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We show that four well-known kinds of generalized barycentric coordinates in convex 
polygons share a simple monotonicity property: the coordinate function associated with 
a vertex is increasing along any line from the polygon boundary to that vertex. This shows 
that the coordinate functions have no local extrema and that their contours are single 
curves connecting pairs of points on the two edges adjacent to the vertex.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let P ⊂ R
2 be a convex polygon, with vertices v1, v2, . . . , vn , n ≥ 3, in some anticlockwise ordering. Fig. 1 shows an 

example with n = 5. Any functions φi : P → R, i = 1, . . . , n, are generalized barycentric coordinates (GBCs) if, for all x ∈ P , 
φi(x) ≥ 0, i = 1, . . . , n, and

n∑
i=1

φi(x) = 1,

n∑
i=1

φi(x)vi = x. (1)

From this definition one can show that all GBCs have the same values on the boundary of the polygon, ∂ P . Specifically, 
φi|∂ P = f i , where the boundary function f i : ∂ P →R has the values

f i |e j = 0, j �= i − 1,1,

f i((1 − μ)vi±1 + μvi) = μ, μ ∈ [0,1], (2)

and e j is the j-th edge, e j := [v j, v j+1]. Here and throughout, vertices, edges, and so on are indexed cyclically, i.e., vn+1 := v1
etc.

We can see that φi is increasing along the edges ei−1 and ei in the direction towards vi . In this note we show that 
several well known GBCs share a more general monotonicity property. We will say that φ1, . . . , φn are monotonic if, for all 

✩ This paper has been recommended for acceptance by Kai Hormann.
E-mail address: michaelf@math.uio.no.
http://dx.doi.org/10.1016/j.cagd.2016.01.003
0167-8396/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cagd.2016.01.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:michaelf@math.uio.no
http://dx.doi.org/10.1016/j.cagd.2016.01.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2016.01.003&domain=pdf


M.S. Floater / Computer Aided Geometric Design 42 (2016) 34–39 35
Fig. 1. Convex polygon.

Fig. 2. Line segment connecting a boundary point y to vi .

i = 1, . . . , n, and for all y ∈ ∂ P , y �= vi , the coordinate φi is increasing along the line segment from y to vi . Fig. 2 shows an 
example. Thus, by monotonic we mean that if

x = (1 − λ)y + λvi and x̃ = (1 − λ̃)y + λ̃vi, (3)

with 0 < λ < λ̃ < 1, then φi(x) < φi(x̃), and we need only check this property for boundary points y /∈ ei−1, ei . We will show 
that four distinct kinds of GBCs are monotonic: Wachspress coordinates, harmonic coordinates, Gordon–Wixom coordinates, 
and mean value coordinates.

Monotonicity does not follow from the definition (1) alone, since it is local to each point x. We could construct an 
example of ‘strange’ GBCs that are neither continuous nor monotonic. If both coordinates of x are rational numbers, let 
φ1(x), . . . , φn(x) be the Wachspress coordinates of x. Otherwise, if either coordinate is non-rational, let φ1(x), . . . , φn(x) be 
the mean value coordinates of x. This defines a set of GBCs φ1, . . . , φn for all x in P that are clearly not continuous (except 
on the boundary of P ), and clearly not monotonic either.

The monotonicity property shows that each contour of φi is a single curve connecting a point on the edge ei−1 to the 
corresponding point on the edge ei . Despite the fact that numerous contour plots of GBCs have appeared in the literature 
over several years, and they tend to exhibit this behavior, a mathematical proof seems to be missing. Another consequence 
of monotonicity is that φi cannot have any extrema in P .

It seems reasonable to use the simple term ‘monotonic’ because (a) this is the property that φi has along each line 
passing through vi and (b) it seems unlikely that φi will be monotonic, in general, along any other line. Certainly, if we take 
any two points y1 and y2 on the boundary of P that lie on distinct edges other than ei and ei−1, then φi(y1) = φi(y2) = 0
and φi is positive on the line between y1 and y2, from which we conclude that φi is not monotonic on that line.

2. Wachspress’ rational coordinates

To define Wachspress’ coordinates (Wachspress, 1975; Warren, 1996; Meyer et al., 2002; Warren et al., 2007), let n j
denote the outward unit normal to the edge e j , and for x ∈ P , let h j(x) be the perpendicular distance of x to e j , i.e., by the 
scalar product,

h j(x) = (v j − x) · n j = (v j+1 − x) · n j . (4)

Then the i-th Wachspress coordinate is φi = wi/W , where

wi(x) = ci

hi−1(x)hi(x)
, ci = ni−1 × ni, W =

n∑
j=1

w j,

and × is the scalar-valued cross product, so ni−1 × ni = det[ni−1, ni].
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To derive the monotonicity property consider the gradient ∇φi of φi for some fixed i. By the quotient rule,

∇φi = 1

W 2 (W ∇wi − wi∇W ) = wi

W 2

n∑
j=1

w j(Ri − R j),

where R j := ∇w j/w j . Therefore, the directional derivative of φi in the (not necessarily unit) direction vi − x is

Dvi−xφi(x) = (vi − x) · ∇φi(x) = wi(x)

W 2(x)

∑
j �=i

w j(x)(aii(x) − aij(x)),

where

aij(x) := (vi − x) · R j(x).

Thus to show that Dvi−xφi(x) > 0, and since wk(x) > 0 for all k, it is sufficient to show that

aii(x) > aij(x), j �= i. (5)

Since ∇h j = −n j , we find

∇w j(x) =
(

n j−1

h j−1(x)
+ n j

h j(x)

)
w j(x),

and so

R j(x) = n j−1

h j−1(x)
+ n j

h j(x)
,

as shown in Floater et al. (2014). Now observe that for any k = 1, . . . , n,

(vi − x) · nk = (vk − x) · nk − (vk − vi) · nk = hk(x) − hk(vi),

and therefore, for any j = 1, . . . , n,

aij(x) = 2 − h j−1(vi)

h j−1(x)
− h j(vi)

h j(x)
.

It follows that aii(x) = 2 and aij(x) < 2, j �= i, which implies (5).

3. Harmonic coordinates

The harmonic coordinates (Floater et al., 2006; Joshi et al., 2007) are defined by the Laplace equation with Dirichlet 
boundary condition:

�φi = 0, in P ,

φi = f i, on ∂ P .

Here, � is the Laplace operator, ∂2/∂x2 + ∂2/∂ y2, where x = (x, y).
To show monotonicity, it is sufficient to show that ψi > 0 in the interior of P , where

ψi(x) := Dvi−xφi(x) = (vi − x) · ∇φi(x), x ∈ P .

To show this we can use the maximum principle (Protter and Weinberger, 1967) for the Laplace operator. By differentiat-
ing ψi we find

�ψi = −2�φi + (vi − x) · ∇(�φi),

and therefore, since φi is harmonic, so is ψi . Considering the boundary values of ψi , if x belongs to ei±1 then

ψi(x) = |vi − x|
|vi±1 − vi| ≥ 0.

If, on the other hand, x belongs to an edge e j , j �= i − 1, i, then, since φi(x) = 0 and φi ≥ 0 in P , we see that, by the 
convexity of P , ψi(x) ≥ 0. Thus ψi ≥ 0 on ∂ P . Since �ψi = 0 in P , and ψi cannot be constant, it cannot attain its minimum 
in the interior of P , and so ψi > 0 in P .
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Fig. 3. Points involved in Gordon–Wixom coordinates.

4. Gordon–Wixom coordinates

To define Gordon–Wixom coordinates (Gordon and Wixom, 1974; Belyaev, 2006; Manson et al., 2011) let x ∈ P and for 
any angle θ ∈R, let yθ be the unique point of intersection between the ray

Lθ := {x + s(cos θ, sin θ) : s ≥ 0} (6)

and the polygon boundary ∂ P , and let sθ = |yθ − x|, the Euclidean distance from x to yθ . The ray Lθ+π , in the direction op-
posite to Lθ , also meets ∂ P uniquely, at the point zθ := yθ+π , whose distance from x is tθ := sθ+π . Then the i-th coordinate 
at x is defined as the integral mean of linear interpolants,

φi(x) = 1

π

π∫
0

(
sθ

tθ + sθ

f i(zθ ) + tθ
tθ + sθ

f i(yθ )

)
dθ,

or equivalently,

φi(x) = 1

π

2π∫
0

tθ
tθ + sθ

f i(yθ )dθ. (7)

To show monotonicity, suppose that y, x, x̃, λ, and λ̃ are as in (3), and define ỹθ , s̃θ , and t̃θ with respect to the point x̃, 
in the same way as yθ , sθ , and tθ are defined with respect to x. Then, from (7), it is sufficient to show that

tθ
tθ + sθ

f i(yθ ) ≤ t̃θ
t̃θ + s̃θ

f i(ỹθ ) (8)

for all θ , with strict inequality for at least one θ . Suppose first that yθ /∈ ei−1, ei . Then f i(yθ ) = 0 and (8) trivially holds. 
Suppose otherwise that yθ ∈ e j for some j ∈ {i − 1, i}. Referring to Fig. 3, since λ̃ ∈ [λ, 1], we have x̃ ∈ [x, vi] and ỹθ ∈ [yθ , vi]
and f i(yθ ) ≤ f i(ỹθ ) ≤ 1.

So f i(yθ ) ≤ f i(ỹθ ) and (8) holds if

tθ
tθ + sθ

≤ t̃θ
t̃θ + s̃θ

,

or equivalently (by considering the reciprocal),

tθ
sθ

≤ t̃θ
s̃θ

. (9)

The distance s̃θ decreases linearly with λ̃ for λ̃ ∈ [λ, 1], from sθ to 0, and so

s̃θ = 1 − λ̃

1 − λ
sθ . (10)

On the other hand, by the convexity of P , the line segment [zθ , vi] intersects the line segment [x̃, ̃zθ ]. Let q be the point of 
intersection, shown in Fig. 3. Then

t̃θ = |z̃θ − x̃| ≥ |q − x̃| = 1 − λ̃

1 − λ
tθ , (11)

which, combined with (10), implies (9). This proves (8). We can also see that if yθ ∈ e j for some j ∈ {i − 1, i} and yθ �= vi
then f i(yθ ) < f i(ỹθ ) and the inequality in (8) is strict.
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5. Mean value coordinates

The i-th mean value coordinate at x ∈ P (Floater, 2003) can be defined as the ratio of integrals

φi(x) =
2π∫
0

f i(yθ )

sθ

dθ

/ 2π∫
0

1

sα
dα, (12)

with yθ and sθ as defined in Section 4.
Regarding monotonicity, let y, x, and λ be as in (3). To show that φi(x) is increasing in λ at x it is sufficient to show that

f i(yθ )

sθ

/ 2π∫
0

1

sα
dα,

is non-decreasing in λ for all θ , and increasing for some θ . Then, since the reciprocal of an increasing function is decreasing, 
and vice versa, a similar consideration of the angle α shows that it is sufficient that

sα
sθ

f i(yθ )

is non-decreasing for all θ and α, and increasing for at least one choice of θ . Thus it is sufficient to show that with x̃ also 
as in (3),

sα
sθ

f i(yθ ) ≤ s̃α
s̃θ

f i(ỹθ ) (13)

for all θ and α, with strict inequality for some choice of θ .
The proof of (13) is similar to that of (8). If yθ /∈ ei−1, ei then (13) trivially holds because f i(yθ ) = 0. Otherwise, with 

yθ ∈ e j for some j ∈ {i − 1, i}, it is sufficient to show that

sα
sθ

≤ s̃α
s̃θ

.

This follows from equation (10) and the fact that, in analogy to (11),

s̃α ≥ 1 − λ̃

1 − λ
sα,

with yα and ỹα playing the role of zθ and z̃θ , and this establishes (13). Similar to Section 4, if yθ ∈ e j for some j ∈ {i − 1, i}
but with yθ �= vi then f i(yθ ) < f i(ỹθ ) and the inequality in (13) is strict.

6. Higher dimensions

As one might expect, the monotonicity property studied here extends in the obvious way to convex polyhedra and, more 
generally, convex polytopes in higher dimensions for the four coordinates considered here, if we make the right definitions.

Considering first Wachspress coordinates, the proof of monotonicity of Section 2 generalizes at least to simple convex 
polytopes in Rd , i.e., convex polytopes in which every vertex has d adjacent (d − 1)-dimensional faces. Using the definitions 
derived in Warren et al. (2007), and applying the notation and gradient formulas of Sec. 2 of Floater et al. (2014), the 
argument is similar, and inequality (5) now follows from the fact that aii(x) = d and aij(x) < d, j �= i.

For the remaining three kinds of GBCs: harmonic, GW, and MV, we do not need to restrict to a simple polytope, and, 
moreover, we have a choice of how to generalize the boundary functions f i of (2). For each (d − 1)-dimensional face of the 
convex polytope we could choose any set of GBCs for that face that are themselves monotonic. These face GBCs then define 
the boundary functions f i for the vertices vi of the polytope. The proof of monotonicity of the harmonic coordinates is now 
as before, with ψi harmonic in P and ψi ≥ 0 on ∂ P due to f i being monotonic on the faces adjacent to vi . The proof of 
monotonicity for GW and MV coordinates is also similar to the 2-D case, with integration carried out over unit vectors μ
on the unit sphere in Rd instead of angles around the unit circle. We would replace the ray Lθ of (6) by

Lμ := {x + sμ : s ≥ 0},
and could denote by yμ its point of intersection with ∂ P . Then for any fixed μ, the five points vi , x, and x̃ of (3) and yμ

and ỹμ would all lie in the same plane, and the steps used to prove (8) and (13) are the same.
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7. Future work

Monotonicity could also be investigated for other GBCs, such as maximum entropy coordinates (Sukumar, 2004), the 
families of coordinates of Floater et al. (2006), and the inverse rational bilinear coordinates for quadrilaterals of Floater
(2015).

A shape-property related to monotonicity is convexity. Are there GBCs which are convex as well as monotonic along the 
lines considered here?
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