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1. Introduction

A circle arc is a basic object in CAGD and in many applications. Conics are the oldest curves, and are used in architecture,
robotics, and in many other fields. The unit circle has a nice parameterization

c(t) = (cost,sint), te][0,2m).

In CAGD, parametric polynomial and rational curves and splines are fundamental objects. A circle arc does not have a
parametric polynomial representation, however, it can be represented by using a quadratic rational Bézier curve. The whole
circle can thus be represented by a quadratic rational spline, e.g. as a NURBS. A natural question is, whether it is possible
to obtain a good parametric polynomial approximation of a circular arc.

A lot of papers study good approximation of circular segments with the radial error as the parametric distance. Quadratic
Bézier approximants are considered in Morken (1991), and their generalizations to the cubic case can be found in Dokken et
al. (1990) and Goldapp (1991). The quartic case is systematically studied in Ahn and Kim (1997), Kim and Ahn (2007) and
Hur and Kim (2011), and quintic Bézier approximants are derived in Fang (1998, 1999). Recently, quartic G' approximants
were analyzed in Kova¢ and Zagar (2014).

General results on Hermite type approximation of conic sections by parametric polynomial curves of odd degree are
given in Floater (1995, 1997). The results hold true only asymptotically, i.e., for small segments of a particular conic section.
Hermite approximation of ellipse segments by cubic parametric Bézier curves is studied in Dokken (2003) and also in
Dokken (1997).

In recent years some quite surprisingly good approximations of the whole circle were obtained. An approach based on
Taylor approximation was improved by idea of geometric interpolation and a construction of polynomial approximants for
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Fig. 1. Quintic parametric polynomial approximant from Lyche and Merken (1994) (gray), parametric approximant of the same degree given in Jaklic et al.
(2013) (blue), quintic Taylor approximant (blue dashed), and the new quintic approximant (red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

all odd degrees was obtained in Lyche and Marken (1994). The construction that covered also even degrees was presented
in Jaklic¢ et al. (2007a). By looking at the problem from a different perspective, it turned out that the obtained construction
was just one of several solutions of a nonlinear problem, and that there exist better solutions. In Jakli¢ et al. (2013), the
best such solution was presented, which gives a good approximation of a conic section. It has many nice properties, it is
symmetric, shape preserving, it gives a high order approximation of the whole circle ¢, and for higher degrees it circles the
circle several times before it deviates from c. Furthermore, it is given in a closed form.

In this paper, a novel parametric polynomial approximant for the whole circle is presented, that gives a better approx-
imation. It has many desired properties, such as symmetry and high order approximation. Another approach is presented
that yields even (slightly) better results. Since solving of nonlinear equations and systems are involved, unfortunately the
solutions could not be given exactly.

As a motivation, consider Fig. 1. Here a parametric quintic polynomial approximant of the unit circle, given in Lyche and
Morken (1994), Jakli¢ et al. (2007a) as

1-2t2 42t
2t 2683 400
is shown together with the quintic approximant from Jakli¢ et al. (2013) (with radial error 0.08999)
1- B+ V52 +(1+ /5
A+t —B+VBE+t> )
and the quintic Taylor approximant, together with the new quintic approximant

0.99947004 — 3.87624490t2 + 1.87807588 t4
2.79286220t — 3.43427162t3 + 0.69240320¢° )’

which is visually indistinguishable from the unit circle (the radial error is 0.00052). Note that also the new quartic approx-
imant gives a better result than the quintic approximant from Jakli¢ et al. (2013) with radial error 0.0109 (see Fig. 2).

Our goal is to construct parametric polynomials x, and y, of degree <n, which yield a good approximation of the whole
unit circle

cos®(t) + sin(t) = 1.
Let us consider the expression
X+ Y2 =14€®). (1)

Here, € is a polynomial of degree < 2n. Since the circle does not have a parametric polynomial parameterization, every
polynomial approximation (xp, y,) yields a deviation € from the unit circle with the implicit equation

X¥+y =1
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Fig. 2. Quartic parametric polynomial approximant from Jakli¢ et al. (2013) (blue), quartic Taylor approximant (blue dashed), and the new quartic approx-
imant (red). The circle is drawn black-dashed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

So, in some sense, € should be small to obtain a good approximation. Let us be more precise. We will consider the radial

error
e(t) :==/xa() + ya(t) — 1

on some interval [—t*, t*]. There are several problems:

o the choice of €,
e how to obtain x; and y, from the equation (1),
e how to compute an appropriate t*.

Furthermore, the solution should be symmetric, have a nice shape resembling the circle, and the error should be as small as
possible. In Jakli¢ et al. (2013), the choice €(t) = t2" was analyzed and a nice approximation in a closed form was obtained,
which enables precise error analysis and applications. Its disadvantage is, that it is a one-sided approximation of the circle,
and has only one (multiple) contact with the circle at t =0, and is thus Taylor-like in its nature.

There are some more natural choices. An idea right at hand would be to take x; and y, as Taylor expansion of cos and
sin up to the degree n. This yields a good local approximation near 0, but the approximation quickly deviates from the circle
(see Fig. 2 and Jaklic¢ et al., 2007b).

A quite similar expression to (1) is connected to Pell’s equation

T2(t) — (> = DHUZ_, () =1,

where T, and U, are Chebyshev polynomials of the first and second kind. Thus

T2(t) + U2 () =14 t2U%_, ().

Unfortunately this solution does not give a good approximation of the circle (see Fig. 3).
One of promising ways is to use the equation of an ellipse in the polar form

rt,a) = 14 acost
and take €(t) as Taylor expansion of +/r(t,a) — 1 up to degree 2n. The results of such a choice are good, but another choice
will give even better results.

In this paper, we will tackle the case €(t) = a T, (t), where 0 <a < 1 is an unknown parameter. Best solutions for n <9
are obtained. They can be given in a closed form, but computation of the optimal parameter a requires solving a nonlinear
equation. It will be shown, that the solutions can be improved. A way how to choose an optimal polynomial € will be
shown, and thus slightly better approximations for small n will be presented.
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Fig. 3. Parametric polynomial approximant given by the solution of Pell’s equation for n = 5.

2. Solutions

Firstly, let us recall the main idea for solving the equation (1) in Jakli¢ et al. (2013). Solving the equation (1) is equivalent
to solving

O +y2 =1

in the factorial ring R[t]/e(t). But since there are additional restrictions on degrees, the problem cannot be tackled by
classical algebraic tools.

But the special form of the equation enables an approach that straightforwardly yields all the solutions.

The equation

X +y2) =14t

can be rewritten as

2n—1
(%a(®) +1yn(®) Ca(®) = iyn(@©) = [] (= 57), €l :=cosg +ising, )
k=0

where the right-hand side is the factorization of 1+ t2" over C. From the uniqueness of the polynomial factorization over
C up to a constant factor, and from the fact that the factors in (2) appear in conjugate pairs, it follows that

n—1

Xn () +iyn(®) =y ]_[(t—e“’kz%l”), yeC, |yl=1,
k=0

where oy = £1. In order to interpolate the point (1, 0), ¥ must be chosen as

w=&wTﬁ”#%ﬂ
k=0
which implies
n—1
xn(® +iya® = (1" [ (ce7 %57 —1) = pe(ti 0,
k=0

with o = (oy)j_g € (=1, 1}".
The best solution is (see Jakli¢ et al., 2013, Thm. 1)

Xn(t) =Re (pe (t: 0%)),  ya®) =Im(pe (t:0¥)), o* = (1),

The polynomial x, is an even function and y, is an odd one. Their coefficients can be given in a closed form and
possess a particular symmetry (see Jakli¢ et al., 2013). It was shown in Jakli¢ et al. (2013) that the radial error decreases
exponentially with n.
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3. Better approximant

Our goal is to consider the equation

X2(t) +y2(t) =14aTxu(),

where T, is the Chebyshev polynomial of the first kind. A motivation for such a choice is straightforward. Among polyno-

mials of degree 2n with leading coefficient 1, the polynomial

1
52n—1 Ton(t)

has minimal infinity norm

1
22n—1

on the interval [—1, 1], and it is reached exactly 2n 4+ 1 times at points cos "7” k=0,1,...,2n. This gives 2n points (zeros

of Ty,), where a parametric polynomial approximation (x,, y,) would intersect the unit circle.

Solving the equation
1+aTyu(@)=0
is equivalent to finding values of the Chebyshev polynomial
1
Ton(t) =—— < —1.
a
Thus
1
cosh(2n arcCosh(—t)) = -

Since

arcCoshz =log (z+Vz+ 1 «/z—l)+2kni,

1 1 1 .
2n arcCosh(—t):log(—a +,/—E +1,/—a —l) +2kmi.

Hence

1 1 1 ki
sol(k) :=t=—cosh|{ —log| ——+,/——-1)+—),k=0,...,2n—1.
2n a a? n

Following the approach from (2),

2n—1
1+aTyu () =a2?" " [T —sol)),
k=0

where sol(k) are roots of the polynomial 1+ a T, (t), obtained in (3).
Recall

2Z= (Xp +1yn) (X0 —iyn) =% + y2.

(3)

From the uniqueness of the polynomial factorization over C up to a constant factor, and from the fact that the factors
appear in conjugate pairs, it follows that each such choice of subsets of {0, 1,...,2n — 1} of size n, yields a solution of the

problem, i.e., a parametric polynomial approximant of the unit circle. Thus (2,1") solutions are obtained. The choice

n—1
p®) =i"Va22r-1 [ ]t - sol(ky).
0

k=

X (t) =Re(p(t)),
yn(t) =Im(p(0)),

yields the best approximation of the unit circle for a given parameter a.
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Fig. 4. Error functions in (6) for n =4.

The radial error is

e(t) = /x4 (O + ya(t) — 1=y 1+aTyu@) —1. (4)
We would like to obtain good approximant of the whole circle, thus we need to consider the following:

e the error will be small for small a > 0,

o the largest error will be obtained at extrema of Chebyshev polynomials and at boundary values t = 0 and t*, where
yn(*) =0,

e we would like the solution to resemble the circle, be symmetric, and give the best possible approximation of such kind.

Derivation of the radial error (4) yields

anUpy,_1(t
) = 2n—1(t) ’
V14 aTa(t)
thus extremal values are obtained at t;, = cos ’;—7; k=1,2,...,2n—1 and

e(ty) =4/ 1+ (—Dka—1, (5)

since Ujp—1(tx) = 0. Clearly they are of alternating signs and +/1 —a — 1 is greater by absolute value than the alternative.
We are interested in the solution on the interval [—t*, t*], where t* > 0 is the smallest value, such that y,(t*) = 0. Hence

e(t™) = |xn(t")| — 1.
Note that

e =v1+aTon(©0 —1=y1+ (—Da—1

is equal to one of the extremal values (5). Thus we need to minimize the expression

IV1+aTxa*) —1],

where t* depends on a. Since also the boundary value needs to be considered, one has to find the smallest positive solution
of the equation

IW1+aTon@) —1=1-+v1—a.

This yields the final equation

X ()= 1]=1-+1—a. (6)

In Fig. 4, the functions on the left- and right-hand side of (6) are shown for n = 4. The smallest positive intersection
yields the parameter a for the best polynomial approximant. This requires solving a nonlinear equation, and high precision
arithmetic is needed for larger n.
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Fig. 5. Best parametric polynomial approximant of degree 3.

4. Uniform approximation of the unit circle

In the presented approach, we exploited nice approximation properties of Chebyshev polynomials. However, here the
radial error does not reach the same absolute value at extremal points (so-called equioscillation). A better approximation
can be obtained by using geometric interpolation in the following way.

Since a symmetric solution is sought, let us take

2 2N42 42 2 2
p) = (" —t)E” —t3) -t —tp),
where tq, ta, ..., t; are unknown nonnegative numbers. Now let us consider the error function

e(t,a)=+/1+ap() —1.

Its derivative

ap'(t)
2/1+4ap()
has 2n — 1 zeros t;, one of them is 0. The extremal values of the error function, obtained at t;, should oscillate in sign and
have the same absolute value M. This yields a system of nonlinear equations for given a and t;. Each such choice yields the
appropriate values of t1,t2,...,ty,—1 as the solution of the nonlinear system. By using the method, introduced in Section 3,

we obtain the best parametric polynomial approximant (x,(t), y,(t)) among many possible. The first positive zero t* of y,
determines the value My = ||x,(t*)| — 1|. By considering

e'(t,a) =

minmax{M1, M},
tn.a

we can obtain the best possible Chebyshev-like solution.

This approach requires solving a system of nonlinear equations, solving a nonlinear equation, and bivariate minimization.
Best approximants for small n will be given in the next section.

A natural question is whether the radial error is the best choice. Since there is not an equivalent theory of polynomials
of best approximation in the parametric setting as far as I know, some other measure of error could perhaps yield better
results.

5. Numerical examples

First, let us consider the case n = 3. For a =1/5, the solution simplifies to
2 5 . 1 . 1
x3(t) = \/g <8t sinh (6 log (5 - 2«/6)) — sinh (5 log (5 - 2«/6))) ,
2 2 1
y3(t) = \/gt (—4t —1+4cosh <§ log (5 - 2«/6))) .
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Fig. 6. Radial error for the best cubic approximant.
Table 1
Comparison of parametric polynomial approximations of the unit circle.
n Approximant (Jaklic et al., 2013) New approximant
Error t a Error
3 2 1.00371 0.23921 0.127767
4 0.41421 1.000172 0.021873 0.010997
5 0.08999 1.0000056049 0.00105983 0.000530072
6 0.01389 1.0000030931 0.0000318193 0.0000159689
7 0.00138 1.0000008556 6.60953-10~7 3.30532- 1077
8 9.5.107° 0.9999980693 1.01285-1078 5.06425-107°
9 4.8-107° 0.9384805459 4.0061-10710 2.00305- 10710

Fig. 7. Polynomial approximants of the unit circle for n =4, 5.

The parameter value a = 0.2392102070552632 gives the best solution
x3(t) = 0.872233 — 1.98524 2, y3(t) =2.78729t — 2.76672 t3,

with radial error 0.127767. It is shown in Fig. 5. Its radial error is presented in Fig. 6.

Note that an approximation with uniformly oscillating error x% + y% — 1 can be obtained at a = 0.3253559144748783.
Here, the radial error is larger, 0.151241.

In Table 1, a comparison of parametric polynomial approximations of the unit circle is presented.

In Fig. 7, approximant for n =4 and n =5 are shown, and in Fig. 8, their curvature profiles are presented. The latter
approximant is indistinguishable from the circle.
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Fig. 8. Curvatures of the polynomial approximants of the unit circle for n =4, 5.

Fig. 9. Parametric polynomial approximant for n = 7 circles the unit circle 3 times, before deviating from it. Only two such circuits are shown, since the last
one gives poor approximation (intersection with x-axis at —753.3). On the right-hand side a lift into space of the same curve (x7(t), y7(t),t) is presented.

Table 2
Parametric polynomial approximants of the unit circle.
n Xp and yy
3 0.87223264840565 — 1.9852407885334258 2

2.787286743125938t — 2.7667176628214927 3

4 1.0108773400989846 — 3.694997713373956t> + 1.6732434314389113 t*
2.602007499051689t — 2.6011101753794694 3

5 0.9994699437191019 — 3.97346869128647 t> + 1.9734689724376546 t*
2.8276698243105867 t — 3.564283164798727t> + 0.7366367806515868 t>

6 1.0000158504 — 4.2541722246t2 + 2.5094165602 t* — 0.2552760363 t°
2.9165370429t — 3.9584900628 t> 4 1.0419646163 t>

7 0.9999996695 — 4.4230792820t2 + 2.8461963497 t* — 0.4231170676t°
2.9742596413t — 4.2459402631 3 4 1.3452671531t° — 0.0735834916¢7

8 1.00000000 — 4.53727730t2 4 3.09276164t* — 0.57370221t% + 0.01821786 (8
3.01239993t — 4.44369639t> 4+ 1.57120297t> — 0.13991316¢7
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Table 3
Uniform parametric polynomial approximants of the unit circle.
n Xxp and y, Error
3 —0.87499994 + 1.04342054 2
2.04295938t — 1.06583300t3 0.125
4 1.01096 — 3.12912¢2 +1.2¢4
—2.3944¢ +2.02664 3 0.0109596
5 0.99947004 — 3.87624490 > + 1.87807588 t*
2.79286220t — 3.43427162t3 + 0.69240320t° 0.000529953
6 1.00001591 — 4.18171979t2 + 2.42466949 t* — 0.24245463 t°
—2.89159481t + 3.85779676 > — 0.99816597 t° 0.0000159103
7 0.99999967 — 4.36763892 t% 4 2.77529322t* — 0.40740526t5
2.95556067 ¢ — 4.16636090¢> + 1.30350764t> — 0.07040567 7 3.30481-1077
8 1.00000001 — 4.49366852 t2 + 3.03359680 t4
—0.55731864(5 4-0.01752749t8
—2.99788856¢ +4.37978650¢> — 1.53372158t° + 0.13526280¢’ 5.06408 - 10~°
05

Fig. 10. Best uniform approximants for n = 3 (blue) and n =4 (red), together with the unit circle (black, dashed). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

The parametric polynomial approximant circles around the unit circle several times, before deviating from it for larger
degree n, see Fig. 9. Such a behavior was observed also for approximants in Jakli¢ et al. (2013).

The best parametric polynomial approximants of the circle of low degree are presented in Table 2.

Now let us consider uniform approximation. Solutions for n =3, 4, ..., 8 are given in Table 3, together with radial error.
Parameter values for the best solution of the previous approach give good initial values for numerical computations that
need to be done. In particular, we used the choice t;, =1 and a=da’ - 22n=1 \where @’ is the value of a from Table 1. It turns
out that the best solution is not unique, there are infinitely many of them.

For n =3 and n =4 the solutions are shown in Fig. 10. In Fig. 11, radial error for the approximant for n = 8 is shown.
Note that for larger n, this approach yields solutions with error just slightly smaller that in the previously presented ap-
proach. Thus the previous approach could be used for theoretical study of error decay.

The results improve approximations of the unit sphere in Jakli¢ et al. (2012) (see Fig. 12, where quintic approxi-
mants are used for construction of parametric polynomial approximation of the unit sphere, and yield the radial error
0.000529953).
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Fig. 11. Radial error for the best uniform approximant for n = 8.

1.0

1.0

Fig. 12. Parametric polynomial approximation of the unit sphere by using quintic approximants x5 and ys.
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