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In this paper we devise a new algorithm for completing surface with missing geometry 
and topology founded upon the theory and techniques of sparse signal recovery. The 
key intuition is that any meaningful 3D shape, represented as a discrete mesh, almost 
certainly possesses a low-dimensional intrinsic structure, which can be expressed as a 
sparse representation in some transformed domains. Instead of estimating the missing 
geometry directly, our novel method is to find this low-dimensional representation which 
describes the entire original shape. More specifically, we find that, for many shapes, 
the vertex coordinate function can be well approximated by a very sparse coefficient 
representation with respect to the dictionary comprising its Laplacian eigenfunctions, and 
it is then possible to recover this sparse representation from partial measurements of 
the original shape. Taking advantage of the sparsity cue, we advocate a novel variational 
approach for surface inpainting, integrating data fidelity constraints on the shape domain 
with coefficient sparsity constraints on the transformed domain. Because of the powerful 
properties of Laplacian eigenbasis, the inpainting results of our method tend to be smooth 
and globally coherent with the remaining shape. We demonstrate the performance of our 
new method via various examples in geometry restoration, shape repair, and hole filling.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In principle, surface inpainting refers to the completion or recovery of missing shape geometry based on the shape infor-
mation that is currently available. The most prominent application of surface inpainting is mesh repair. Due to factors such 
as occlusions, low reflectance, and quality limitations of scanning equipments, 3D models generated from range scanners 
often contain holes that need to be filled; sometimes the source model itself has missing pieces and requires digital repair 
to attain a complete model. Another common application of surface inpainting is to remove geometric features because of 
shape editing needs. This is achieved by replacing the unwanted shape regions with inpainting patches.

From the statistical point of view, surface inpainting can be viewed as an estimation problem which infers the missing 
geometry from the observable shape, and the inpainting result is determined by the statistical model we have adopted. 
Generally speaking, there is no universally acceptable “correct” estimation; selecting the best inpainting is usually subjective 
or dependent on the requirement of downstream applications.

Most existing surface inpainting methods tackle the problem only in the mesh domain. These methods typically em-
ploy some geometric constraints as heuristics to ensure that the obtained inpainting patch is visually pleasing and blends
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naturally with its neighboring geometry. The primary issue of geometry-constrained inpainting is that these methods only 
utilize the shape information in the vicinity of missing regions rather than consider the model in question in its entirety.

Our new surface inpainting method documented in this paper is inspired by the theory of sparse signal recovery and 
compressed sensing. The intuition is that for a meaningful 3D model, even though its global geometry is a high-dimensional 
signal, it most likely has a low-dimensional intrinsic structure. That is to say, the high-dimensional shape signal actually 
lives in a low-dimensional subspace, which can be captured by a sparse coefficient representation in some transformed 
(e.g., Fourier) domains. In another word, the coordinate function of a shape with N vertices can be decomposed as or well 
approximated by the linear combination of k � N basis signals. According to the compressed sensing theory, the sparse 
coefficient representation can be recovered from partial measurements as long as the signal is sufficiently sparse and the 
sensing matrix satisfies certain properties (Candes et al., 2006).

The critical idea of our new inpainting algorithm is to estimate the spectral coefficient representation of the shape ge-
ometry from partial observations by imposing sparsity constraints on the reconstructed coefficients, exploiting the fact that 
most 3D models are highly compressible with respect to their Laplacian eigenfunctions (Karni and Gotsman, 2000). To the 
best of our knowledge, the utility of Laplacian eigenbasis towards the shape inpainting application has not yet been explored 
in the past. The estimation problem can be formulated with a data term strongly emphasizing fidelity to the observations 
and a penalty term constraining sparsity of the representation. Thus, the surface inpainting could be transformed to a sparse 
signal recovery problem and can be solved by either l0 or l1 optimization techniques. Such effort represents our first attempt 
towards technical innovation.

The primary advantage of our method is that the inpainting takes into account the information of all the remaining 
shape instead of only the vicinity of missing regions. Rather than directly estimating the missing geometry, we actually es-
timate the reconstruction coefficients of the whole original shape. Since the mesh Laplacian basis functions are smooth and 
have global support, the reconstructed inpainting shape is naturally smooth and globally coherent with a simple intrinsic 
structure.

The main contributions of this work are:

• We introduce a new surface inpainting framework based on representations in the transformed domain and sparsity 
constraints on reconstruction coefficients. This framework can make use of the information of the whole remaining 
shape and inpainting results tend to be simple and globally coherent.

• We study the sparsity of 3D shapes with respect to their Laplacian eigenbases and show their effectiveness in surface 
inpainting.

• We demonstrate the high performance of our inpainting method with several examples in hole filling and mesh editing.

2. Related work

2.1. Surface inpainting

Many methods have been proposed in the research literature dealing with the general problem of surface inpainting, 
bearing different names such as hole filling, mesh completion, and surface restoration. We refer readers to Attene et al.
(2013) for a recent survey of popular algorithms for hole filling and mesh completion.

One simple approach for surface inpainting is by filling the missing region with an inpainting patch that interpolates 
the surrounding geometry. The interpolating patch may be generated with simple polynomial functions (Wang and Oliveira, 
2007), triangular B-splines (Pfeifle and Seidel, 1996), or radial basis functions (Branch et al., 2006), and are generally smooth 
and continuous across the boundaries. The interpolation-based approaches, however, only work well with disk-like holes and 
are not suitable for filling regions with complex boundaries.

Typical mesh-based hole filling algorithms have two steps: (1) Find an initial triangulation of the missing region defined 
by the hole boundary; (2) Optimize the inserted mesh to improve its fairness and coherence with surrounding shapes. Liepa
(2003) performed hole triangulation with a dynamic programming technique taking into account the dihedral angles and 
areas of the created triangles. The inserted mesh is then optimized with Laplacian smoothing to improve fairness. In Zhao et 
al. (2007), surface holes are patched by an advancing-front mesh generation method, and the vertex positions are optimized 
by solving a Poisson equation based on the desirable triangle normals computed from boundary vertices. In Bac et al. (2008), 
the coordinates of the inserted vertices are optimized by minimizing the discrete thin-plate energy. In Li et al. (2010), Wang 
et al. (2012) and Ngo and Lee (2013), complex holes are first partitioned into sub-holes by feature curves extended from 
the existing parts; typical hole-filling then can be performed on these sub-holes which are much more planar.

Another class of inpainting algorithms are based on variational methods. The basic idea is to iteratively evolve the 
inpainting shape by optimizing a functional that constrains certain geometric properties of the inserted mesh, e.g., positions, 
areas, tangency, and curvatures. Pernot et al. (2006) developed a hole filling algorithm which minimizes the variational 
involving curvature between the surrounding and inpainted geometry. In Caselles et al. (2008), the completing surface is 
chosen such that a power of the mean curvature is minimized. Clarenz et al. (2004) proposed a shape restoration algorithm 
by computing the l2-gradient flow of the Willmore energy which ensures the continuity of the normal field.

Finally, a lot of mesh inpainting methods are exemplar-based. Kraevoy and Sheffer (2005) introduced an algorithm for 
mesh completion by mapping the incomplete mesh with a template model. Context-based surface completion methods like 
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Sharf et al. (2004) and Park et al. (2005) fill holes by importing patches from similar regions and adapt them to the hole 
regions via shape deformation. A coherence objective can be imposed such that every local neighborhood of the filled mesh 
is similar to some local neighborhood from the input mesh (Harary et al., 2014).

2.2. Sparse signal recovery and inpainting

Recent years have witnessed a surge in the research of sparsity-based signal recovery. The fundamental idea is that a 
sufficiently sparse signal can be reliably reconstructed from partial measurements by exploiting the sparsity cue.

Sparse signal recovery has seen most success in compressed sensing applications, where the measurement/sensing matrix 
is typically chosen as a normalized random matrix which satisfies the restricted isometry property with high probability. 
For the inpainting problem, the measurement is expressed as a mask matrix, which is not strictly a valid compressed 
sensing process. Nonetheless, we can still take advantage of the sparsity constraints to recover the original signals in many 
situations.

For image inpainting and restoration tasks, many algorithms based on sparse representation have been published. 
Guleryuz (2006a, 2006b) proposed an algorithm for image recovery based on adaptive sparse representation. In Elad et al.
(2005), images are decomposed into texture and cartoon components, each of which is sparse with respect to a particular 
dictionary; the missing parts then can be easily reconstructed. Fadili and Starck (2005) and Fadili et al. (2009) formulated 
image inpainting as a maximum-likelihood estimation problem with a sparsity-promoting prior penalty imposed on the 
reconstructed coefficients. A similar formulation is proposed in Cai et al. (2008) where images have sparse framelet rep-
resentations and the incomplete image can be restored via an iterative shrinkage algorithm. This formulation balances the 
sparsity of coefficients, fidelity to the existing data, as well as the smoothness of the solution. Ogawa and Haseyama (2011)
proposed an image recovery algorithm based on sparse representation, in which the low-dimensional subspaces optimal for 
targeted missing textures are adaptively selected.

There have been very few works on the sparsity-induced recovery of signals defined on graphs. Zhu and Rabbat (2012)
proposed to use the dictionary of graph Laplacian eigenfunctions to recover smooth and sparse graph signals and applied 
them to the reconstruction of wireless sensor networks data from partial node readings. To the best of our knowledge, our 
method is the first of such attempts to tackle the problem of geometry inpainting/completion via sparse signal recovery.

3. Variational inpainting model

The problem of mesh signal inpainting can be stated as follows. Consider a triangle mesh M = {V , E} with n vertices, 
where V and E denote the set of vertices and edges, respectively. Let f ∈ R

n be a vector signal defined on the mesh vertices. 
Assume the signal values at a subset of vertices V ′ ⊂ V are already known, the goal of inpainting is to compute a reasonable 
estimate of the remaining signal values at V − V ′ . For the problem of inpainting surface geometry, the mesh signal is the 
coordinate function and the unknown parts correspond to surface holes.

Assume the number of known vertices is |V ′| = n′ . We can define the n′ × n projection matrix P as

P (i, j) =
{

1 if v j is the ith element of V ′
0 otherwise.

(1)

Denote the observable parts of f to be f′ ∈ R
n′

, which should satisfy f′ = P f, the general inpainting problem can be 
formulated as a constrained optimization problem

f̂ = arg min
f

Pr(f) s.t. ‖P f − f′‖2
2 < ε, (2)

or equivalently as a penalized maximum-likelihood estimation problem

f̂ = arg min
f

Pr(f) + λ‖P f − f′‖2
2, (3)

where the data term ‖P f − f′‖2
2 emphasizes fidelity to the available observations, while Pr( f̂ ) is a prior regularizing certain 

properties of the reconstructed signal.
Traditionally, priors are chosen to optimize the fairness of the inserted mesh or its coherence with the surrounding 

geometry. For example, a commonly-adopted prior for surface optimization is Pr(f) = ‖Lf‖2
2 which aims to maximize the 

smoothness of the estimated signal, generating the so-called least-squares meshes (Sorkine and Cohen-Or, 2004). Here L is 
the Laplace operator of the shape.

Instead of computing the approximate signal f̂ in the mesh domain directly, we may first estimate the original signal’s 
representation in some transformed domains. Consider a dictionary D of m atoms, where each atom is an elementary signal 
defined on the mesh; written in the matrix form, D = (d1, . . . , dm), di ∈ R

n×1. The original signal f may be represented as 
the linear combination of columns in D

f = Dα =
m∑

i=1

αidi, (4)

where α = (α1, . . . , αm)T is the coefficient representation of f w.r.t. the dictionary D .
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Obviously, if we can estimate the coefficient representation of the whole original signal from partial measurements f′ , 
then we also obtain an inpainting of the missing signal values. If we know in advance that the coefficients of representation 
of f satisfy certain statistical properties, we can estimate the coefficients by imposing a prior on α

α̂ = arg min
α

Pr(α) s.t. ‖P Dα − f′‖2
2 < ε. (5)

The complete original signal can then be estimated as f̂ = Dα̂.

4. Sparsity-based surface inpainting

The fundamental idea of our sparsity-based surface inpainting method is that, for most natural shapes, although the 
surface geometry is a high-dimensional signal, it actually lives in a low-dimensional subspace and has a sparse represen-
tation in some transformed domains. Hence, we can set the sparsity of coefficients as the prior in Eq. (5) to estimate the 
coefficient representation of the global shape and recover the missing geometry. As long as the “complexity” of the original 
shape is much smaller than the number of available observations, we have a good chance to obtain a plausible restoration.

In this section, we first discuss the sparsity of shape geometry w.r.t. the mesh Laplacian eigenbasis, demonstrating 
the potentials of Laplacian eigenfunctions for sparsity-based geometry processing. Then we propose a sparsity-constrained 
formulation for the problem of surface inpainting with known connectivity. Finally, we extend our inpainting method to 
hole filling-in where mesh connectivity is nonexistent in the missing regions in the first place.

4.1. Laplacian eigenbasis

For a discrete mesh, its graph Laplacian matrix L is typically defined as

L(i, j) =
{

1 if (vi, v j) ∈ E

0 otherwise.
(6)

The set of eigenfunctions of L, � = {φi}n
i=1, are commonly referred to as Laplacian eigenbasis or manifold harmonic basis 

(MHB) (Vallet and Lévy, 2008). The Laplacian eigenfunctions are analogous to the classic Fourier basis in Euclidean space 
and have the following similar properties:

• Functions in {φi} all have global support on the mesh.
• Functions in {φi} exhibit wave-like periodical oscillations on the mesh with different frequencies corresponding to the 

eigenvalues {λi}.
• {φi} form a complete, orthonormal basis of the square-integrable function space L2(M) defined on the mesh.
• {φi} induce a spectral transform: Any signal f ∈ L2(M) have a unique decomposition w.r.t. {φi}

f =
n∑

k=1

f̃ (k)φk =
n∑

k=1

〈 f , φk〉φk,

in which f̃ (k) denotes the kth spectral/Fourier coefficient.

The aforementioned attractive properties make Laplacian eigenfunctions potentially efficient for representing shape sig-
nals defined on meshes. Karni and Gotsman (2000) utilized the truncated spectral coefficients for compressed representation 
of mesh geometry, which is very similar to the JPEG format for image compression. Ben-Chen and Gotsman (2005) further 
proved that the Laplacian eigenbasis is the optimal basis for mesh compression in the mean square error (MSE) sense, 
provided that the distribution of the vertex coordinates satisfy certain natural assumptions.

The spectral mesh compression method introduced in Karni and Gotsman (2000) basically computes the linear approx-
imation of mesh geometry expanded on its Laplacian eigenbasis. In linear approximation, spectral coefficients are always 
added from low-frequency to high-frequency, regardless of their respective contributions to the original signal. Better coef-
ficient sparsity can be achieved through nonlinear approximation by prioritizing coefficients of larger magnitude.

As an example, Fig. 1 shows the power of Laplacian eigenbasis for shape approximation. Figs. 1(b)–1(c) visualize the 
mesh coordinate functions of the example mesh and their spectral transform coefficients, respectively. We can easily see 
that the coordinate functions have very dense support in the natural graph basis, but can be sparsely represented in the 
spectral/Fourier domain in the sense that the majority of spectral coefficients are almost 0. Moreover, the few significant 
coefficients are mostly concentrated in the low-frequency end, especially for a smooth shape model.

Fig. 1(d) shows the spectral energies contained in the first k coefficients (linear approximation) and the first k most 
significant coefficients (nonlinear approximation). We see that the vast majority of spectral energy are captured by the first 
few significant coefficients.

Fig. 1(e) shows how the mesh reconstruction error changes with the number of coefficients being used. In this example, 
we see that the approximation error becomes negligible using only about 20 non-zero coefficients.
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Fig. 1. Approximation of the double-torus model with the Laplacian eigenbasis. (a) Original shape; (b) Vertex coordinate functions; (c) Spectral coefficients 
of the coordinate functions w.r.t. the Laplacian eigenbasis; (d) Ratios of spectral energy contained in the first k coefficients; (e) Approximation error of the 
mesh geometry using the first k coefficients.

4.2. Surface inpainting

In the previous section, we have shown that the geometry of a 3D shape generally has a sparse representation w.r.t. its 
Laplacian eigenbasis. Hence, we can set the Laplacian eigenvector as the reconstruction dictionary and use the sparsity of 
coefficients as a prior to estimate the representation of missing shape geometry.

Following the formulation in Sec. 3, surface inpainting can be rewritten as the following sparse approximation problem

α̂ = arg min
α

‖α‖0 s.t. ‖P�α − x′‖2
2 < ε, (7)

x̂ = �α. (8)

Here the pseudo-norm ‖α‖0 = #{i : αi 
= 0} denotes the support of α, which counts the number of non-zero components 
of α, � denotes the dictionary matrix comprising the Laplacian eigenfunctions, and x̂ and x′ represent the estimated and 
observable coordinate functions, respectively.

We should note that, since the Laplacian eigenbasis constitute a complete dictionary, Eq. (7) is solvable even if we set 
ε = 0, in which case the reconstructed shape will exactly match the known geometry. However, strictly sparse signals are 
rare in real life. It is much more likely that the unknown shape geometry is compressible or weakly sparse w.r.t. the dictionary 
of Laplacian eigenvectors, i.e., the nonlinear approximation errors observe a power law decay as the number of participating 
basis vectors increases (Starck et al., 2010). In practice, we set ε > 0 to trade off exact reproduction for a sparser α, i.e., 
allowing the reconstructed signal to have small discrepancies with the observation.

Solving l0 optimization is an NP-hard problem in nature. Fortunately, under certain conditions, greedy algorithms such 
as orthogonal matching pursuit (OMP) and its variants can generate the exact sparse solution or a good enough approxima-
tion (Needell and Vershynin, 2010; Tropp and Gilbert, 2007).
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Fig. 2. Estimating the Laplacian eigenbasis coefficients of the cube model with 40% random missing vertices. (a) Original shape model; green dots denote 
vertices that are labeled as missing. (b) The reconstructed shape using our inpainting method. (c) The coefficient representation of the original shape’s 
x-coordinates. (d) Estimated coefficient representation of the x-coordinates inferred from the information of available vertices. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Another approach to find an approximated solution to Eq. (7) is to relax the highly discontinuous l0 norm with l1 norm, 
i.e.

α̂ = arg min
α

‖α‖1 s.t. ‖P�α − x′‖2
2 < ε, (9)

or equivalently,

α̂ = arg min
α

‖P�α − x′‖2
2 + λ‖α‖1. (10)

The estimation problem then becomes convex and solvable. There are several readily available algorithms for solving l1
optimization, e.g., interior point method (Kim et al., 2007), iteratively reweighted least squares (IRLS) (Holland and Welsch, 
1977), least angle regression (LARS) (Sorkine and Cohen-Or, 2004), and iterative shrinkage-thresholding (Daubechies et al., 
2004).

For the task of surface inpainting, we find that l1 optimization algorithms tend to be more robust and generally produce 
better inpainting results than greedy algorithms. In this work, we use the l1_ls solver introduced in Kim et al. (2007) which 
implements a fast interior-point method for solving l1-regularized least-square problems like Eq. (10).

As an example, Fig. 2 demonstrates the potentials of our sparsity-based inpainting method. We randomly label 40% of 
vertices of the original cube model as missing vertices, and use the coordinates of the remaining vertices to estimate the 
spectral coefficient representation of the original shape by solving Eq. (9). Fig. 2(b) shows the shape reconstructed from 
the estimated spectral coefficients. Figs. 2(c)–2(d) show the spectral coefficients computed from the original x-coordinate 
function and the coefficients estimated by our sparsity-based method, respectively. In this example, our method recovers 
the sparse coefficient representation in a very precise way.

4.3. Filling surface holes

One of the most important technical elements of our surface inpainting method is the dictionary of global shape basis, 
which are determined by the global mesh connectivity. For some applications such as repairing damaged surface regions, 
the mesh connectivity of the region to be repaired is already known in advance before reconstruction and we may not 
need to modify it. For hole filling applications, however, the inpainting regions are completely blank without any inside 
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information. It is imperative to establish interior mesh connectivity, by way of vertex insertion and patch triangulation, 
before our surface inpainting method can be applied.

Obviously, how a patch (to be used to cover the hole region) is triangulated directly influences the final inpainting 
result in our framework. In general, a good patch triangulation should ensure the vertex density of the inserted mesh to be 
consistent with the remaining mesh. In this paper, we adopt the algorithms proposed by Liepa (2003) for hole triangulation 
and refinement. Algorithm 1 summarizes the pipeline of our sparsity-based hole filling method.

Algorithm 1 Sparsity-based hole filling.
Require: Input mesh M
1: Identify surface holes,
2: Triangulate and refine holes using the algorithms described in Liepa (2003),
3: Compute the mesh Laplace matrix L and the Laplacian eigenbasis dictionary �,
4: for coordinate x, y, and z do
5: Compute the spectral representation α of the global coordinates by solving Eq. (9),
6: Reconstruct the coordinates of the inserted mesh with �α,
7: end for

4.4. Remarks on dictionary

Although the dictionary of Laplacian eigenvectors in general has strong compressive power for encoding shape geometry, 
it also has some limitations. Similar to Fourier basis, the Laplacian eigenvectors are most suitable for representing smooth 
signals or globally repetitive features, but are generally not optimized for encoding shapes with many local sharp features. 
In the image domain, other than 2D Fourier basis, people have developed various types of harmonic basis (e.g., wavelet, 
curvelet, ridgelet, etc.) for efficient encoding of images of different properties. For example, the ridgelets are especially 
efficient in representing piecewise smooth images with global straight edges (Fadili and Starck, 2012). In the mesh domain, 
however, we do not have such diverse harmonic basis to choose from, which for now limits the power of sparsity-based 
methods.

Another issue is related to the ratio of Laplacian eigen-decomposition. Computing the full set of Laplacian eigenvectors 
of a large mesh is extremely time consuming, generally infeasible for meshes with more than a few thousand vertices on 
a regular PC. Fortunately, for our surface inpainting applications, it is actually not necessary or even desirable to compute 
the full set of eigenvectors. On the one hand, for smooth shapes, the spectral energy is overwhelmingly concentrated on 
the low-frequency end, and a dictionary composed of only low-frequency eigenvectors can well approximate the shape 
geometry with very little error. On the other hand, the high-frequency Laplacian eigenvectors are less stable than the 
low-frequency ones, and including them in the dictionary may cause overfitting and result in worse inpainting results, since 
the high-frequency eigenvectors are more correlated with local geometric details than with the overall structure of the 
shape. In our experiments, we find that the best inpainting results are usually achieved with a dictionary of 20% to 50% 
total eigenvectors.

5. Experiments

In this section, we first evaluate the performance of our sparsity-based inpainting algorithms on recovering missing 
geometry from partial observations. Then we demonstrate how our method can be applied to repairing damaged geometry 
and filling surface holes.

Fig. 3. Recovery of the bunny model with 20% and 50% random missing vertices.
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Fig. 4. Recovery of the horse model with 20% and 50% random missing vertices.

Fig. 5. Recovery of the fandisk model with 20% and 50% random missing vertices.
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Fig. 6. Recovery of the centaur model with 20% and 50% random missing vertices.

Fig. 7. Geometry repair of the cube model by replacing the selected damaged regions (marked in yellow) with an inpainting patch. (a) The damaged model; 
(b) Repaired with Laplacian regularized least square smoothing (Nealen et al., 2006); (c) Repaired with thin-plate energy minimization (Bac et al., 2008); (d) 
Repaired with our inpainting method. In (b)–(d), the per-vertex error (compared with the ground truth) is color-coded. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Geometry recovery errors and time performance. For each model, we test the recovery performance with 20% and 50% randomly selected vertices labeled
as missing. Each experiment has been repeated three times and averaged on a system with quad-core 2.4 GHz CPU and 16 GB RAM.

Mesh #vertices #eigenvectors Decomposition time (s) Missing ratio Error l1 time (s)

bunny 2.5k 1000 19.6 0.2 1.9e−2 2.8
0.5 2.2e−2 2.1

horse 8.4k 4000 1015.4 0.2 8.6e−3 19.7
0.5 1.0e−2 59.0

fandisk 6.5k 3000 445.2 0.2 8.8e−3 17.4
0.5 1.2e−2 33.9

centaur 15.8k 2000 397.7 0.2 7.1e−3 12.2
0.5 8.0e−3 15.0



32 M. Zhong, H. Qin / Computer Aided Geometric Design 41 (2016) 23–35
Fig. 8. Geometry repair of the damaged epcot model. (a) The original epcot model; (b) The damaged model (damaged region is marked in yellow); (c) 
Repaired with thin-plate energy minimization (Bac et al., 2008); (d) Repaired with our inpainting method. In (c) and (d), the per-vertex error (compared 
with the ground truth) is color-coded. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 9. Geometry repair of the damaged wolf model. (a) The original wolf model; (b) Damaged model with significant noise in the region marked in yellow; 
(c) Repaired with Laplacian regularized least square smoothing (Nealen et al., 2006); (d) Repaired with our inpainting method. In (c) and (d), the per-vertex 
inpainting error (compared with the ground truth) is color-coded. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

5.1. Geometry recovery

To evaluate the performance of geometry recovery, for each testing model, we randomly label 20%–50% vertices as 
missing and use our sparsity-based inpainting method to estimate the original geometry based on the coordinates of the 
still available vertices. The estimated coordinates are then compared with the original coordinates.
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Fig. 10. Compare hole filling results using our sparsity-regularized method and the geometry-regularized method introduced in Bac et al. (2008). The error 
is measured as the root-mean-squared deviation from the estimated vertices to the original shape. (a) The original double torus model. (b) The model with 
a hole. (c) Inpainted using the method in Bac et al. (2008) with the original mesh connectivity. (d) Inpainted using our method with the original mesh 
connectivity. (e) Inpainted using the method in Bac et al. (2008) with the mesh connectivity generated from hole triangulation and refinement. (f) Inpainted 
using our method with the same mesh connectivity as (e).

All the testing models have been translated and scaled to be contained inside the unit cube. The recovery error is 
measured as the root-mean-square error (RMSE) of the coordinates of the missing vertices.

Fig. 3, Fig. 4, Fig. 5, and Fig. 6 show some examples of geometry recovery with 20% and 50% missing vertices. Table 1
documents the recovery errors and time performance of our tests. From the experimental results, we have the following 
observations:

• When the missing vertices are randomly dispersed on the shape, our sparsity-based method can reliably recover the 
missing coordinates with great precision, even when the ratios of missing vertices are as high as 50%.

• The l1 estimation generally becomes more time consuming when the ratio of missing vertices increases.
• As noted in Sec. 4.4, using the truncated Laplacian eigenbasis dictionary is acceptable for restoring smooth shapes. 

However, for shapes with many edges and corners, such as the fandisk model (see Fig. 5), our inpainting method cannot 
well preserve local discontinuities, since the high-frequency basis are simply not present in the truncated dictionary.

5.2. Geometry repair

Our sparsity-based inpainting method is very suitable for repairing partially damaged geometry. After manually selecting 
the damaged regions, we can apply our inpainting method to estimate the original whole shape with the same connectivity 
based on the remaining parts of the shape. The corrupted regions can then be substituted by the inpainting patch.

Figs. 7, 8, and 9 demonstrate repairing damaged local geometry using our sparsity-regularized inpainting method. 
The results are compared with two geometry-regularized mesh optimization methods: Laplacian regularized least square 
smoothing (Nealen et al., 2006) and thin-plate energy minimization (Bac et al., 2008). We can see that, although geometry-
regularized methods can generate patches that are smooth and blend well with the surroundings, they fail to recognize the 
intrinsic structures of the original shapes; consequently, important geometric features are simply smoothed out. In contrast, 
our sparsity-regularized inpainting method takes into account the global shape structures, and almost perfectly recovers the 
edges and corners in the cube model (Fig. 7) and the geometric textures of the epcot model (Fig. 8) from partial observa-
tions.
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Fig. 11. Inpainting existing holes on the bunny and hand models. (a), (d) Original models with holes; (b), (e) Hole-filling result using our method; (c), (f) 
Hole-filling result using the method of Bac et al. (2008).

5.3. Hole filling

As introduced in Sec. 4.3, for general hole filling tasks, the mesh connectivity information inside holes are probably 
unknown. We must first triangulate holes in a proper way and then apply our geometry inpainting method to optimize 
the newly inserted mesh. How the hole is triangulated directly impacts the global Laplacian eigenbasis which subsequently 
determine the estimated recovery.

As an example, Fig. 10 compares the results of filling the holes of a double torus model with and without original 
connectivity information, using our sparsity-regularized method and the geometry-regularized method proposed in (Bac et 
al., 2008). We can see that estimating with a different connectivity significantly alters the final hole fairing results. In this 
example, our method generate shapes that are more approximate to the original shape both with the original connectivity 
and with the new connectivity.

In most cases, we cannot expect the hole filling result using our sparsity-regularized inpainting method to precisely 
match the original shape when the number of vertices and connectivity of the patching mesh, generated from hole triangu-
lation and refinement, are different from the original mesh. Nonetheless, the resulting patching meshes tend to be coherent 
with the whole remaining shape, thanks to the global shape awareness of our method. Fig. 11 shows two examples of filling 
holes utilizing our inpainting method. The results are comparable to the geometry-regularized surface restoration method 
in Bac et al. (2008).

6. Conclusion

In this paper, we have proposed a novel surface inpainting algorithm based on sparse signal recovery. Instead of directly 
estimating the local missing geometry, our new inpainting framework is designed to discover the coefficient representation 
of the entire original shape in a transform domain. When the shape geometry is sufficiently sparse with respect to the 
dictionary of transform basis, chances are we can accurately recover this sparse representation by imposing sparsity con-
straints on the coefficients given partial observations. In our method, we adopt the mesh Laplacian eigenbasis as dictionary, 
and formulate surface inpainting as a sparse signal recovery problem. Leveraging standard l1 optimization techniques, we 
can obtain an estimated shape which agrees with the observable parts and are globally coherent. For shapes that are highly 
compressible w.r.t. the Laplacian eigenbasis, we have experimentally demonstrated the great potential of our method for 
geometry restoration, geometry repair, and hole filling.
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For the future work, we plan to extend our sparsity-based inpainting framework by integrating geometric constraints 
such as curvatures and normals, which should improve the geometric consistency of the inpainting result. We are also 
interested in designing new types of shape basis and exploring more sophisticated strategies for constructing dictionaries, 
e.g., dictionaries that are adaptive to the input shape.
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