a requires solving a nonlinear 
equation. It will be shown, that the solutions can be improved. A way how to choose an optimal polynomial ε will be 
shown, and thus slightly better approximations for small n will be presented.
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Fig. 3. Parametric polynomial approximant given by the solution of Pell’s equation for n = 5.

2. Solutions

Firstly, let us recall the main idea for solving the equation (1) in Jaklič et al. (2013). Solving the equation (1) is equivalent 
to solving

x2
n(t) + y2

n(t) = 1

in the factorial ring R[t]/ε(t). But since there are additional restrictions on degrees, the problem cannot be tackled by 
classical algebraic tools.

But the special form of the equation enables an approach that straightforwardly yields all the solutions.
The equation

x2
n(t) + y2

n(t) = 1 + t2n

can be rewritten as

(xn(t) + i yn(t)) (xn(t) − i yn(t)) =
2n−1∏
k=0

(
t − ei 2k+1

2n π
)

, ei ϕ := cosϕ + i sinϕ, (2)

where the right-hand side is the factorization of 1 + t2n over C. From the uniqueness of the polynomial factorization over 
C up to a constant factor, and from the fact that the factors in (2) appear in conjugate pairs, it follows that

xn(t) + i yn(t) = γ

n−1∏
k=0

(
t − ei σk

2k+1
2n π

)
, γ ∈C, |γ | = 1,

where σk = ±1. In order to interpolate the point (1, 0), γ must be chosen as

γ := (−1)n
n−1∏
k=0

e− i σk
2k+1

2n π ,

which implies

xn(t) + i yn(t) = (−1)n
n−1∏
k=0

(
t e− i σk

2k+1
2n π − 1

)
=: pe(t;σ ),

with σ = (σk)
n−1
k=0 ∈ {−1, 1}n .

The best solution is (see Jaklič et al., 2013, Thm. 1)

xn(t) = Re
(

pe
(
t;σ ∗)) , yn(t) = Im

(
pe

(
t;σ ∗)) , σ ∗ = (1)n−1

k=0 .

The polynomial xn is an even function and yn is an odd one. Their coefficients can be given in a closed form and 
possess a particular symmetry (see Jaklič et al., 2013). It was shown in Jaklič et al. (2013) that the radial error decreases 
exponentially with n.
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3. Better approximant

Our goal is to consider the equation

x2
n(t) + y2

n(t) = 1 + a T2n(t),

where Tn is the Chebyshev polynomial of the first kind. A motivation for such a choice is straightforward. Among polyno-
mials of degree 2n with leading coefficient 1, the polynomial

1

22n−1
T2n(t)

has minimal infinity norm

1

22n−1

on the interval [−1, 1], and it is reached exactly 2n + 1 times at points cos kπ
n , k = 0, 1, . . . , 2n. This gives 2n points (zeros 

of T2n), where a parametric polynomial approximation (xn, yn) would intersect the unit circle.
Solving the equation

1 + a T2n(t) = 0

is equivalent to finding values of the Chebyshev polynomial

T2n(t) = −1

a
< −1.

Thus

cosh(2n arcCosh(−t)) = −1

a
.

Since

arcCosh z = log
(

z + √
z + 1

√
z − 1

)
+ 2kπ i,

2n arcCosh(−t) = log

(
−1

a
+

√
−1

a
+ 1

√
−1

a
− 1

)
+ 2kπ i .

Hence

sol(k) := t = − cosh

(
1

2n
log

(
−1

a
+

√
1

a2
− 1

)
+ kπ i

n

)
,k = 0, . . . ,2n − 1. (3)

Following the approach from (2),

1 + a T2n(t) = a 22n−1
2n−1∏
k=0

(t − sol(k)),

where sol(k) are roots of the polynomial 1 + a T2n(t), obtained in (3).
Recall

z z = (xn + i yn)(xn − i yn) = x2
n + y2

n.

From the uniqueness of the polynomial factorization over C up to a constant factor, and from the fact that the factors 
appear in conjugate pairs, it follows that each such choice of subsets of {0, 1, . . . , 2n − 1} of size n, yields a solution of the 
problem, i.e., a parametric polynomial approximant of the unit circle. Thus 

(2n
n

)
solutions are obtained. The choice

p(t) = in
√

a 22n−1
n−1∏
k=0

(t − sol(k)),

xn(t) = Re(p(t)),

yn(t) = Im(p(t)),

yields the best approximation of the unit circle for a given parameter a.
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Fig. 4. Error functions in (6) for n = 4.

The radial error is

e(t) =
√

x2
n(t) + y2

n(t) − 1 = √
1 + a T2n(t) − 1. (4)

We would like to obtain good approximant of the whole circle, thus we need to consider the following:

• the error will be small for small a > 0,
• the largest error will be obtained at extrema of Chebyshev polynomials and at boundary values t = 0 and t∗ , where 

yn(t∗) = 0,
• we would like the solution to resemble the circle, be symmetric, and give the best possible approximation of such kind.

Derivation of the radial error (4) yields

e′(t) = a n U2n−1(t)√
1 + a T2n(t)

,

thus extremal values are obtained at tk = cos kπ
2n , k = 1, 2, . . . , 2n − 1 and

e(tk) =
√

1 + (−1)k a − 1, (5)

since U2n−1(tk) = 0. Clearly they are of alternating signs and 
√

1 − a − 1 is greater by absolute value than the alternative.
We are interested in the solution on the interval [−t∗, t∗], where t∗ > 0 is the smallest value, such that yn(t∗) = 0. Hence

e(t∗) = |xn(t
∗)| − 1.

Note that

e(0) = √
1 + a T2n(0) − 1 = √

1 + (−1)n a − 1

is equal to one of the extremal values (5). Thus we need to minimize the expression

|√1 + a T2n(t∗) − 1|,
where t∗ depends on a. Since also the boundary value needs to be considered, one has to find the smallest positive solution 
of the equation

|√1 + a T2n(t∗) − 1| = 1 − √
1 − a.

This yields the final equation

||xn(t
∗)| − 1| = 1 − √

1 − a. (6)

In Fig. 4, the functions on the left- and right-hand side of (6) are shown for n = 4. The smallest positive intersection 
yields the parameter a for the best polynomial approximant. This requires solving a nonlinear equation, and high precision 
arithmetic is needed for larger n.
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Fig. 5. Best parametric polynomial approximant of degree 3.

4. Uniform approximation of the unit circle

In the presented approach, we exploited nice approximation properties of Chebyshev polynomials. However, here the 
radial error does not reach the same absolute value at extremal points (so-called equioscillation). A better approximation 
can be obtained by using geometric interpolation in the following way.

Since a symmetric solution is sought, let us take

p(t) = (t2 − t2
1)(t2 − t2

2) · · · (t2 − t2
n),

where t1, t2, . . . , tn are unknown nonnegative numbers. Now let us consider the error function

e(t,a) = √
1 + a p(t) − 1.

Its derivative

e′(t,a) = a p′(t)
2
√

1 + a p(t)

has 2n − 1 zeros ti , one of them is 0. The extremal values of the error function, obtained at ti , should oscillate in sign and 
have the same absolute value M1. This yields a system of nonlinear equations for given a and tn . Each such choice yields the 
appropriate values of t1, t2, . . . , tn−1 as the solution of the nonlinear system. By using the method, introduced in Section 3, 
we obtain the best parametric polynomial approximant (xn(t), yn(t)) among many possible. The first positive zero t∗ of yn
determines the value M2 = ||xn(t∗)| − 1|. By considering

min
tn,a

max{M1, M2},
we can obtain the best possible Chebyshev-like solution.

This approach requires solving a system of nonlinear equations, solving a nonlinear equation, and bivariate minimization. 
Best approximants for small n will be given in the next section.

A natural question is whether the radial error is the best choice. Since there is not an equivalent theory of polynomials 
of best approximation in the parametric setting as far as I know, some other measure of error could perhaps yield better 
results.

5. Numerical examples

First, let us consider the case n = 3. For a = 1/5, the solution simplifies to

x3(t) =
√

2

5

(
8 t2 sinh

(
1

6
log

(
5 − 2

√
6
))

− sinh

(
1

2
log

(
5 − 2

√
6
)))

,

y3(t) =
√

2
t

(
−4 t2 − 1 + 4 cosh

(
1

log
(

5 − 2
√

6
)))

.

5 3
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Fig. 6. Radial error for the best cubic approximant.

Table 1
Comparison of parametric polynomial approximations of the unit circle.

n Approximant (Jaklič et al., 2013) New approximant

Error t∗
n a Error

3 2 1.00371 0.23921 0.127767
4 0.41421 1.000172 0.021873 0.010997
5 0.08999 1.0000056049 0.00105983 0.000530072
6 0.01389 1.0000030931 0.0000318193 0.0000159689
7 0.00138 1.0000008556 6.60953 · 10−7 3.30532 · 10−7

8 9.5 · 10−5 0.9999980693 1.01285 · 10−8 5.06425 · 10−9

9 4.8 · 10−6 0.9384805459 4.0061 · 10−10 2.00305 · 10−10

Fig. 7. Polynomial approximants of the unit circle for n = 4,5.

The parameter value a = 0.2392102070552632 gives the best solution

x3(t) = 0.872233 − 1.98524 t2, y3(t) = 2.78729 t − 2.76672 t3,

with radial error 0.127767. It is shown in Fig. 5. Its radial error is presented in Fig. 6.
Note that an approximation with uniformly oscillating error x2

3 + y2
3 − 1 can be obtained at a = 0.3253559144748783. 

Here, the radial error is larger, 0.151241.
In Table 1, a comparison of parametric polynomial approximations of the unit circle is presented.
In Fig. 7, approximant for n = 4 and n = 5 are shown, and in Fig. 8, their curvature profiles are presented. The latter 

approximant is indistinguishable from the circle.



44 G. Jaklič / Computer Aided Geometric Design 41 (2016) 36–46
Fig. 8. Curvatures of the polynomial approximants of the unit circle for n = 4,5.

Fig. 9. Parametric polynomial approximant for n = 7 circles the unit circle 3 times, before deviating from it. Only two such circuits are shown, since the last 
one gives poor approximation (intersection with x-axis at −753.3). On the right-hand side a lift into space of the same curve (x7(t), y7(t), t) is presented.

Table 2
Parametric polynomial approximants of the unit circle.

n xn and yn

3 0.87223264840565 − 1.9852407885334258 t2

2.787286743125938 t − 2.7667176628214927 t3

4 1.0108773400989846 − 3.694997713373956 t2 + 1.6732434314389113 t4

2.602007499051689 t − 2.6011101753794694 t3

5 0.9994699437191019 − 3.97346869128647 t2 + 1.9734689724376546 t4

2.8276698243105867 t − 3.564283164798727 t3 + 0.7366367806515868 t5

6 1.0000158504 − 4.2541722246 t2 + 2.5094165602 t4 − 0.2552760363 t6

2.9165370429 t − 3.9584900628 t3 + 1.0419646163 t5

7 0.9999996695 − 4.4230792820 t2 + 2.8461963497 t4 − 0.4231170676 t6

2.9742596413 t − 4.2459402631 t3 + 1.3452671531 t5 − 0.0735834916 t7

8 1.00000000 − 4.53727730 t2 + 3.09276164 t4 − 0.57370221 t6 + 0.01821786 t8

3.01239993 t − 4.44369639 t3 + 1.57120297 t5 − 0.13991316 t7
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Table 3
Uniform parametric polynomial approximants of the unit circle.

n xn and yn Error

3 −0.87499994 + 1.04342054 t2

2.04295938 t − 1.06583300 t3 0.125

4 1.01096 − 3.12912 t2 + 1.2 t4

−2.3944 t + 2.02664 t3 0.0109596

5 0.99947004 − 3.87624490 t2 + 1.87807588 t4

2.79286220 t − 3.43427162 t3 + 0.69240320 t5 0.000529953

6 1.00001591 − 4.18171979 t2 + 2.42466949 t4 − 0.24245463 t6

−2.89159481 t + 3.85779676 t3 − 0.99816597 t5 0.0000159103

7 0.99999967 − 4.36763892 t2 + 2.77529322 t4 − 0.40740526 t6

2.95556067 t − 4.16636090 t3 + 1.30350764 t5 − 0.07040567 t7 3.30481 · 10−7

8 1.00000001 − 4.49366852 t2 + 3.03359680 t4

−0.55731864 t6 + 0.01752749 t8

−2.99788856 t + 4.37978650 t3 − 1.53372158 t5 + 0.13526280 t7 5.06408 · 10−9

Fig. 10. Best uniform approximants for n = 3 (blue) and n = 4 (red), together with the unit circle (black, dashed). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

The parametric polynomial approximant circles around the unit circle several times, before deviating from it for larger 
degree n, see Fig. 9. Such a behavior was observed also for approximants in Jaklič et al. (2013).

The best parametric polynomial approximants of the circle of low degree are presented in Table 2.
Now let us consider uniform approximation. Solutions for n = 3, 4, . . . , 8 are given in Table 3, together with radial error. 

Parameter values for the best solution of the previous approach give good initial values for numerical computations that 
need to be done. In particular, we used the choice tn = 1 and a = a′ · 22n−1, where a′ is the value of a from Table 1. It turns 
out that the best solution is not unique, there are infinitely many of them.

For n = 3 and n = 4 the solutions are shown in Fig. 10. In Fig. 11, radial error for the approximant for n = 8 is shown. 
Note that for larger n, this approach yields solutions with error just slightly smaller that in the previously presented ap-
proach. Thus the previous approach could be used for theoretical study of error decay.

The results improve approximations of the unit sphere in Jaklič et al. (2012) (see Fig. 12, where quintic approxi-
mants are used for construction of parametric polynomial approximation of the unit sphere, and yield the radial error 
0.000529953).
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Fig. 11. Radial error for the best uniform approximant for n = 8.

Fig. 12. Parametric polynomial approximation of the unit sphere by using quintic approximants x5 and y5.
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