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We give a constructive proof for the existence of a unique rational motion of minimal 
degree in the dual quaternion model of Euclidean displacements with a given rational 
parametric curve as trajectory. The minimal motion degree equals the trajectory’s degree 
minus its circularity. Hence, it is lower than the degree of a trivial curvilinear translation 
for circular curves.
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1. Introduction

A rational motion is a motion with only rational trajectories. In the dual quaternion model of SE(3), the group of rigid 
body displacements (Selig, 2005, Ch. 9), it is described by a rational curve on the Study quadric (Jüttler, 1993). In this article 
we construct a rational motion of minimal degree in the dual quaternion model with a given rational curve as trajectory, 
and we show that this motion is unique up to coordinate changes. This is an interesting result in its own right but it also 
has a certain potential for applications in computer graphics, computer aided design or mechanism science.

Usually, one defines the degree of a rational motion as the maximal degree of a trajectory (Jüttler, 1993). With this 
concept of motion degree, our problem becomes trivial as the curvilinear translation along the curve is already minimal. 
As we shall see, it is also minimal with respect to the dual quaternion degree if the prescribed trajectory is generic. The 
situation changes, however, if the trajectory is circular, that is, it intersects the absolute circle at infinity. In this case, the 
minimal achievable degree in the dual quaternion model is the curve degree minus half the number of conjugate complex 
intersection points with the absolute circle at infinity (the curve’s circularity).

We will see that twice the circularity of a trajectory equals the trajectory degree minus the degree defect in the spherical 
component of the minimal motion. This leads to the rather strange observation that generic rational motions (without spher-
ical degree defect) have very special (entirely circular) trajectories. Conversely, the minimal motion to generic (non-circular) 
curves are curvilinear translations which are special in the sense that their spherical degree defect is maximal.

✩ This paper has been recommended for acceptance by B. Juettler.
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We continue this article with an introduction to the dual quaternion model of rigid body displacements in Section 2. 
There we also introduce motion polynomials and their relation to rational motions. Our results are formulated and proved 
in Section 3. The proof of the central result (Theorem 2) is constructive and can be used to actually compute the minimal 
rational motion by a variant of the Euclidean algorithm. We illustrate this procedure by two examples.

2. The dual quaternion model of rigid body displacements

In this article, we work in the dual quaternion model of the group of rigid body displacements. This model requires 
a minimal number of parameters while retaining a bilinear composition law. Moreover, it provides a rich algebraic and 
geometric structure. It is, for example, possible to use a variant of the Euclidean algorithm for computing the greatest 
common divisor (gcd) of two polynomials. This section presents the necessary theoretical background on dual quaternions.

2.1. Dual quaternions

The set DH of dual quaternions is an eight-dimensional associative algebra over the real numbers. It is generated by the 
base elements

1, i, j, k, ε, εi, εj, εk

and the non-commutative multiplication is determined by the relations

i2 = j2 = k2 = ijk = −1, ε2 = 0, iε = εi, jε = εj, kε = εk.

As important sub-algebras, the algebra of dual quaternions contains the real numbers R = 〈1〉, the complex numbers 
C = 〈1, i〉, the dual numbers D = 〈1, ε〉, and the quaternions H = 〈1, i, j, k〉 (angled brackets denote a linear span). A dual 
quaternion may be written as h = p + εq where p, q ∈ H are quaternions. The conjugate dual quaternion is h = p + εq and 
conjugation of quaternions is done by multiplying the coefficients of i, j, and k with −1. It can readily be verified that the 
dual quaternion norm, defined as ‖h‖ = hh, equals pp +ε(pq +qp). It is a dual number. The non-invertible dual quaternions 
h = p + εq are precisely those with vanishing primal part p = 0.

An important application of dual quaternions is the modelling of rigid body displacements. The group of dual quaternions 
of unit norm modulo {±1} is isomorphic to SE(3), the group of rigid body displacements. A unit dual quaternion h = p + εq
acts on a point x in the three dimensional real vector space 〈i, j, k〉 according to

x �→ pxp + pq − qp = pxp + 2pq. (1)

Note that −qp = pq because of the unit norm condition. It is convenient and customary to projectivise the space DH of 
dual quaternions, thus arriving at P7, the real projective space of dimension seven. Then, the unit norm condition can be 
relaxed to the non-vanishing of pp and the vanishing of pq + qp. In a geometric language, SE(3) is isomorphic to the points 
of a quadric S ⊂ P

7, defined by pq + qp = 0, minus the points of a three-dimensional space, defined by p = 0. The quadric 
S is called the Study quadric. In this setting, the map (1) becomes

x �→ pxp + pq − qp

pp
= pxp + 2pq

pp
.

The action of h = p + εq with p 
= 0, pq + qp = 0 can be extended to real projective three-space P3, modelled as projective 
space over 〈1, i, j, k〉. The point x represented by x0 + x1i + x2j + x3k is mapped according to

x �→ x0 pp + p(x1i + x2j + x3k)p + 2x0 pq = pxp + 2x0 pq.

This is a convenient representation for studying rational curves as trajectories of rational motions.

2.2. Rational motions and motion polynomials

In the projective setting, a rational motion is simply a curve in the Study quadric S that admits a parameterisation by a 
polynomial

C =
n∑

i=0

cit
i (2)

with dual quaternion coefficients c0, . . . , cn ∈ DH. The non-commutativity of DH necessitates some rules concerning no-
tation and multiplication: Polynomial multiplication is defined by the convention that the indeterminate commutes with 
all coefficients, the ring of these polynomials in the indeterminate t is denoted by DH[t], the subring of polynomials with 
quaternion coefficients is H[t]. We always write coefficients to the left of the indeterminate t . This convention is sometimes 
captured in the term “left polynomial” but we will just speak of a “polynomial”.
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Evaluating C at different values t ∈R gives points of a rational curve in P7. We also define C(∞) := cn = limt→∞ t−nC(t)
in order to obtain the complete curve as image of P1 := R ∪ {∞} under the map t �→ C(t). A similar convention is used for 
rational curves in P

3.
The conjugate to the polynomial (2) is

C :=
n∑

i=0

cit
i .

It can readily be verified that the norm polynomial CC has dual numbers as coefficients. If CC has even real coefficients 
and the leading coefficient cn is invertible, we call C a motion polynomial. This is motivated by the observation that the 
curve parameterised by a motion polynomial is contained in the Study quadric, that is, it parameterises indeed a rigid body 
motion. Writing C = P + εQ with P , Q ∈H[t], motion polynomials are characterised by the vanishing of P Q + Q P .

The trajectory of the point x = x0 + x1j + x2j + x3k ∈ P
3 is

t �→ P xP + 2x0 P Q , t ∈ P
1. (3)

This is a curve parameterised by polynomial functions in projective coordinates. It is also called a rational curve because it 
is always possible to clear denominators of rational functions. All motions in SE(3) with only rational trajectories can be 
parameterised by motion polynomials (Jüttler, 1993).

3. Rational curves as trajectories of rational motions

A rational parameterised equation x = x0 + x1i + x2j + x3k with x0, x1, x2, x3 ∈ R[t] is called reduced if the greatest 
common divisor g of x0, x1, x2, x3 has degree zero. The degree of x is defined as the maximal degree of x0, x1, x2, x3. If 
x is not reduced, we may divide it by g to obtain an equivalent parameterised equation which describes the same rational 
curve, but possibly with fewer parameterisation singularities.

Given a reduced parameterised equation x of degree d, it is our ultimate aim to find a motion polynomial C = P + εQ ∈
DH[t] of minimal degree such that the trajectory of one point p is parameterised by x. An obvious example of a motion 
polynomial with trajectory x is the curvilinear translation along x and it will turn out that this is already the solution to 
our problem in generic cases. However, for trajectories which are non-generic, in a sense to be made precise below, a lesser 
degree can be achieved.

3.1. Circularity of trajectories

A motion polynomial C = P + εQ is called reduced, if both P and Q have no common real factor. The real factor of the 
primal part P with maximal degree is uniquely defined up to a constant scalar factor. We call it maximal real polynomial 
factor and abbreviate it by “mrpf”. It accounts for a difference in degrees between the rational motion, parameterised
by C = P + εQ , and its spherical component, parameterised by P . Hence, we also call the degree of the maximal real 
polynomial factor of P the spherical degree defect of C .

We only consider reduced rational motions but do not exclude motions with positive spherical degree defect. It will turn 
out that the spherical degree defect and circularity of trajectories are closely related:

Definition 1. The circularity of a rational curve with reduced rational parameterised equation x = x0 + x1i + x2j + x3k is 
defined as

1

2
deg gcd(x0, x2

1 + x2
2 + x2

3).

The curve is called entirely circular if it is of maximal circularity 1
2 deg x.

Geometrically, circularity is half the number of (conjugate complex) intersection points of x and the absolute circle at 
infinity, counted with their respective algebraic multiplicities. Hence, it is always an integer (this also follows algebraically 
from the fact that x0, x1, x2, x3 are real and prime) and does not depend on the chosen parameterisation, as long as it is 
reduced.

Theorem 1. Let C be a reduced motion polynomial of degree n and spherical degree defect m. Then a trajectory of C is of degree 
d ≤ 2n − m and circularity c ≥ (d − m)/2.

Remark 1. In Theorem 1, the strictly less and strictly greater cases can occur. One example of this is the general Darboux 
motion (Li et al., 2015c, 2015a) where n = 3, m = d = 2, c = 0 and hence 2 = d < 2n − m = 4 (but 0 = c = (d − m)/2). 
Another example is the circular translation motion (Li et al., 2015c, 2015a) with n = m = d = 2, c = 1. Here 2 = d = 2n − m
but 1 = c > (d − m)/2 = 0.
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Lemma 1. Assume A, B ∈H[t]. If a monic quadratic irreducible real polynomial Q is a factor of the product AB, then Q either divides 
A or Q divides B or there are a unique quaternion q ∈ H and two quaternion polynomials A1 and B1 such that Q = (t − q)(t − q), 
A = A1(t − q) and B = (t − q)B1 .

Proof. It is sufficient to prove the third case under the assumption gcd(Q , A0) = gcd(Q , B0) = 1 where A0 := mrpf A, 
B0 := mrpf B . There exist uniquely determined quaternions q1, . . . , qr , q′

1, . . . , q
′
s such that

• Q = (t − qi)(t − qi) = (t − q′
j)(t − q′

j) for i ∈ {1, . . . , r} and j ∈ {1, . . . , s},
• A = A0 Q A , B = B0 Q B where Q A := (t − qr) · · · (t − q2)(t − q1), Q B := (t − q′

1)(t − q′
2) · · · (t − q′

s), and
• gcd(A0 A0, Q ) = gcd(B0 B0, Q ) = 1.

This follows from the quaternion version of the factorisation theorem for motion polynomials (Hegedüs et al., 2013, Theo-
rem 1).

As Q divides AB , we get that Q divides A0 A AB B0 = A0 A0 Q A Q B B0 B0. But then Q also divides Q A Q B . This can happen 
only if two neighbouring linear factors are conjugate and, because of gcd(Q , mrpf A) = gcd(Q , mrpf B) = 1, implies q1 = q′

1

whence the claim follows with q := q1 = q′
1. �

Proof of Theorem 1. Let T := 2x0 + ε(x1i + x2j + x3k) be the translation which moves a point x = x0 + x1i + x2j + x3k to 
the origin 1 and let C̃ = C T −1. Then the orbit of x with respect to C is equal to the orbit of the origin 1 with respect 
to C̃ . Because we have deg(C̃) = deg(C) and the spherical degree defect of C equals the spherical degree defect of C̃ , it 
is sufficient to prove the statement for C̃ and the origin 1 (instead of C and x). From now on, we use the symbol C to 
abbreviate C̃ . Let C = P + εQ , set G := mrpf P , m := deg G , P ′ := P/G and use (3) to compute a parametric equation y for 
the trajectory of the origin 1:

y = P P + 2P Q = G2 P ′ P ′ + 2G P ′ Q ≡ G P ′ P ′ + 2P ′ Q ,

where we write “≡” for equality in the projective sense, modulo scalar (or real polynomial) multiplication. The trajectory’s 
degree is not larger than 2n − m.

With N := gcd(G P ′ P ′, mrpf(P ′ Q )) and r := deg N , the degree of the trajectory y is d = 2n − m − r because we have 
y ≡ (G P ′ P ′ + 2P ′ Q )/N . If P ′ P ′/N and Q Q /N are polynomials, the circularity is half the degree of

gcd
( G P ′ P ′

N
,

P ′ P ′ Q Q

N2

)
= P ′ P ′

N
gcd

(
G,

Q Q

N

)
.

This would then imply that the circularity is not less than n − m − r/2, which equals (d − m)/2 for d = 2n − m − r. Thus, we 
have to show that N divides both, P ′ P ′ and Q Q .

Moreover, it is sufficient to prove the claim only for a reduced C0 := P0 + εQ 0 as the claim in the non-reduced case 
follows easily. Set N0 := gcd(G0 P ′

0 P ′
0, mrpf P ′

0 Q 0) where G0 := mrpf P0 and P ′
0 := P0/G0. It is a useful fact that N0 has no 

real linear factor because such a factor would also divide G0 (because P ′
0 ∈ H[t] has no real factor and hence P ′

0 P ′
0 has no 

real linear factor either) and Q 0 (because it divides P ′
0 Q 0 and P ′

0 has no real factor). But this contradicts the reducedness 
of C0. Now we proceed by induction on the degree s of N0. Note that s is zero or an even positive integer.

In case of s = 0, N0 is a real constant and the claim is clear.
Let s ≥ 2. Then there is a monic quadratic irreducible real polynomial M1 which divides N0. Set N1 := N0/M1. We 

claim that there always exists a quaternion q and two quaternion polynomials P ′
1 and Q 1 such that M1 = (t − q)(t − q), 

P ′
0 = P ′

1(t − q) and Q 0 = Q 1(t − q). We handle the proof of this claim by distinguishing three cases:

1. M1 divides G0. Then M1 cannot divide mrpf Q 0 because of the reducedness of C . Since M1 is a divisor of N0 which 
divides P ′

0 Q 0, M1 must divide P ′
0 Q 0. Since P ′

0 has no real polynomial factor, by Lemma 1, there is a unique quaternion 
q and two polynomials P ′

1 and Q 1 such that M1 = (t − q)(t − q), P ′
0 = P ′

1(t − q) and Q 0 = Q 1(t − q).

2. M1 does not divide G0 but divides mrpf Q 0. Then M1 must divide P ′
0 P ′

0. Since P ′
0 has no real polynomial factor, by 

Lemma 1, there is a unique quaternion q such that M1 = (t −q)(t −q), P ′
0 = P ′

1(t −q). Then we set Q 1 := Q 0(t −q)/M1
which is a polynomial and satisfies Q 0 = Q 1(t − q).

3. M1 divides neither G0 nor mrpf Q 0. By Lemma 1, there are a unique quaternion q and two polynomials P ′
1 and Q 1

such that M1 = (t − q)(t − q), P ′
0 = P ′

1(t − q) and Q 0 = Q 1(t − q).

In all three cases, we have a new reduced motion polynomial C1 := G0 P ′
1 + εQ 1, such that

P ′
0 = P ′

1(t − q), Q 0 = Q 1(t − q), gcd(G0 P ′
1 P ′

1,mrpf(P ′
1 Q 1)) = N0/M1 =: N1.

By induction hypothesis, N1 divides P ′
1 P ′

1 and Q 1 Q 1. By the derivation of P ′
1 and Q 1, namely, P ′

0 = P ′
1(t − q) and 

Q 0 = Q 1(t − q), we have that N0 divides P ′
0 P ′

0 and Q 0 Q 0. This concludes the induction proof and also the proof of the 
theorem. �
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Remark 2. Calling a rational motion generic if the primal part has no real factors one interpretation of Theorem 1 is as 
follows: A trajectory of a generic rational motion can be entirely circular (actually, only few exceptions are known). A similar 
statement for algebraic planar motions can be found in Bottema and Roth (1990, Ch. XI). There, also a more detailed 
discussion on the circularity of trajectories can be found. For planar rational curves, the geometric circularity conditions 
there imply the algebraic circularity conditions of Theorem 1.

As one consequence of Theorem 1, among all rational curves of fixed degree, curves of high circularity can be generated 
by rational motions of low degree. In particular, we obtain the desired bound on the degree of a rational motion with a 
given rational trajectory:

Corollary 1. If a rational curve of circularity c and degree d is a trajectory of the rational motion C = P + εQ , the degree of C is not 
less than d − c. If it is of degree d − c, the degree defect of the spherical motion component equals d − 2c.

We will see below in Section 3.2 that the bound of Corollary 1 is sharp.

Example 1. Let us illustrate above results by simple examples from literature. In case of deg C = 1, the only generic rational 
motions are rotations with fixed axis. Their generic trajectories (trajectories that maximise the degree among all trajectories) 
are circles and, of course, entirely circular. Rational motions with deg C = 2 are generated by reflecting a moving frame in 
one family of rulings on a quadric H , see Hamann (2011). The generic case is obtained if H is a hyperboloid. In this case, 
generic trajectories are of degree four. Their entirely circularity has already been observed in Bottema and Roth (1990, 
Ch. IX, §7). The non-generic trajectories are circles. Points with non-generic trajectories lie on two skew lines that coincide 
if H is a hyperboloid of revolution. Finally, if H is a hyperbolic paraboloid, generic trajectories are just of degree three and 
circularity one (Hamann, 2011).

3.2. Motion synthesis

Now we turn to the task of computing a rational motion C = P + εQ of minimal degree deg C = n with a given rational 
parameterised curve x = x0 + x1i + x2j + x3k as trajectory. Denote the degree of the trajectory by d and its circularity by c. 
By Corollary 1 we have n ≥ d − c. We will prove that, up to coordinate changes, exactly one solution of minimal degree 
n = d − c exists and we also provide a procedure for its computation.

Theorem 2. Let x = x0 + x1i + x2j + x3k be a reduced rational parametric equation of a rational curve such that x(∞) ≡ 1. Then 
there exists a unique monic rational motion polynomial C = P + εQ of minimal degree, such that C(∞) = 1 and the trajectory of 1 is 
parameterised by x.

A key ingredient in our proof of Theorem 2 is a version of the Euclidean algorithm to compute the left gcd of two 
polynomials F , G ∈ H[t]. This is a well-known concept in the theory of polynomials over rings, see Ore (1933). Call the 
polynomial L ∈ H[t] a left factor or left divisor of F if there exists Q ∈ H[t] such that F = L Q . The polynomial D ∈ H[t] is 
called left gcd of F and G , if D is a left divisor of F and G and any left divisor E of F and G also left divides D . The left gcd 
is unique up to right multiplication with a non-zero quaternion.

The Euclidean algorithm in this context is based on polynomial right division. Given R0, R1 ∈ H[t], there exist Q 2, R2 ∈
H[t] such that R0 = R1 Q 2 + R2 and deg R2 < deg R1. Note that the order of factors in the product R1 Q 2 is important. If D
is a left divisor of R0 and R1, then D is also a left divisor of R1 Q 2 and of R2. Conversely, a left divisor of R2 and R1 also 
left divides R0. Hence the left gcd of R0 and R1 equals the left gcd of R1 and R2. Assuming deg R0 ≥ deg R1, we also have 
deg R0 > deg R2 and we may recursively define sequences R2, R3, . . . and Q 2, Q 3, . . . of polynomials with strictly decreasing 
degree by

Rk−2 = Rk−1 Q k + Rk, k ≥ 2.

The recursion ends as soon as Rk = 0 whence the left gcd is D = Rk−1. Using polynomial long division, an algorithmic 
implementation of this algorithm is straightforward.

Lemma 2. If C ∈ H[t] and M ∈R[t] is an irreducible (over R) quadratic factor of CC, then M and C have a left gcd of positive degree.

Proof. Use polynomial right division to compute Q , R ∈H[t] with C = M Q + R = Q M + R and deg R ≤ 1. Then

C C = (M Q + R)(M Q + R) = M(M Q Q + Q R + R Q ) + R R.

If R = 0, then M itself is a left gcd of C and M . Otherwise, M is a left factor of R R which implies M ≡ R R . Hence, R is a 
left factor of M and also of C . �
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Lemma 3. For any polynomial C ∈ H[t] of positive degree and a monic divisor R ∈ R[t] of CC with gcd(R, mrpf C) = 1, there exists 
a unique monic quaternion polynomial P (the left gcd of C and R) and a unique quaternion polynomial Q such that P Q = C and 
P P = R.

Proof. The polynomial R has no real linear factor because such a factor necessarily is a divisor of C which contradicts 
gcd(R, mrpf C) = 1. Using the Euclidean algorithm, we can compute the unique monic left gcd P0 of C and R , i.e.,

P0 Q = C, P0 P1 = R (4)

with Q , P1 ∈ H[t]. We claim that P0 and P1 both have no real polynomial factor:

• A real polynomial factor of P0 is also a real polynomial factor of C and R and contradicts gcd(R, mrpf C) = 1.
• A real polynomial factor of P1 must have a real quadratic factor M which is irreducible over R (because R has no real 

linear factor). That is, for some P ′
1 ∈ H[t] we have P1 = P ′

1M . We can write R = P0 P1 = P0 P ′
1M = R ′M where R ′ is real. 

From this we infer P0 R ′ = P0 P0 P ′
1. Because P0 has no real polynomial factor, the real polynomial P0 P0 divides R ′ and 

P0 P0M divides R but also CC = Q Q P0 P0 (a multiple of R). This implies that M divides Q Q and, by Lemma 2, Q and 
M have a left gcd P2 with deg P2 > 0. But then, by (4), P0 P2 is a left divisor of C and R and deg P0 P2 > deg P2. This 
contradicts the fact that P0 is left gcd of C and R .

Now we claim that P1 = P0. Left multiplying the second equation in (4) with P0 we obtain P0 R = P0 P0 P1. We have a 
real polynomial factor R on the left and a real polynomial factor P0 P0 on the right. Because neither P0 nor P1 have real 
polynomial factors, we have R = P0 P0 and P1 = P0 follows. Thus, with P := P0, we have existence.

As to uniqueness, we observe that P is necessarily the unique monic left gcd of C and R . Uniqueness of Q follows from 
uniqueness of P . �
Proof of Theorem 2. Denote the degree of the rational parametric equation x by d and its circularity by c. The condition 
x(∞) ≡ 1 implies deg x0 > deg xi for i = 1, 2, 3 and it is no loss of generality to assume that x0 is monic. There exist a monic 
polynomial g of degree 2c and two relatively prime polynomials w (monic), y ∈R[t] with deg w = d − 2c, deg y < 2(d − c), 
such that

x0 = g w, x2
1 + x2

2 + x2
3 = gy. (5)

Denote by C := P + εQ a (yet unknown) motion polynomial of minimal degree that parameterises the sought rational 
motion. The parametric trajectory of 1 equals x if

x0 + x1i + x2j + x3k ≡ P P + 2P Q where P Q + Q P = 0. (6)

With D := x1i + x2j + x3k, we have

D D = x2
1 + x2

2 + x2
3 = gy and w D D = wgy = x0 y. (7)

By Lemma 3, there exist polynomials P0 ∈H[t] and Q 0 ∈ H[t] such that

P0 P0 = g, P0 Q 0 = D.

With P := w P0 and Q := Q 0/2 we then have

P P = w2 P0 P0 = w2 g = wx0, 2P Q = w P0 Q 0 = w D = w(x1i + x2j + x3k).

This shows that P and Q solve the first of the two equations in (6). The second equation follows from the vanishing of the 
scalar part of D: 0 = D + D = w D + w D = 2(P Q + Q P ). Thus, the polynomial C = P + εQ with P , Q computed as above 
is one solution to our problem and it is of minimal degree n := d − c.

Conversely, assume that C ′ = P ′ + εQ ′ is another solution of minimal degree deg C ′ = n. Again, we have deg P ′ > deg Q ′
and P ′ is monic. By the first of the two equations in (6) we get

P ′ P ′ = w ′x0, 2P ′ Q ′ = w ′D = w ′(x1i + x2j + x3k), (8)

for some monic real polynomial w ′ of degree d − 2c. By (5), (7), and (8) we get

gy = D D = 4
P ′ P ′ Q ′ Q ′

w ′ 2
= 4

w ′x0 Q ′ Q ′
w ′ 2

= 4
x0

w ′ Q ′ Q ′ = 4
g w

w ′ Q ′ Q ′.

If we divide both sides by g and multiply with w ′ , we get

yw ′ = 4w Q ′ Q ′.
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As w and y are relatively prime, we get that w divides w ′ . But deg w = deg w ′ and w and w ′ are monic. Thus, we have

w = w ′ and y = 4Q ′ Q ′. (9)

Left-multiplying the second of two equations in (8) by Q ′ and using (9), we get

P ′ = w ′ D Q ′

2Q ′ Q ′ = w
2D Q ′

y
.

As w and y are relatively prime and w is monic, P ′
0 := 2D Q ′/y must be a monic polynomial. We have

P ′
0 P ′

0 = 4Q ′ Q ′D D

y2
= D D

y
= g, 2P ′

0 Q ′ = 4Q ′ Q ′D
y

= D.

Because of deg P ′
0 = deg P0 and because the left gcd of g and D is unique, this implies P0 = P ′

0 and Q ′ = Q 0/2 = Q . This 
concludes the proof of uniqueness. �
Remark 3. In case of a rational curve of circularity zero, the primal part P of the rational motion C = P + εQ is a real 
polynomial and the trivial solution consists of the curvilinear translation along the given curve. In all other cases, Theorem 2
guarantees solutions of lesser degree than curvilinear translations.

Our formulation of Theorem 2 requires a special moving point, the origin 1, to generate the rational curve and produces 
a motion polynomial C with the special property C(∞) ≡ 1. These conditions are just coordinate dependencies and are 
convenient for our algebraic formulation and proof. If we allow coordinate changes, we may translate 1 to an arbitrary 
moving point (this amounts to replacing C by C T −1 with a suitable translation, as in the proof of Theorem 1) and orient 
the coordinate axis arbitrarily (this amounts to right-multiplying C with r ∈ H). Thus, we can re-formulate Theorem 2 as

Corollary 2. There is a unique (up to coordinate changes) rational motion of minimal degree in the dual quaternion model of rigid body 
displacements with a prescribed rational trajectory. If the trajectory is of degree d and circularity c, the minimal motion is of degree 
n = d − c.

Remark 4. Frequently, the degree of a rational motion is defined as maximal degree of one of its trajectories. With this 
concept of degree, Corollary 2 is no longer true. A counter example is a circle which occurs as trajectory of a circular 
translation and of a rotation about its centre. For both motions the maximal degree of a trajectory is two.

Let us illustrate Theorem 2 by two examples:

Example 2. The rational curve given by the parameterised equations

x0 = (t2 + 2t + 2)(t2 + 2t + 5)(t + 1), x1 = 2(t2 − 5)(t2 + 2t + 2),

x2 = −4(t + 5)(t + 1)2, x3 = −2t(t + 2)(t + 5)(t + 1)

is of degree five. From the factorisation

x2
1 + x2

2 + x2
3 = 8(t2 + 2t + 5)(t2 + 4t + 5)(t2 + 2t + 2)2

we see that its circularity is two. By Theorem 2, it is trajectory of a rational motion of minimal degree three whose primal 
part, by Theorem 1, has precisely one linear factor. With y, w and g defined by

g = (t2 + 2t + 2)(t2 + 2t + 5), w = t + 1, y = 8(t2 + 4t + 5)(t2 + 2t + 2),

we have

x0 = g w, x2
1 + x2

2 + x2
3 = gy.

Setting D = x1i + x2j + x3k and using the Euclidean algorithm we compute, according to Lemma 3, the left gcd P0 of D
and g: With

P0 = t2 + 2t + 1 − (t + 1)i + (2t + 2)j − 2k

and

Q 0 = −2t − 2 − (2t2 + 4t + 2)i + (2t + 6)j + (2t2 + 8t + 6)k

we have g = P0 P0, D = P0 Q 0. Then we set P = w P0 and Q = Q 0/2. As expected, P has a real polynomial factor of 
degree 1. The motion polynomial we want is C := P + εQ .
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Fig. 1. Minimal motion of the Viviani curve (rolling of spherical circles).

Example 3. The Viviani curve (Peternell et al., 2013) is given by

x0 = (1 + t2)2, x1 = (1 − t)2(1 + t)2, x2 = 2t(1 − t)(1 + t), x3 = 2t(1 + t2).

In order to meet the requirements of Theorem 2, we translate it by the vector (−1, 0, 0) and obtain

x0 = (1 + t2)2, x1 = −4t2, x2 = 2t(1 − t)(1 + t), x3 = 2t(1 + t2). (10)

This curve lies on the unit sphere and is entirely circular. As in the previous example, we compute

g = gcd(x0, x2
1 + x2

2 + x2
3) = (1 + t2)2, w = x0/g = 1, y = (x2

1 + x2
2 + x2

3)/g = 8t2.

The left gcd of D := x1i + x2j + x3k and g is

P0 = t2 − t(j + k) − i,

the right quotient of D and P0 is

Q 0 = 2t(k − j),

and the minimal motion to the curve (10) is

C = t2 − (j + k − ε(j + k))t − i.

We can simplify by conjugating with T := 1 + 1
2 εi whence we get

C ′ := T C T = t2 − t(j + k) − i = (t − k)(t − j).

This shows that C ′ is the composition of two rotations about the second coordinate axis and the third coordinate axis with 
equal angular velocities, i.e., the motion generated by the rolling of a spherical circle of radius π/4 on a spherical circle of 
the same radius. This is illustrated in Fig. 1. There, the moving frame is rigidly attached to the rolling circle.

4. Discussion of results

This article unveiled some relations between rational motions and their trajectories. A rational curve occurs as trajectory 
of a unique (up to coordinate changes) rational motion of minimal degree in the dual quaternion model. This was a surprise 
to the authors as a mere trajectory seems to leave a lot of freedom for the construction of a suitable rational motion. 
Apparently, the requirement for minimality is rather restrictive.

Calling a rational curve “generic” if its circularity is zero and a rational motion “generic” if its primal part has no real 
factors (the spherical motion component has full degree), we may also say that rational motions of minimal quaternion 
degree to a generic trajectory are non-generic. Conversely, the trajectories of a generic rational motion are entirely circular 
and hence non-generic.

In conjunction with the factorisation of generic rational motions (Hegedüs et al., 2013) and its extension (Li et al., 
2015b) to non-generic motion polynomials, our results contribute to a variant of Kempe’s Universality Theorem (Demaine 
and O’Rourke, 2007, Section 3.2) for rational space curves. Via motion factorisation, it is possible to construct linkages to 
generate a given rational motion and hence also a given rational trajectory. The dual quaternion degree of the generating 
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motion is directly related to the number of links and joints in the mechanism. As a consequence, rational curves can be 
generated by spatial linkages with much fewer links and joints than those implied by the asymptotic bounds for algebraic 
space curves given by Abbott (2008). For circular curves, the numbers of links and joints are even less. A precise formulation 
and a rigorous proof will be worked out in a future paper.

Our main result in Corollary 2 raises questions. Is a similar uniqueness statement true for algebraic curves and algebraic 
motions? What rational motions are not minimal for any of their trajectories? The Darboux motion and the circular trans-
lation of Remark 1 are examples. Finally, determine simple (classes of) curves with simple minimal motion as in Example 3
and exploit their low degree and rationality in a CAGD or engineering context.
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cagd.2015.10.002.
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