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Due to the growing needs of motion capture (mocap) in movie, video games, sports, 
etc., it is highly desired to compress mocap data for efficient storage and transmission. 
Unfortunately, the existing compression methods have either high latency or poor 
compression performance, making them less appealing for time-critical applications and/or 
network with limited bandwidth. This paper presents two efficient methods to compress 
mocap data with low latency. The first method processes the data in a frame-by-frame 
manner so that it is ideal for mocap data streaming. The second one is clip-oriented and 
provides a flexible trade-off between latency and compression performance. It can achieve 
higher compression performance while keeping the latency fairly low and controllable. 
Observing that mocap data exhibits some unique spatial characteristics, we learn an 
orthogonal transform to reduce the spatial redundancy. We formulate the learning problem 
as the least square of reconstruction error regularized by orthogonality and sparsity, and 
solve it via alternating iteration. We also adopt a predictive coding and temporal DCT for 
temporal decorrelation in the frame- and clip-oriented methods, respectively. Experimental 
results show that the proposed methods can produce higher compression performance at 
lower computational cost and latency than the state-of-the-art methods. Moreover, our 
methods are general and applicable to various types of mocap data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

As a highly successful technique, motion capture (mocap) has been widely used to animate virtual characters in dis-
tributed virtual reality applications and networked games (Capin et al., 1999; Gutierrez et al., 2003). Due to the large 
amount of data and the limited bandwidth of communication network, congestion, packet loss, and delay often occur in 
mocap data transmission. Therefore, mocap data compression, specially lossy compression, is necessary to facilitate storage 
and transmission.

Thanks to its smooth and coherent nature, mocap data exhibits high degree of temporal and spatial redundancy, making 
compression possible. To date, many mocap compression algorithms have been proposed (see Section 2). Among these 
approaches, most are sequence-based (e.g., Chattopadhyay et al., 2007; Gu et al., 2009; Tournier et al., 2009; Lin et al., 2011; 
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Váša and Brunnett, 2014; Hou et al., 2014a, 2015a) in that they process all the frames of a mocap sequence at a time. These 
methods are able to achieve high compression performance. However, such a good compression performance comes at a 
price of high latency, i.e., a large number of frames have to be captured and stored before compression, making them more 
suitable for efficient storage. On the other hand, the frame-based (e.g., Kwak and Bajic, 2011) approaches aim at time-critical 
applications (e.g., interactive applications) due to their no-latency nature. Unfortunately, the existing frame-based methods 
have poor compressing performance compared with the sequence-based methods, since they cannot explore spatial and 
temporal correlation well. As none of the sequence- and frame-based methods is perfect, it is natural to consider the 
clip-based (e.g., Arikan, 2006; Liu and McMillan, 2006; Chew et al., 2011) methods which segment mocap data into short 
clips, providing a trade-off between latency and compression performance.

In this paper, we present two efficient methods for compressing mocap data with low latency. The first method processes 
the data in a frame-by-frame manner, hereby compressing the data without any inherent latency at all. The second one is 
clip-based and can achieve higher compression performance while keeping the latency fairly low and controllable. Since mo-
cap data exhibits some unique spatial characteristics, we propose a learned spatial decorrelation transform (LSDT) to explore 
the spatial redundancy. Taking the data content into account, the LSDT learns an orthogonal matrix via an �0 -norm regu-
larized optimization. Due to its data adapted nature, the proposed LSDT outperforms the commonly used data-independent 
transforms, such as discrete cosine transform (DCT) and discrete wavelet transform (DWT), in terms of compression per-
formance. We also adopt a predictive coding and temporal DCT for temporal decorrelation in the frame- and clip-based 
methods, respectively. We observe promising experimental results and demonstrate that our methods can produce higher 
compression performance at lower computational cost and latency than state-of-the-art.

The rest of this paper is organized as follows: Section 2 comprehensively reviews previous work on mocap data com-
pression. Section 3 gives the proposed frame- and clip-based methods. Section 4 shows the key component of the proposed 
methods, i.e., the learned spatial decorrelation transform, followed by the experimental results and discussion in Section 5. 
Finally, Section 6 concludes this paper.

2. Related work

All compression schemes aim at exploiting correlations among the data, so does mocap data compression. In terms of 
decorrelation techniques, the existing mocap data compression algorithms can be roughly classified into four groups, which 
are reviewed and analyzed as follows.

2.1. Principal component analysis (PCA)

As a very popular technique, principal component analysis projects the data onto few principal orthogonal bases to 
convert data into a smaller set of values of linearly uncorrelated data.

Breaking the mocap database into short clips that are approximated by Bézier curves, Arikan (2006) performed clus-
tered PCA to reduce their dimensionality. Liu and McMillan (2006) projected only the keyframes on the PCA bases and 
interpolated the other frames via spline functions. Motivated by the repeated characteristics of human motions, Lin et al.
(2011) projected similar motion clips into PCA space and approximated them by interpolating functions with range-aware 
adaptive quantization. Observing that distortion to each of the joints causes a different overall distortion, Váša and Brunnett
(2014) proposed perception-driven error metric so that important joints have a higher precision than that of joints with 
small impact. They presented a Lagrange multiplier-based preprocessing for adjusting the joint precision. After Lagrangian 
equalization, the entire mocap sequence is projected into PCA pose space. Then, PCA is applied to short clips for further 
reducing the temporal coherence.

Principal geodesic analysis (PGA) is a generalization of PCA for handling the case where the data is sampled from curved 
manifolds. Tournier et al. (2009) presented a PGA-based method for the poses manifold in the configuration space of a skele-
ton, leading to a reduced, data-driven pose parameterization. Compression is then obtained by storing only the approximate 
parameterization along with the end-joints and root-joints trajectories.

Although PCA can decorrelate mocap data very well, its bases are data-dependent and usually difficult to compress. 
Therefore, one has to explicitly store the orthogonal bases, which reduces the overall compression performance. Further-
more, PCA is usually applied to the whole mocap sequence (e.g., Karni and Gotsman, 2004; Váša and Brunnett, 2014), 
resulting in a high latency.

2.2. Discrete wavelet and cosine transforms

DCT and DWT are commonly used techniques for converting correlated data into frequency domain, in which energy 
mainly concentrates on sparse frequencies (or most transform coefficients tend to zero). DCT and DWT have been widely 
adopted in some video/image coding standards (Wiegand et al., 2003; Sullivan et al., 2012). Moreover, they also have been 
exploited in the compression of 3D geometric data, e.g., static/dynamic meshes (Gu et al., 2002; Hou et al., 2014b, 2015b) 
and mocap data (Preda et al., 2007; Chew et al., 2011; Kwak and Bajic, 2011).

Kwak and Bajic (2011) applied 1D DCT to the predictive residuals between consecutive frames for exploiting the spatial 
coherence. In contrast, Preda et al. (2007) applied 1D DCT/DWT to the residuals of motion compensation along the temporal 
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dimension. Beaudoin et al. (2007) and Firouzmanesh et al. (2011) adopted 1D DWT to trajectories of degrees of freedom and 
selected the sparse wavelet coefficients by a perceptual-based metric. Observing that neither 1D DCT nor 1D DWT considers 
the spatial and temporal correlation simultaneously, Chew et al. (2011) used Fuzzy C-means clustering to represent the 
mocap clips as 2D arrays, on which 2D DWT was applied.

As pointed out in Hou et al. (2015a), mocap data have some unique features that distinguish them from natural 
videos/images. For example, applying 1D DCT/DWT to each trajectory produces sparsity in the transform domain, since 
each trajectory is a smooth spatial curve. However, it does not make sense to apply 1D DCT/DWT to each mocap frame due 
to the lack of smoothness in the frame (see the analysis in Section 4).

2.3. Mocap data favored transforms

As general-purpose transforms, DWT and DCT are data-independent so that one does not need to store the bases. In 
contrast, data-driven transforms are adaptive to the input data, thus, they can take advantage of their intrinsic structure. 
However, the adaptiveness comes at a price of storing the basis functions explicitly.

Zhu et al. (2012) proposed an elegant sparse decomposition model for the quaternion space that decomposes human 
rotational motion into a dictionary part and a weight part. As a result, a linear combination of 3D motion is equivalent to 
quaternion multiplication and the weight of linear combination is a power operation on quaternion. They showed that the 
transformed weights are sparse, leading to good compression performance. However, the quaternion space sparse represen-
tation is computationally expensive, diminishing its application to long motion sequences. Hou et al. (2014a) represented 
a motion sequence as a third-order tensor, which exhibits strong correlation within and across its slices. They performed 
the canonical polyadic (CP) tensor decomposition to explore correlation within and among clips to realize dimensionality 
reduction. Recently, Hou et al. (2015a) proposed the mocap data tailored transform (MDTT), which partitions the input mo-
tion into clips and then computes a set of data-dependent orthogonal bases by minimizing the least square of distortions. 
Computational results show that MDTT significantly outperforms the existing techniques (e.g., Arikan, 2006; Lin et al., 2011;
Zhu et al., 2012; Tournier et al., 2009) in terms of both compression performance and runtime. However, due to the over-
head of explicitly storing the orthogonal bases, MDTT is less appealing for the short motion sequence. Note that all of the 
above-mentioned methods (Zhu et al., 2012; Hou et al., 2014a, 2015a) have very high latency due to their sequence-based 
nature.

2.4. Indexing-based methods

Chattopadhyay et al. (2007) proposed a smart indexing algorithm for exploiting structural information derived from the 
human skeleton, where each floating point number is represented as an integer index, based on the statistical distribution 
of the floating point numbers in a motion matrix. Gu et al. (2009) organized the markers into a hierarchy where each node 
corresponds to a meaningful part of the human body and coded each body part separately. Then, the motion sequence is 
represented as a series of motion pattern indices with respect to a predefined dataset including various patterns.

3. Overview

Given a mocap sequence of F frames, we denote its i-th frame by md
i = [di

1 di
2 · · · di

J ]T ∈ R
J , where J is the number 

of key points (markers) and d := {x, y, z} stands for the d-dimensional coordinate. Then the d-component of the motion 
sequence is represented by a J -by-F matrix Md = [md

1 md
2 · · · md

F ] ∈R
J×F . Each row of Md corresponds to the d-trajectory 

of a key point. We partition Md into non-overlapping clips of equal length, denoted by M̃d ∈ R
J×L , where L is the clip 

length.
The primary goal of data compression is to reduce redundancy or correlation in the data. As pointed out in Hou et al.

(2015a), a typical mocap sequence exhibits strong spatial correlation due to the highly coordinated and structured nature of 
key points, and strong local temporal correlation since the object moves smoothly at a relatively small time scale. Therefore, 
mocap compression aims at eliminating both types of correlation as much as possible. In following sections, we present two 
low-latency and high-efficiency methods for compressing mocap data.

3.1. Frame-based method

As shown in Fig. 1(a), the frame-based method processes one frame at a time so that there is no inherent latency at all. 
Let us denote Bd the basis functions of the learned spatial decorrelation transform (LSDT) (to be presented in Section 4). 
For the first frame m1, we use Bd to remove its spatial correlation, i.e.,

cd
1 = Bdmd

1. (1)

Then we adopt a simple predictive coding to the following frames to eliminate the temporal redundancy: the i-th frame is 
predicted only from the previous reconstructed one

rd
i = md

i − m̂d
i−1, (i ≥ 2) (2)
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Fig. 1. The flowcharts of the proposed frame- and clip-based methods.

where m̂d
i−1 is the reconstructed (i −1)-th frame, which is obtained by inverse quantization and inverse LSDT. Then, applying 

the spatial decorrelation transform Bd on the residual vector rd
i , we obtain

cd
i = Bdrd

i , (3)

where cd
i ∈R

J are the transformed coefficients.
Finally, we perform the hard thresholding operation and uniform quantization on cd

i . We store the following information 
for reconstruction: (1) the locations and values of nonzero elements, which are further entropy-coded using lossless coding, 
i.e., Huffman codes; (2) the number of nonzero elements in each coefficient vector, which is encoded using fixed-length 
encoding.

3.2. Clip-based method

The frame-based scheme has no inherent latency at the price of relatively low compression performance, since it cannot 
fully exploit the temporal coherence. The clip-based scheme, in contrast, processes L consecutive frames at a time, leading 
to better temporal decorrelation. With a proper L, the clip-based algorithm is a trade-off between latency and compression 
performance.

Fig. 1(b) shows the flowchart of the clip-based scheme. Let M̃d ∈ R
J×L be a clip of length L. Each row of M̃d corresponds 

to the d dimensional trajectory of a key point, i.e., a spatial curve. Thus, applying the 1D DCT to the rows of M̃d to explore 
the temporal correlation (see the analysis in Section 4), we obtain

C̃d = M̃dUt, (4)

where Ut ∈R
L×L is the 1D DCT matrix. We then apply the LSDT to ̃Cd to further remove its spatial redundancy,

Cd = BdC̃d. (5)

Finally, we adopt the same quantization and entropy coding used in the frame-based method to encode Cd into bit stream. 
The sequence can be reconstructed by inverse quantization and inverse transform.

4. Learned spatial decorrelation transform

DCT and DWT decorrelate the data by converting it from spatial domain to frequency domain in a sparse form. They have 
been widely used for image and video compression (Wiegand et al., 2003; Skodras et al., 2001). DCT is suitable for signals 
which can be approximately modeled as a first-order Markov process (Markov-I) with the correlation coefficient 1, while 
DWT is particularly desired to piecewise signals (Wang, 2012). Note that each row of Md corresponds to the d-dimensional 
trajectory of a key point, which can be viewed as Markov-I. Thus, it is reasonable to employ DCT to exploit the coherence 
within them. However, since the key points are organized in an irregular, tree-like structure (i.e., skeleton graph), the 
elements of md

i may not be correlated with their neighbors, meaning that columns of Md do not follow Markov-I. Also note 
that the columns of Md do not exhibit the piecewise smooth characteristic either. As a result, it does not make sense to 
apply DCT or DWT for de-correlation among the rows of Md . We refer readers to Hou et al. (2015a) for quantitative analysis. 
As pointed out in Safonova et al. (2004), Tan et al. (2013, 2015), mocap data lies in a relatively lower dimensional space, 
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which are spanned by a set of specific bases. Based on the above analysis, we propose to learn an orthogonal transform to 
span the subspace of mocap data as much as possible.

Given N training frames {mi}N
i=1, mi ∈ R

J×1, the learned spatial decorrelation transform (LSDT) aims at finding an 
orthogonal matrix B ∈ R

J× J so that it can transform each training frame into a sparse vector. We formulate the learning 
problem as follows:

min
Bd∈R J× J

{ed
i }∈R J

N∑
i=1

∥∥∥Bdmd
i − ed

i

∥∥∥2

2

subject to BdBdT = BdT
Bd = I,

∥∥∥ed
i

∥∥∥
0
≤ P , (6)

where the �0-norm ‖ei‖0 counts the number of non-zero entries in the transform coefficient of the i-th training sample, P is 
the user-specified parameter controlling the sparsity in ei , and I ∈ R

J× J is the identity matrix. The orthogonality constraint 
on Bd allows us to obtain the inverse LSDT easily. Observe that the optimization problem in Equation (6) is non-convex 
due to the non-convex constraints. We develop an alternating iterative method, which alternately solves the following two 
subproblems until convergence.

4.1. The sparse vector subproblem

With fixed Bd , let gd
i � Bdmd

i . The sparse vector subproblem is equivalent to the summation of multiple independent 
univariate minimization problems, in which the i-th one is written as

min
{ed

i }

∥∥∥gd
i − ed

i

∥∥∥2

2
subject to

∥∥∥ed
i

∥∥∥
0
≤ P . (7)

Obviously, the minimization is achieved only when ed
i contains the largest P entries (in magnitude) of gd

i which are at the 
corresponding locations. Therefore, we can compute ed

i by setting the ( J − P ) smallest (in magnitude) entries of Bdmd
i to 

zero:

ed
i = T

(
gd

i , J − P
)

, (8)

where T is the truncating operation.

4.2. The orthogonal matrix subproblem

Given fixed sparse vectors ed
i , i = 1, . . . , N , let us denote Ed = [ed

1, . . . , e
d
N ] the matrix representation. The orthogonal 

matrix subproblem is

min
Bd

∥∥∥BdMd − Ed
∥∥∥2

F
subject to BdBdT = BdT

Bd = I, (9)

where ‖ · ‖F is the Frobenius norm of matrix and Md is the matrix representation of all training frames. Observe that∥∥∥BdMd − Ed
∥∥∥2

F
= Tr

((
BdMd − Ed

)(
BdMd − Ed

)T
)

= Tr
(

MdMdT
)

− 2Tr
(

BdMdEdT
)

+ Tr
(

EdEdT
)

,

where Tr is the matrix trace.
Ignoring the first and third terms which are constant, the minimization problem in (9) is equivalent to

max
Bd

Tr
(

BdMdEdT
)

subject to BdBdT = BdT
Bd = I. (10)

Factoring MdEdT
using the singular value decomposition (SVD), we obtain MdEdT = ŨdSdṼdT

, where Ũd, Ṽd ∈ R
J× J are two 

orthogonal matrices, and Sd is a diagonal matrix.
Then we can rewrite the objective function as

Tr
(

BdMdEdT
)

= Tr
(

BdŨdSdṼdT
)

= Tr
(̃

BdŨdSd
)

,

where B̃d = ṼdT
Bd is still an orthogonal matrix.

Since Sd is a diagonal matrix, maximizing (10) is equivalent to maximize the diagonal entries of B̃dŨd . With Cauchy–
Schwartz inequality, the i-th diagonal entry of B̃dŨd is
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Algorithm 1 Computing LSDT bases for mocap data.
Input: training samples {mi}N

i=1, the sparsity parameter P and the maximum number of iterations K

Output: the orthogonal matrix Bd

1: initialize Bd using an orthogonal matrix (e.g., DCT or DWT bases)
2: for iter ← 1 : K do
3: for i ← 1 : N do
4: update ed

i using (8)
5: end for
6: factor MdEdT

using SVD
7: update Bd using (11)
8: end for

Table 1
Description of training sequences and test sequences.

Sequence F Size (kB) Description

86_02 10,617 3856.9 walk, squats, run, stretch, jumps,punches, and drinking
56_04 6767 2458.3 fists up, wipe window, grab, walk, throw punches, yawn, stretch, jump
15_05 22,948 8336.5 wash windows, paint, hand signals, dance, dive, twist, boxing
14_08 2625 953.6 jump up to grab
15_04 22,549 8191.6 dance, the twist, boxing
17_08 6179 2244.7 muscular person’s walk
17_10 2783 1011 boxing
41_07 7536 2737.7 climb, step over, jump over
49_02 2085 757.4 jump, hop on one foot
56_07 9420 3422.1 yawn, stretch, walk, run, halt
85_12 4499 1634.4 jumps, flips, breakdance
86_05 8340 3029.7 walking, jumping, punching

J∑
j=1

B̃d
i jŨ

d
ji ≤

√√√√√ J∑
j=1

B̃d2

i j

J∑
j=1

Ũd2

ji = 1.

The last equation comes from the fact that both B̃ and Ũ are orthogonal matrices. Therefore, the objective function in (10)
is maximized when B̃dŨd = I, leading to

Bd = ṼdŨdT
. (11)

Algorithm 1 shows the pseudocode of the LSDT algorithm. In each iteration, the truncating operation (line 4) and matrix 
multiplication (lines 6 and 7) take O ( J log J ) and O (2N J 2) time, respectively. Singular value decomposition has an O ( J 3)

time complexity. Putting it all together, the time complexity of Algorithm 1 is O(K N J 2 + K N J log J + K J 3). Although there 
is no theoretical guarantee of the convergence of our algorithm, each subproblem does have an exact solution and we 
observe that it converges in a few hundred iterations on training datasets (see Section 5.1).

5. Experimental results and discussion

We implement our methods in MATLAB using only 200 lines of codes and evaluate them on the CMU Mocap Database,1

in which each frame consists of J = 31 key points (i.e., joints of the human skeleton) sampled at 120 frames per second 
(fps). We store each coordinate of the original data as a 32-bit float and hereby represent one key point using 96 bits. 
Table 1 describes the training and test motion sequences and their lengths.

The compression distortion D is measured by the average Euclidean distance between the original joint location pi, j :=
{xi, j, yi, j, zi, j}T and the reconstructed location ̂pi, j := {̂xi, j, ̂yi, j, ̂zi, j}T (in cm),

D = 1

J F

J∑
i=1

F∑
j=1

∥∥pi, j − p̂i, j
∥∥

2 . (12)

The compression ratio (CR) is the ratio between the original data size and the compressed data size. The compression is 
determined by the quantization bit, that is, a larger quantization bit induces smaller distortion at a smaller CR.

1 http://mocap.cs.cmu.edu/.

http://mocap.cs.cmu.edu/
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Fig. 2. Visualization of the 1D DCT and LSDT bases, where the greyscale color indicates the normalized function value. In each square matrix, a column 
corresponds to one basis function and frequencies increase from left to right.

Fig. 3. Convergence plots of Algorithm 1 with two different initializations. # Training frames N = 10,617; sparsity parameter P = 8. (a), (b), and (c) 
Correspond to x, y, and z-coordinates, respectively.

5.1. Training the LSDT bases

We take sequences “86_02” “56_04”, and “15_05” as the training datasets, which consist of various types of human 
motion. It is worth noting that more training frames can generate better performance, but the computational cost also 
increases. Thus, it is a tradeoff between quality and efficiency.

The LSDT bases training algorithm (cf. Algorithm 1) is an iterative algorithm. We evaluate the convergence rate of the 
training algorithm on two types of initializations, 1D DCT bases and 1D DWT bases realized by the 3-level “Haar” wavelet. 
As Fig. 3 shows, the objective function converges to almost the same value after a few hundred iterations, meaning that the 
output of Algorithm 1 is intrinsic, which does not depend on initialization. Fig. 2 also visualizes the bases of 1D DCT and 
LSDT to show the difference between them.

The parameter P , specifying the sparsity of transform coefficients during the learning procedure, directly affects the 
structure of the learned orthogonal matrix Bd , which in turn controls the compression performance. In the training process, 
we set P to four different values: 2, 5, 8, and 11. Then, the learned orthogonal matrices under different P are tested in 
the frame- and clip-based methods, respectively. For both schemes, four randomly chosen sequences with various motion 
characteristics and lengths are compressed, and the results are shown in Fig. 4, where we can see that the best compression 
performance is achieved when the value of P is equal to 8.

5.2. Evaluating the spatial decorrelation transforms

We compare the performance of several spatial decorrelation transforms, including LSDT, spatial DCT, and spatial DWT. 
We apply each transform to the x, y and z components of each frame separately, and examine the relationship between 
the percentage of nonzero transform coefficients and the distortion. As Fig. 5 shows, given the same number of nonzero 
transformed coefficients, the distortions produced by LSDT are consistently much smaller than those of DCT and DWT, 
meaning that LSDT concentrates energy (or spatially decorrelated mocap data) better than DCT and DWT.



218 J. Hou et al. / Computer Aided Geometric Design 43 (2016) 211–225
Fig. 4. The impact of the sparsity parameter P on the overall compression performance. The top and bottom rows correspond to the frame- and clip-based 
(L = 240) schemes, respectively. Bd is initialized using the DCT bases.

5.3. Compression performance

Fig. 6 shows the CR-distortion (CR-D) curves of the frame-based scheme. As Section 5.2 shows, our data-adapted LSDT 
is superior to the data-independent 1D DCT for spatial decorrelation. Therefore, it is not surprising that our frame-based 
scheme significantly outperforms the 1D DCT-based method (Kwak and Bajic, 2011) in terms of compression performance. 
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Fig. 5. Evaluating the performance of spatial decorrelation of the proposed LSDT. The horizontal axis shows the percentage of nonzero transformed coeffi-
cients. LSDT performs the best among the three SDTs.

We observe that with a relatively high CR, our frame-based scheme can reduce up to 70% distortion of Kwak and Bajic
(2011).

Fig. 7 shows the CR-D curves of the clip-based scheme, from which we observe the following:

1. As expected, the clip-based scheme has much better compression performance than the frame-based scheme, since it 
can exploit the temporal coherence better. At the same time, users can easily control the latency for the clip-based 
scheme. Taking the CMU mocap data which are sampled at 120 fps as example, the clip length L = 120 (resp. 240) 
means 1 second (resp. 2 seconds) latency.

2. The compression performance of the proposed clip-based scheme can be improved by increasing the clip length (or 
latency). More specifically, when L ranges from 60 to 120, the trajectories in a clip still remain smooth and have small 
variation (due to the small duration), causing the DCT coefficients to be distributed at similar locations, which can then 
be encoded using a similar number of bits. Since the number of clips in the sequence decreases, the total number of bits 
to encode one sequence (i.e., the sum of bits for all clips in one sequence) is significantly reduced, leading to higher 
compression performance. However, the improvement is little when the value of L increases from 120 to 240. The 
reason is that the joint trajectories change more significantly. As a result, the DCT coefficients are spread out, requiring 
more bits for encoding. Although the number of clips decreases, the total number of bits for one sequence only drops 
slightly.

5.4. Comparison

Table 2 qualitatively compares our methods with the existing works in terms of latency, computational cost, implemen-
tation, compression performance, and the number of parameters used in the encoding process. Note that all methods have 
a quantization parameter to specify the number of bits used to quantize a coefficient. We do not include this quantization 
parameter in Table 2, since it is a fixed parameter according to bandwidth. Also note that the sparsity parameter P in our 
method appears only in the training stage.

In this subsection, we compare our clip-based scheme with only two works, namely PCA-Rate Distortion Optimization 
(PCA-RDO) method (Váša and Brunnett, 2014), and the equal segmentation case of Mocap Data Tailored Transform (MDTT) 
method (Hou et al., 2015a), which represent the state-of-the-art. See Váša and Brunnett (2014) and Hou et al. (2015a) for 
detailed performance evaluation on earlier works (Arikan, 2006; Lin et al., 2011; Tournier et al., 2009; Gu et al., 2009;
Zhu et al., 2012).
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Fig. 6. Comparison of compression performance of frame-based methods.

5.4.1. Comparison with the MDTT method
Both our clip-based algorithm and the MDTT method (Hou et al., 2015a) apply temporal DCT to each trajectory for 

temporal decorrelation. The two methods differ fundamentally in spatial decorrelation. For each mocap sequence, the MDTT 
method segments the motion sequence into short clips, and compute a set of orthogonal basis functions tailored for all clips 
together, resulting in better decorrelation at the price of a large latency and overhead for storing the data-dependent basis 
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Fig. 7. Compression performance of our clip-based schemes and the state-of-the-art methods, such as the PCA-RDO method (Váša and Brunnett, 2014) and 
the MDTT method (Hou et al., 2015a). For MDTT, we adopt equal segmentation with L = 240 and follow (Hou et al., 2015a) to set the other parameters. 
The results of PCA-RDO were taken from (Váša and Brunnett, 2014).
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Table 2
Qualitative comparison of various mocap compression methods. The latency is measured in number of frames. #p: the number of parameters used in the 
encoding process; Fs : the number of frames in a mocap sequence; Fc : the numbers of frames in a short clip, and Fs � Fc . Note that the quantization 
parameter is not included in #p for all methods.

Category Method Latency #p Computational Implementation 
cost

Compression 
performance

PCA-based Váša and Brunnett (2014) Fs 5 high fair high
Lin et al. (2011) Fs 3 fair difficult medium
Arikan (2006) Fc 3 fair fair low
Liu and McMillan (2006) Fc 3 fair fair low
Tournier et al. (2009) Fs 2 high fair medium

DCT/ DWT-based Kwak and Bajic (2011) 0 0 low easy low
Chew et al. (2011) Fc 2 fair easy medium
Firouzmanesh et al. (2011) Fc 3 low easy low

Mocap data favored 
transform

Zhu et al. (2012) Fs 3 high difficult medium
Hou et al. (2015a) Fs 2 low easy high
Hou et al. (2014a) Fs 2 fair fair medium
Our frame-based method 0 0 low easy high
Our clip-based method F c 1 low easy high

Indexing-based Chattopadhyay et al. (2007) Fs 3 fair fair low
Gu et al. (2009) Fs 4 fair fair low

functions. Within our clip-based method, the LSDT bases are adapted to all mocap data, therefore, there is no need to store 
the bases for each sequence.

The MDTT method adopts low-rank approximation, which is a linear approximation, to reduce the dimension of trans-
formed coefficients. In contrast, the LSDT makes the transform coefficients sparse by quantization, which is a nonlinear 
approximation and more flexible. It has been pointed out in Donoho et al. (1998), Cohen et al. (2002) that the nonlinear 
approximation outperforms the linear approximation in data compression.

From the CR-D curves in Fig. 7, we observe the MDTT (Hou et al., 2015a) has better performance than our scheme for 
long motion sequences (e.g., 15_04 and 56_07), where the overhead of storing MDTT bases (compared with the transformed 
coefficients) is very small so that it can be ignored. However, for short sequences (e.g., 17_10 and 49_02), the space usage 
for storing the basis functions in the MDTT is comparable to that of the transformed coefficients, leading to a large overhead. 
As a result, its compression performance is not as good as ours. For remaining sequences, the MDTT method is comparable 
to ours.

Our clip-based method and the MDTT method have similar runtime performance, which can process more than 10,000 
frames per second on an Intel Core i7-3770 CPU (3.40 GHz).

In summary, both methods have merits. The mocap tailored transform is suitable for long motion sequences in the 
applications where large latency is tolerated, while our methods work for both short and long sequences and are desired 
for time-critical applications such as streaming.

5.4.2. Comparison with the PCA-RDO method
The PCA-RDO method (Váša and Brunnett, 2014) is a PCA-based approach, which adopts PCA twice. In the first round, it 

applies PCA to the entire motion sequence to obtain reduced orthogonal basis of pose space. This PCA, called posed space 
PCA, is to explore the spatial correlation. Then, applying PCA to clips, it obtains orthogonal basis for joint trajectories. The 
second PCA, called temporal PCA, is for temporal decorrelation. With two rounds of PCA, the data dimension is reduced 
significantly. Váša and Brunnett (2014) also proposed a general preprocessing step based on Lagrange multipliers, which 
allows the user to optimize with respect to various error metrics.

Our clip-based method and the PCA-RDO method differ in several aspects: First, the PCA-RDO method is sequence-based, 
thus, it has large latency, whereas ours is clip-based and has low latency. Second, it is known that compression of the PCA’s 
orthogonal basis is difficult, although their method adopts an advanced predictive coding (Váša and Skala Cobra, 2009). 
As Figs. 7(a), (b), (c), (g) show, our clip-based scheme consistently outperforms the PCA-RDO method (Váša and Brunnett, 
2014) in terms of compression performance. Third, similar to the MDTT method, the PCA-RDO method is also low-rank 
approximation-based. So, it is not as flexible as ours. Fourth, the PCA-RDO algorithm has high computational cost and we 
observe that the speed of our clip-based method is 3 to 4 times faster than theirs. Last but not least, tuning the parameters 
of the PCA-RDO method is tedious and non-intuitive. In contrast, within our clip-based method, the user only needs to 
specify the clip length L, which directly controls the latency.

Finally, Figs. 8 and 9 show some visual results of our methods, the DCT-based, and the MDTT to further demonstrate the 
advantage of our methods.

5.5. Discussion

We formulate the LSDT problem as a least square with orthogonal constraint. In fact, a non-orthogonal matrix Bd may 
produce even better compression performance. However, one has to employ other constraints (e.g., using the determinant 
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Fig. 8. Visual results comparison of frame-based schemes. The distortions are colored as heat map, and the frames are uniformly extracted from the 
sequences. Left: the DCT-based method in Kwak and Bajic (2011); Right: our frame-based scheme.

of Bd and Frobenius norm of Bd) to ensure the learned matrix invertible (i.e., ensure existence of the inverse transform) and 
a small condition number. Correspondingly, the optimization problem becomes complicated and it is difficult to solve.

6. Conclusion

We presented frame- and clip-based methods for compressing mocap data with low latency. Taking advantage of the 
unique spatial characteristics, we proposed learned spatial decorrelation transform to effectively reduce the spatial redun-
dancy in mocap data. Due to its data adaptive nature, LSDT outperforms the commonly used data-independent transforms, 
such as discrete cosine transform and discrete wavelet transform, in terms of the decorrelation performance. Experimental 
results show that the proposed methods can produce higher compression ratios at a lower computational cost and latency 
than the state-of-the-art methods.

In our current implementation, we compress 3D position-based mocap data defined on a skeleton graph. However, it is 
straightforward to apply our methods to other types of mocap data, such as facial expressions, hand gestures and motion 
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Fig. 9. Visual results comparison of our clip-based scheme and the MDTT method (Hou et al., 2015a). The joint distortions are colored in heat map, and the 
frames are uniformly extracted from the test sequences. Left: MDTT; Right: our clip-based scheme.

of human bodies. In the future, we will extend our methods to compress mocap data represented by Euler angles. Due to 
the nonlinear nature of angles, the hierarchical structure may produce significant accumulation errors in the compressed 
data (Arikan, 2006; Chew et al., 2011). We will seek effective data-driven techniques to tackle this challenge.
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