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We show that a weighted least squares approximation of Bézier coefficients with factored 
Hahn weights provides the best constrained polynomial degree reduction with respect to 
the Jacobi L2-norm. This result affords generalizations to many previous findings in the 
field of polynomial degree reduction. A solution method to the constrained multi-degree 
reduction with respect to the Jacobi L2-norm is presented.
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1. Introduction

Optimal degree reduction is one of the fundamental tasks in Computer Aided Geometric Design (CAGD) and therefore 
has attracted researchers’ attention for several decades (Ait-Haddou, in press; Zhou and Wang, 2009; Ahn et al., 2004;
Ahn, 2003; Kim and Ahn, 2000; Lutterkort et al., 1999; Watkins and Worsey, 1988). Used not only for data compression, 
CAD/CAM software typically requires algorithms capable of converting a curve (surface) of a high degree to a curve (surface) 
of a lower degree. Considering the problem coordinate-wise, the goal is formulated as follows: given a univariate polynomial 
p of degree n, find its best polynomial approximation q of degree m, m < n, with respect to a certain given norm.

The degree reduction can be seen as an inverse operation to the degree elevation. Whereas elevating polynomial degree 
from m to n is always possible, see e.g. (Hoschek and Lasser, 1993), because it is equivalent to expressing a polynomial 
q ∈ Pm in the basis of a larger linear space Pn , Pm ⊂ Pn , the degree reduction is in general not. A natural alternative is 
then finding the best approximation that minimizes a certain error. This can be interpreted as projecting p ∈ Pn into Pm . 
Depending on a particular norm defined on Pn , various schemes for degree reduction were derived (Eck, 1993; Peters and 
Reif, 2000; Lee and Park, 1997; Kim and Moon, 1997; Brunnett et al., 1996; Ait-Haddou and Goldman, 2015).

An elegant resemblance between the L2-norm and the Euclidean norm acting on the vector of Bernstein coefficients was 
revealed by Lutterkort et al. (1999). They proved that the least squares approximation of Bézier coefficients provides the 
best polynomial degree reduction in the L2-norm. Two interesting generalizations of this result were achieved by Ahn et 
al. (2004) and by Ait-Haddou (submitted for publication). Ahn et al. (2004) showed that a weighted least squares approxi-
mation of Bézier coefficients provides the best constrained polynomial degree reduction in the L2-norm. By constrained we 
understand that the original polynomial and its reduced-degree approximation match at the boundaries up to a specific 
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continuity order. Ait-Haddou (submitted for publication) shows that the weighted least squares approximation of Bézier 
coefficients with Hahn weights provides the best polynomial degree reduction with respect to the Jacobi L2-norm. In view 
of these two generalizations, it is natural to ask the following question:

(Q ) – Is there an analogue to the result of Lutterkort et al. (1999) for the constrained degree reduction with respect to the Jacobi 
L2-norm?

The Jacobi L2-norm depends on two real parameters and a partial answer to the question (Q ) is given in (Jianmin and 
Wang, 2003) for specific values of the parameters of the Jacobi L2-norm.

In the present work, we give an affirmative answer to question (Q ); namely we show that there exists a weighted inner 
product on the Bézier coefficients for which the problem of constrained degree reduction with respect to the Jacobi L2-norm 
is equivalent to the problem of weighted least squares approximation of the Bézier coefficients.

Our methodology for answering question (Q ) is very similar to Lutterkort et al. (1999) and its extension by Ahn et al.
(2004). The main challenge lies in the construction of the adequate inner product of Bézier coefficients.

We note that a general solution to the problem of constrained degree reduction with respect to the Jacobi L2-norm 
is derived in (Woźny and Lewanowicz, 2009). Although their solution does not require matrix inversion, the derivation is 
rather complicated because it requires an explicit computation of the dual bases of the discrete Bernstein bases. Moreover, 
their methodology does not involve the approach taken in (Lutterkort et al., 1999) and (Ahn et al., 2004). In contrast, our 
solution, even though it requires the computation of a single Moore–Penrose inverse, is simple and fits to the framework of 
(Lutterkort et al., 1999; Ahn et al., 2004).

The rest of the paper is organized as follows. In section 2, we prove that the best constrained polynomial degree re-
duction with respect to the Jacobi L2-norm is equivalent to a weighted least squares approximation of Bézier coefficients 
with factored Hahn weights. We demonstrate how to compute the degree-reduced polynomials in Section 3, present several 
examples in Section 4, and finally conclude the paper in Section 5.

2. Constrained polynomial degree reduction with Jacobi norms

Denote by Pn the linear space of polynomials of degree at most n and let Bn be its Bernstein–Bézier (BB) basis and Qn

be its Lagrange basis with respect to the nodes (0, 1, . . . , n), i.e.,

Bn := [Bn
0, . . . , Bn

n], where Bn
i (t) = (n

i

)
(1 − t)n−iti, t ∈ [0,1], and

Qn := [Q n
0 , . . . , Q n

n ], where Q n
i (t) =

n∏
j=0, j �=i

t− j
i− j .

Let Pm be a subspace of Pn , m < n and let k and l be two non-negative integers such that k + l ≤ m + 1, we define Pk,l
m

as:

Pk,l
m = { f ∈ Pm : f (i)(0) = 0, i = 0,1, . . . ,k − 1; f ( j)(1) = 0, j = 0, . . . , l − 1}.

That is, Pk,l
m is a linear space of polynomials of degree at most m with k vanishing derivatives at t = 0 and l vanishing 

derivatives at t = 1. Moreover, we define

Qk,l
m = { f ∈ Pm : f (i) = 0, i = 0,1, . . . ,k − 1 and i = n − l + 1, . . . ,n}.

Let α > −1 and β > −1 be two real numbers and define the Jacobi inner product in Pn by

< p,q >L2=
1∫

0

tα(1 − t)β p(t)q(t)d t. (1)

Considering the vectors of BB coefficients of p and q, p = [p0, . . . , pn]T and q = [q0, . . . , qn]T , respectively, we define the 
following weighted Euclidean inner product of the BB coefficients

< p,q >E2=< Bnp,Bnq >E2=
n−l∑
i=k

wi piqi, (2)

with the weights

wi =
(n

i

)
( i

i−k

)( n−i
n−i−l

) (α + 1)k+i(β + 1)n−i+l, (3)

where (a)s = a(a + 1) . . . (a + s − 1) denotes the Pochhammer symbol with the convention that (a)0 := 1.
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Remark 1. The choice of the weights wi in (3) is not arbitrary but follows a certain logic that combines the work of Ahn 
et al. (2004) and the work of Ait-Haddou (submitted for publication). First recall that Hahn orthogonal polynomials Hi , 
i = 0, 1, . . . , n, are orthogonal polynomials with respect to the Hahn inner product

< p,q >H=
n∑

i=0

(
n

i

)
(α + 1)i(β + 1)n−i p(i)q(i). (4)

When k = l = 0 (the unconstrained case) the weights wi in (3) coincide with the Hahn weights 
(n

i

)
(α + 1)i(β + 1)n−i given 

in (4). This is what is naturally expected from the results in (Ait-Haddou, submitted for publication). Moreover, in the 
constrained case, i.e, when k �= 0 or l �= 0, and when α = β = 0, we recover from (3) the inner product given in (Ahn et al., 
2004). The weights in (3) are essentially the Hahn weights in (4) multiplied by certain factors that depend on the order of 
the endpoint constraints.

We need the following lemma given in (Ahn et al., 2004).

Lemma 1. (See Ahn et al., 2004.) A polynomial Bnp is of degree m, m ≤ n, with p(i) = 0 for i = 0, . . . , k − 1 and i = n − l + 1, . . . , n if 
and only if the vector of coefficients is a polynomial of degree m with zeros at i = 0, . . . , k − 1 and i = n − l + 1, . . . , n in its index, i.e.,

Bnp ∈ Pk,l
m ⇔ Qnp ∈ Qk,l

m .

Now we are in a position to state the main result of this work.

Theorem 1. The orthogonal complements of Pk,l
m in Pk,l

n with respect to the Jacobi inner product (1) and the weighted Euclidean inner 
product (2) are equal.

Proof. Denote by Pk,l
m,n the orthogonal complement of Pk,l

m in Pk,l
n with respect to the Euclidean inner product (2). Let Bnq

be an element of Pk,l
m,n . Thus we have

< Bnq,Bnp >E2= 0

for any element Bnp ∈ P
k,l
m . Let s be an integer smaller or equal than m − k − l. We have

< Bnq, tk+s(1 − t)l >L2=
1∫

0

tα+s+k(1 − t)β+lBnq d t =
n∑

i=0

qi

1∫
0

tα+s+k(1 − t)β+l Bn
i (t) d t.

Therefore,

< Bnq, tk+s(1 − t)l >L2=< Bnq,Bnφ >E2 , (5)

where φ = [φ0, φ1, . . . , φn] with

φi =
( i

i−k

)( n−i
n−i−l

)
(n

i

) 1

(α + 1)k+i(β + 1)n−i+l

1∫
0

tα+s+k(1 − t)β+l Bn
i (t) d t.

As Bnq is an element of Pk,l
m,n and by Lemma 1, the inner product (5) vanishes if and only if φi is a polynomial in i of degree 

less or equal to m that vanishes at 0, 1, . . . , k − 1 and at n − l + 1, . . . , n. We have

1∫
0

tα+s+k(1 − t)β+l Bn
i (t) d t =

(
n

i

)
�(α + s + k + i + 1)�(β + l + n − i + 1)

�(α + β + s + k + l + n + 2)
,

where �(.) is the Gamma function. Thus

1∫
0

tα+s+k(1 − t)β+l Bn
i (t) d t =

(
n

i

)
�(α + 1)�(β + 1)

�(α + β + 2)

(α + 1)i+k+s(β + 1)n−i+l

(α + β + 2)s+n+k+l
.

Therefore,

φi = �(α + 1)�(β + 1) (α + i + 1)(α + i + 2) . . . (α + i + s)
(

i
)(

n − i
)

,

�(α + β + 2) (α + β + 2)s+n+k+l i − k n − i − l
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which shows that φi is a polynomial of degree at most m in the variable i that vanishes at 0, 1, . . . , k − 1 and at n − l +
1, . . . , n. Therefore, Pk,l

m,n is contained in the orthogonal complement of Pk,l
m in Pk,l

n with respect to the weighted Euclidean 
inner product (2). The fact of equal dimensions of both orthogonal complements completes the proof. �

A consequence of Theorem 1 for the constrained degree reduction with respect to the Jacobi L2-norm is the following 
corollary; for which the proof goes along the same lines as the proof of Corollary 4.1 in (Ahn et al., 2004).

Corollary 1. Given a polynomial p of degree n, the approximation problem

min
q∈Pm

{||p − q|| : p(i)(0) = q(i)(0) for i = 0, . . . ,k − 1, andp( j)(1) = q( j)(1) for j = 0, . . . , l − 1} (6)

has the same minimizer for the norm induced either by the Jacobi L2-inner product (1) or the weighted Euclidean inner product (2).

Remark 2. The following factorization for the constrained degree reduction holds: Denote by Pk,l
m,n the linear operator that 

maps polynomials of degree n to their best constrained Jacobi L2-approximations; then we have Pk,l
m,n = Pk,l

m,hP
k,l
h,n with 

m ≤ h ≤ n. That is, reducing the degree sequentially by one from n to m gives the same result as projecting p directly from 
Pn to Pm while preserving the endpoint constraints.

Remark 3. Our result is a generalization of both unconstrained and constrained L2-degree reduction schemes (Lutterkort et 
al., 1999; Ahn et al., 2004; Ait-Haddou, submitted for publication). For α = β = 0, we recover the results given in (Ahn et 
al., 2004) and if additionally k = l = 0, we obtain the results in (Lutterkort et al., 1999). For k = l = 0 and α, β arbitrary, we 
recover the results given in (Ait-Haddou, submitted for publication).

3. A solution method to the constrained degree reduction

We now introduce computational tools to solve the constrained polynomial degree reduction with respect to the Jacobi 
L2-norm. Apart from the expression of the weight matrices, that accommodates the expression of the inner product (2), the 
method is similar to the one given in (Ahn et al., 2004).

Denote by An,m the degree raising matrix that maps the BB coefficients q of a polynomial q of degree m to BB coefficients 
q = [q0, . . . , qn]T when raised to degree n, i.e., q = An,mq. The matrix An,m is of order (n + 1) × (m + 1) and can be 
decomposed into elementary degree raising matrices as An,m = An,n−1 An−1,n−2 . . . Am+1,m where

Ah,h−1(i, j) =
⎧⎨
⎩

i/h if j = i − 1,

1 − i/h if j = i,
0 else.

Denote by W (resp. 
√

W ) the diagonal (n + 1) × (n + 1) weight matrix where the diagonal elements are the weights wi
(resp. 

√
wi ) from (3).

According to Corollary 1, the constrained degree reduction problem reduces to solving the least squares problem

min
q∈Rm+1

||p − An,mq||E2 , (7)

with k boundary constraints at t = 0 and l boundary constraints at t = 1. Imposing the boundary constraints equals express-
ing the first k (the last l) coefficients of q in terms of the first k (the last l) coefficients of p. This yields a (k × k) (an (l × l)) 
linear system pi = qi , i = 0, . . . , k − 1 (pi = qi , i = n − l + 1, . . . , n) with the coefficients of the vector q as unknowns, see 
e.g. (Hoschek and Lasser, 1993). We denote by

q̂ = [q0, . . . ,qk−1,0, . . . ,0,qn−l+1, . . .qn]T , q̂ ∈Rm+1,

the vector that contains the solutions of the two boundary linear systems. That is, there is m + 1 − k − l coefficients of q
that are not affected by the boundary constraints, we denote them by q̃ = [qk, . . . , qm−l] ∈ Rm+1−k−l . These coefficients are 
the free parameters for the least squares minimization described as follows.

Let W k,l
n be a diagonal (n + 1 − k − l) matrix obtained from Wn by skipping the first k and the last l entries and define 

p̃ as

[0, . . . ,0︸ ︷︷ ︸
k

, p̃,0, . . . ,0︸ ︷︷ ︸
l

]T = p − Am,nq̂.

Then the least squares problem (7) transforms to

min˜ m+1−k−l
||
√

W k,l
n p̃ −

√
W k,l

n Ak,l
n,mq̃||2, (8)
q∈R
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Fig. 1. Constrained degree reduction for n = 6, m = 5, k = 1, l = 2, α = β = 0. The input polynomial p with the control polygon p = [p0, . . . , p6]T =
[0, 0, 22, −16, 14, −12, 0]T (black) and its best constrained approximation with respect to the L2-norm, q, with the control polygon q = [q0, . . . , q5]T (blue) 
are shown. The constrained control points (red) are computed directly from p, the free parameters that intervene in the least squares optimization and 
minimize (8) are ̃q (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where Ak,l
n,m is a submatrix of An,m obtained from An,m by skipping the first k and the last l rows and columns. Using 

Moore–Penrose inverse, the unique minimizer to (8) is

q̃ = Mk,l
n,mp̃ =

(
(Ak,l

n,m)T W k,l
n Ak,l

n,m

)−1
(Ak,l

n,m)T W k,l
n p̃. (9)

Example 1. Consider degree reduction from n = 6 to m = 5 with the C0 continuity constraint at t = 0 and C1 continuity 
constraint at t = 1, i.e., k = 1, l = 2, see Fig. 1. Then

p − Am,nq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p0
p1
p2
p3
p4
p5
p6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

− 1

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 0 0 0
1 5 0 0 0 0
0 2 4 0 0 0
0 0 3 3 0 0
0 0 0 4 2 0
0 0 0 0 5 1
0 0 0 0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

q0
q1
q2
q3
q4
q5

⎤
⎥⎥⎥⎥⎥⎦ .

The first k and the last l control points of q are determined by the boundary constraints. Incorporating them we obtain

p − Am,nq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p0
p1
p2
p3
p4
p5
p6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

− 1

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 0 0 0
1 5 0 0 0 0
0 2 4 0 0 0
0 0 3 3 0 0
0 0 0 4 2 0
0 0 0 0 5 1
0 0 0 0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

p0
q1
q2
q3

6
5 p5 − 1

5 p6
p6

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Splitting q into boundary-determined and boundary-independent vectors,

q̂ = [p0,0,0,0,
6

5
p5 − 1

5
p6, p6]T and q̃ = [q1,q2,q3]T ,

and grouping the p-dependent terms together, the system reduces to

p̃ − Ak,l
m,nq̃ =

⎡
⎢⎢⎣

p1 − 1
6 p0

p2
p3

p4 − 2
5 p5 + 1

15 p6

⎤
⎥⎥⎦ − 1

6

⎡
⎢⎢⎣

5 0 0
2 4 0
0 3 3
0 0 4

⎤
⎥⎥⎦

⎡
⎣ q1

q2
q3

⎤
⎦

and (9) gives ̃q.

4. Examples

In this section, we show several numerical examples of constrained degree reduction. Fig. 2 shows the effect of the 
parameters α and β on the final approximant q. In this figure, p and q are both univariate polynomials (graphs). One can 
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Fig. 2. Optimal constrained degree reduction for the data from Fig. 1 for various pairs of Jacobi parameters (α, β) is shown. The initial polynomial p of 
degree n = 6 (black) is reduced to q of degree m = 5 (blue) with C0 and C1 boundary constraints (red), respectively. The L∞ error between p and q is 
displayed, together with the fairness energy Efair (10). For α = β = 0 (shown in Fig. 1), L∞ = 1.11 and Efair = 4.42 ·103. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

see that the shape of the degree-reduced curve changes considerably for various α and β and these Jacobi weights can be 
seen as two free shape parameters. Their influence on the degree-reduced curve can be interpreted as follows. For example, 
if α 
 β , the final L2 error is forced to be smaller in the neighbourhood of p(0) because the weight magnifies the L2 error 
to be minimized, see (1). This results in a curve that is closely aligned to the initial curve closer to its startpoint p(0).

Due to the two degrees of freedom, additional criteria on the quality of the fit can be considered. Fig. 2 shows the L∞
error between p and q and also the fairness energy defined as

Efair(q) =
m−1∑
i=1

‖qi−1 − 2qi + qi+1‖2 (10)

which reflects the variation of the control points and consequently the fairness of the curve. It is difficult to estimate 
a-priori the optimal pair (α, β) that minimizes either L∞ or Efair . However, since the minimization of (6) is achieved by (9)
efficiently, one may explore the space of shape parameters to seek for an approximation that meets additional criteria, e.g. 
low L∞ and/or Efair .

Curvature constrained degree reduction of planar Bézier curves is shown in Fig. 3. The problem is reduced component-
wise and, for the particular setting n = 8, m = 6, k = l = 3, the coordinates of a single free control point (green) are 
computed from (9). Observe the impact of (α, β) on the shape of the approximation.

An example of a C1-constrained degree reduction is shown in Fig. 4. A planar curve is considered as a half-meridian of 
a surface of revolution and the two parameter family of the optimal approximations with respect to Jacobi L2-norm (1) is 
explored. Again, one can see how the weights α and β influence the shape by increasing (decreasing) the importance of the 
L2 error in the vicinity of the corresponding endpoint.
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Fig. 3. Curvature constrained degree reduction of planar curves. Bézier curve of degree n = 8 (black) is reduced to m = 6 (blue) with C2 constraints at both 
ends (red). The shape of the degree-reduced curve is governed by the only free control point (green). The results for various pairs of (α, β) are shown. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 4. Exploring a space of free parameters α and β . Left: an initial planar curve of degree n = 8 (red) is taken as a half-meridian for a surface of revolution. 
Top: the optimally degree reduced curves (green) of degree m = 5 with respect to Jacobi L2-norm (1) are shown for various pairs (α, β). The curves are 
required to preserve C1 constraints at both endpoints. Three lines in the parameter (α, β)-space are explored: the diagonal, α-axis, and β-axis. The surface 
of revolution is deformed according to the corresponding degree reduced fit; the revolution angles correspond to uniformly sampled points on the lines in 
the (α, β)-space. Bottom: the color coding reflects the L∞ error from the original surface of revolution (left). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

5. Conclusion

We have derived an analogous result to Lutterkort et al. (1999) for solving the problem of multi-degree reduction of 
polynomials with boundary constraints with respect to Jacobi inner product. We have proved that the best constrained 
degree-reduced approximation is equal to the weighted least squares fit of the Bézier coefficients with factored Hahn 
weights. We have shown on several examples that the two additional parameters of the Jacobi L2-norm, when compared to 
the classical L2 inner product, can serve as supplementary shape parameters for constrained degree reduction.
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