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In this paper, we propose a simple yet effective method to generate 3D-conforming 
tetrahedral meshes from closed 2-manifold surfaces. Our approach is inspired by recent 
work on maximal Poisson-disk sampling (MPS), which can generate well-distributed point 
sets in arbitrary domains. We first perform MPS on the boundary of the input domain, 
we then sample the interior of the domain, and we finally extract the tetrahedral mesh 
from the samples by using 3D Delaunay or regular triangulation for uniform or adaptive 
sampling, respectively. We also propose an efficient optimization strategy to protect the 
domain boundaries and to remove slivers to improve the meshing quality. We present 
various experimental results to illustrate the efficiency and the robustness of our proposed 
approach. We demonstrate that the performance and quality (e.g., minimal dihedral angle) 
of our approach are superior to current state-of-the-art optimization-based approaches.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Mesh generation aims to approximate a given closed domain with simple discrete elements (e.g., triangle/quad in 2D and 
tetrahedron/pyramid/prism/hexahedron in 3D). It has numerous applications ranging from engineering to scientific research, 
e.g., simulation of mechanical parts or architecture, medical and biological data analysis, geographical science, computa-
tional fluid dynamics, and animation in computer graphics (Klingner et al., 2006; Ando et al., 2013). Here we focus on 3D 
tetrahedral mesh generation.

Although many robust commercial software (e.g., Ansys) and open source packages exist for mesh generation (e.g., 
TetGen (Si, 2015), CGALmesh (Jamin et al., 2014), DelPSC (Cheng et al., 2007), Gmsh (Geuzaine and Remacle, 2009), 
Qhull (Barber et al., 1996), etc.), research on tetrahedral meshing remains active because no available approach is able 
to fulfill all conflicting quality requirements of various applications.

There are many criteria to evaluate the quality of a tetrahedral mesh, e.g., the approximation quality, the gradation, the 
dihedral angle, and the radius ratio of a single tetrahedron. These criteria are typically in conflict with each other and are 
difficult to satisfy simultaneously. Among all the quality criteria, the dihedral angle is the most important for simulation 
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because it is directly related to the condition number of the stiffness matrix. A single poorly shaped tetrahedron with near 
zero volume (called a sliver) can destroy the whole simulation (Shewchuk, 2002). Nevertheless, recent approaches still face 
the difficulty of completely removing slivers, even with careful treatment of the energy functions and with post-processing, 
such as simulated annealing or sliver exudation (Alliez et al., 2005; Tournois et al., 2009; Chen et al., 2014).

The main contribution of this paper is to propose a very simple algorithm that improves 3D tetrahedral mesh gener-
ation compared with existing algorithms that optimize complex objective functions. Our work is inspired by recent work 
in maximal Poisson-disk sampling (MPS) (Ebeida and Mitchell, 2012; Yan and Wonka, 2013), which generates uniformly 
and randomly distributed point sets while exhibiting blue-noise properties. These extracted meshes from sampled point 
sets have very good geometric properties, e.g., angle bounds, edge-length bounds, etc. Our approach is a combination of 
randomized sampling and several effective optimization strategies that improve the lower/upper bounds of dihedral angles. 
Tetrahedra near the boundary surface are treated carefully such that the quality of the resulting tetrahedral mesh is prov-
ably protected. Our method works better than other greedy approaches for generating samples (e.g., Delaunay insertion). 
It is more efficient than optimization-based algorithms while at the same time it can improve the quality of the smallest 
dihedral angles.

2. Related work

Delaunay mesh generation. There are three main categories of tetrahedral meshing algorithms: (i) advancing-front-based 
approaches (Schöberl, 1997; Choi et al., 2003; Ito et al., 2004), (ii) octree-based methods (Labelle and Shewchuk, 2007;
Bronson et al., 2014; Yu et al., 2014), and (iii) Delaunay-based meshing algorithms (Cheng et al., 2012). A complete review of 
these algorithms is beyond the scope of this paper. We refer the reader to a survey paper (Owen, 1998) and textbooks (Bern 
and Plassmann, 2000; Frey and George, 2001; Edelsbrunner, 2001) (and references therein) for a more comprehensive in-
troduction to tetrahedral meshing algorithms. In the following, we focus on Delaunay-based meshing algorithms, which are 
most closely related to our work.

Delaunay-based tetrahedral meshing algorithms have been shown to be the most successful in recent years (Cheng 
et al., 2012). From an algorithmic perspective, Delaunay meshing techniques can be further classified into two major 
types: Delaunay insertion/refinement-based methods (Chew, 1997; Jamin et al., 2014; Si, 2015) and optimization-based 
(or variational) approaches (Alliez et al., 2005; Tournois et al., 2009; Dardenne et al., 2009; Vanderzee et al., 2010;
Yan et al., 2010, 2013; Chen et al., 2014).

Delaunay insertion/refinement-based approaches usually start with an initial mesh and gradually insert new vertices at 
the center of a circumscribed sphere of the existing tetrahedra with the worst quality. The algorithm stops once all the 
user-specified criteria are satisfied, e.g., smallest dihedral angle, local edge length, approximation quality of the domain 
boundary, and so on. The framework of TetGen (Si, 2015) uses a series of such approaches, including incremental Delaunay 
algorithms for inserting vertices, constrained Delaunay algorithms for inserting constraints and a Delaunay refinement algo-
rithm for quality mesh generation. In summary, this type of meshing technique can usually provide theoretical guarantees 
of the angle bound, element size and approximation error. On the other hand, it is difficult to explicitly control the desired 
number of vertices. The Delaunay insertion method usually inserts more vertices than necessary to reach the desired quality 
criteria.

The optimization-based approaches start with an initial set of randomly sampled vertices, where the number of ver-
tices is usually specified by the user. Then, different types of energy functions are proposed to characterize the desired 
meshing quality. A well-known optimization-based approach is Centroidal Voronoi Tessellation (CVT) (Du et al., 1999) mesh 
generation (Du and Wang, 2003; Yan et al., 2013). CVT-based algorithms optimize the compactness of the dual Voronoi cells 
instead of the shape of the tetrahedra, which does not suppress any poorly shaped elements. Alliez et al. (2005) general-
ize Optimal Delaunay Triangulation (ODT) (Chen, 2004) for 2D mesh smoothing to 3D tetrahedral meshing. They propose to 
minimize the global mesh-dependent energy to update both vertex positions and connectivity. The work of Tournois et al.
(2009), called natural ODT (NODT), further extends the ODT energy to the domain boundaries. This extension ensures con-
sistency of the energy function on the boundary and inside the domain. The number of badly shaped elements is reduced 
near the domain boundary. Recent work of Chen (2004) proposes an extended formulation for ODT that is able to generate 
graded meshes efficiently using quasi-Newton solvers. This type of algorithm generates higher-quality meshes in practice, 
but they are more time consuming and post-processing for mesh improvement is necessary to eliminate badly shaped el-
ements (Cheng et al., 2000; Klingner and Shewchuk, 2007). In addition, Jiao et al. (2011) present a variational smoothing 
approach for optimizing surface and volume meshes simultaneously. They define energy functions based on conformal and 
isometric mappings between actual elements with ideal reference elements and develop a simple algorithm to minimize 
the energies.

From a boundary approximation perspective, Delaunay meshing can be classified into constrained meshing or conformal 
meshing. Our approach falls into the latter category, i.e., instead of interpolating the boundary, we approximate the boundary 
by resampling, which allows for higher tetrahedron quality at the boundary, especially when the quality of the input surface 
is very poor. Here, we present a simple method based on randomized sampling that is able to generate high-quality meshes 
that are comparable with state-of-the-art techniques, while being more efficient than variational approaches.
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Maximal Poisson-disk sampling. Poisson-disk sampling techniques have been extensively studied in past decades (Lagae 
and Dutré, 2008), but most previous work cannot achieve maximality of the sampling. In 2006, Jones first proposed an 
unbiased algorithm using the Voronoi diagram for gap detection/filling. Later, Ebeida et al. (2011a, 2012) improved the ef-
ficiency of MPS by using a uniform grid for acceleration. Meanwhile, they showed that MPS point sets are able to generate 
high-quality triangulations (Ebeida et al., 2011b) and Voronoi meshes (Ebeida and Mitchell, 2012) for the purpose of simu-
lation. More recently, Yan and Wonka (2013) and Guo et al. (2015) extended MPS to mesh surfaces and adaptive sampling. 
They demonstrated that MPS can generate high-quality surface remeshing as well. In this paper, we further study the use 
of MPS for tetrahedral mesh generation. To the best of our knowledge, this is the first application of MPS to volumetric 
meshing.

3. Preliminaries and overview

In this section, we first introduce the concept of maximal Poisson-disk sampling and then briefly describe the MPS 
framework for tetrahedral mesh generation.

3.1. Maximal Poisson-disk sampling

Suppose X = {(xi, ri)} is a Poisson-disk distribution in a compact domain �, where xi is the position of the ith point and 
ri is the associated radius of xi . A maximal Poisson-disk sampling distribution should satisfy the following three properties: 1) 
the minimal distance property requires that any two disks are at least a minimum distance apart, i.e., ∀xi, x j ∈ P , ‖xi − x j‖ ≥
max(ri, r j); 2) the bias-free property requires that each point in the domain has a probability that is proportional to the sizing 
at this point to receive a sampling point; and 3) the maximal sampling property requires that the union of the disks covers 
the entire sampling domain, i.e., 

⋃
(xi, ri) ⊇ �. Furthermore, if the radius, ri , for all disks is a constant, then the sampling is 

classic uniform sampling (Lagae and Dutré, 2008). Otherwise, it is adaptive sampling, where each ri is defined with respect 
to an underlying sizing function, μ(x), defined over the sampling domain.

3.2. MPS framework

Two recent and efficient MPS frameworks (Ebeida et al., 2012; Guo et al., 2015) are useful for tetrahedral meshing. The 
2D example in Fig. 2 illustrates how to apply an MPS framework for mesh generation. There are four main steps in our 
sampling/meshing pipeline as follows:

1. Detect sharp corners and generate MPS on the boundary of the input domain. To avoid introducing vertices arbitrar-
ily close to the domain boundary, we apply edge-length optimization to ensure that the boundary disks are deeply 
intersected (Cheng et al., 2007).

2. Keep the boundary samples fixed and then sample the interior of the domain to achieve maximality.
3. Triangulate the sampled points using Delaunay or regular triangulation for uniform or adaptive sampling, respectively, 

and extract a mesh from the triangulation.
4. To improve the meshing quality, we perform optimization operations to remove bad elements and perform resam-

pling/retriangulation locally. Multiple criteria are used to perform the mesh optimization.

4. Tetrahedral meshing

Here, we seek to generate tetrahedral meshes from piecewise-smooth surfaces based on MPS. The details of each step 
are provided in the following pseudo-code (Algorithm 1).

Algorithm 1 Tetrahedral meshing based on MPS.
Input: 3D domain, �, bounded by a surface M, the minimal sampling radius, rmin

Output: tetrahedral mesh T
1: Build a uniform grid, G , to voxelize � and design a sizing field inside the domain
2: Generate samples on surface M, and perform boundary optimization
3: Sample the interior of � while conforming the boundary
4: Optimize bad dihedral angles

The input of our algorithm is a 3D domain, �, bounded by a 2-manifold watertight triangular mesh, M = { f i}m
i=1, where 

f i is a triangle facet of the boundary M. Similar to the 2D case, the core of our tetrahedral meshing algorithm consists of 
MPS in the input domain and a series of mesh optimization operations for improving the meshing quality. However, there 
are still some difficulties that make tetrahedral meshing more difficult than its 2D counterpart. First, MPS always leads to 
high-quality triangulations in the 2D domain. In 3D, even well-spaced vertices could create degenerate 3D elements (e.g., 
slivers). Besides, dealing with boundary conformity is also more difficult in 3D. In the 2D case, there always exists a 2D 
triangulation that conforms to a set of non-intersecting line segment constraints, but this is no longer true in 3D (Alliez et 
al., 2005). Fig. 3 shows the pipeline of the proposed framework in 3D.
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Fig. 1. An example of our tetrahedral meshing result on the Lion model (input 100K triangles). Left and middle are the meshing result (55K vertices and 
300K cells) and a cutaway view, respectively. Right are the dihedral angle and radius ratio distributions.

Fig. 2. A 2D illustration of the MPS framework. (a) Input boundary and the sizing field defined in this domain, where warmer colors indicate a larger radius, 
and cooler colors indicate a smaller radius. (b) Boundary sampling and optimization with disks. The red points indicate sharp corners, while green points 
are the optimized samples. (c) Interior sampling (black points). (d) Regular triangulation. Triangles with the minimal angle smaller than 30◦ are shown in 
dark gray and triangles with undesirable angles by the user input are shown in red. The zoom-in view shows the non-conformal point, p, which causes 
the boundary part between a and b to disappear. (e) Samples and remeshing after optimization. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 3. Overview of our algorithm. Given the input boundary mesh, we first generate surface samples (a) and extract a surface mesh (b). We optimize the 
boundary remeshing to improve its quality (c). After the boundary optimization, we perform volume sampling while showing slivers (d). Then we optimize 
the dihedral angles to remove these slivers. (e) is a cutaway view of the final mesh.

4.1. Initialization

Initially, a minimal sampling radius, rmin , is specified by the user. In addition, a uniform grid, G , is built to voxelize the 3D 
domain, �. The cell size of G equals rmin√

3
, which guarantees that each grid cell can contain at most one sample in the context 

of Poisson-disk sampling. The grid cells are classified into three types: boundary cells (intersecting the boundary surface), 
interior cells, and exterior cells. This grid is useful in two ways. First, it is used to accelerate the sampling operations during 
the MPS process. In this case, each grid cell stores a flag (initialized as ‘true’) to indicate whether or not this cell is valid. 
Here, a valid cell means that it is not fully covered by a sample. Further, we utilize the grid G to design a sizing field in the 
3D domain for graded meshing, which we describe later.
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Fig. 4. (a) and (b) illustrate our boundary-protection approach. (c) and (d) show the comparison of tetrahedral meshing results without and with our 
boundary-protection approach, respectively.

4.2. Surface sampling

At the beginning, we perform MPS only on the boundary surface. The purpose of this step is to approximate the do-
main boundary by a new surface mesh with better quality and to make the final tetrahedral mesh conform with it. We 
apply a surface sampling strategy that includes two stages: dart throwing with grid and gap filling. Dart throwing contin-
ually chooses a random triangle facet, f i , from M and generates a random sample in this facet. To make it unbiased, the 
probability of selecting the triangle, f i , is proportional to its area, Ai . Then we reject or accept this new sample based on 
whether or not it conflicts with any previously accepted samples. The conflict check is fast because we need to check only 
the sample’s local neighboring boundary cells (in the uniform case, it is a 5 × 5 × 5 template of cells). Once a sample is 
accepted, the flags of the corresponding cells fully covered by this sample are marked as “false”. After observing k (e.g., 
k = 300) consecutive rejections, we switch to the gap-filling stage. In this stage, we clip the triangle facets in M by the 
spheres of the samples and collect the gap regions, as described in Yan and Wonka (2013). Then we rethrow darts only in 
these gaps to generate new samples. This process of gap computation and dart throwing repeats until there are no gaps. 
The result of this step is shown in Fig. 3(b).

In addition, the input boundary may include sharp edges and feature vertices, especially in mechanical models. To handle 
these features, we implement a feature-aware sampling step before the surface sampling. Specifically, the features are either 
provided by the user as 1D curved skeletons or automatically detected by our algorithm. The feature vertices (e.g., corners, 
cusps) are directly added to the sampling set. Then, we perform 1D MPS to get samples on the creases that are composed 
by a chain of sharp edges. These feature samples remain fixed in all later steps.

Boundary optimization. Once the surface sampling is done, we extract the surface mesh using the algorithm described 
in Yan et al. (2009). The extracted mesh might contain undesirable elements, such as irregular vertices whose degrees are 
less than 5 or larger than 7, and elongated triangles with long edges and small angles (less than 30◦). All such elements 
will result in interior samples that are too close to the boundary, which further result in the tetrahedra with bad shapes. To 
make the surface remeshing as compact as possible, we propose an approach that interleaves between the valence, angle 
and edge length optimization. Take the edge length optimization as an example. We iteratively remove the vertices of the 
long edges whose length is larger than 

√
3

2 (r1 +r2), where r1 and r2 are the sampling radii of the vertices. Then we resample 
the domain boundary until there are no long edges or until the maximal iteration number is reached. The valence and angle 
optimization are performed in the same way as in Yan and Wonka (2013), Guo et al. (2015). Fig. 3(c) shows the result of 
boundary optimization.

4.3. Volume sampling

Next, we generate samples in the interior of the domain. However, if we sample the volume directly after surface sam-
pling, it will generate many slivers near the boundary regions that are difficult to remove in the later steps. Besides, it is 
difficult to maintain the conformation of the boundary of the final tetrahedral mesh (Fig. 4(c) shows a non-conforming case), 
since we use Delaunay triangulation instead of constrained Delaunay triangulation to extract the final mesh. To protect the 
input boundary, we relax the maximal property of MPS near the boundary regions by adding some “virtual samples”. Before 
introducing our approach in 3D, we first use a simple 2D illustration to make the concept of “virtual sample” clear. As 
shown in Fig. 4(a), the black dashed line is one edge of the input boundary, points p and q are two boundary samples and 
they are locally maximal (there is no gap between p and q). If a new sample is generated at point s, a triangle 
spq will 
be extracted. However, since the circumcenter, g, of 
spq is outside the domain, this triangle will be discarded, resulting 
in the boundary part of pq not being maintained in the final mesh. In our approach, we insert a “virtual sample”, m, at the 
middle point of pq. Then, a newly generated sample, s, should not conflict with m (Fig. 4(b)). In this case, the circumcenter, 
g, of 
spq will be inside the domain, and the edge, pq, is kept. To generalize this approach to a 3D volume, we compute 
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Fig. 5. An example of a sliver with 4 near-cocircular vertices.

Fig. 6. Tetrahedral meshing results of our algorithm. The two images of the left (Santa and Fertility) are uniform meshes, and the two images of the right 
(Teddy and Elephant) are graded meshes.

the restricted Voronoi diagram (RVD) (Yan et al., 2009) of the surface samples and put a “virtual sample” at each restricted 
Voronoi vertex. These “virtual samples” will not be added to the sample set. They are only used to mark the grid cells as 
invalid, which are fully covered by themselves. Therefore, we cannot generate samples in these cells any more. Fig. 4(c) and 
Fig. 4(d) show a comparison of meshing results without and with our boundary protection approach.

To sample the interior of the domain, we utilize the uniform grid, G , as the implicit data structure for efficient 3D 
sampling, as inspired by Ebeida et al. (2012). The sampling process also has two steps. In the first step, we repeatedly 
choose a random valid grid cell that is not outside of the domain. Then, a random sample is generated in this cell. This new 
sample is accepted if it is inside the domain and does not conflict with previous samples (including the boundary samples). 
In the second step, the background grid is refined, and each valid cell is subdivided into eight smaller cells, which are 
referred to as fragments. We collect the fragments that are not fully covered into a flat array and perform the dart throwing 
on it. This process repeats until the maximal sampling is achieved. The result of this step is shown in Fig. 3(d).

4.4. Mesh optimization

Finally, given the sampled point set, we can extract the tetrahedral mesh by using 3D Delaunay triangulation, while 
discarding the Delaunay tetrahedra whose circumscribed sphere centers are outside the domain. However, the quality of 
this tetrahedral mesh is usually not sufficient to fulfill all quality requirements. We improve the mesh quality through 
optimizing the sample locations, both on the boundary surface and the domain volume.

Dihedral angle optimization. Although the meshing results based on MPS in 2D and on surfaces exhibit nice properties like 
the triangle’s angle bound [30◦, 120◦], such properties are not evident in our tetrahedral mesh for dihedral angles. Slivers 
with very small dihedral angles may exist (see Fig. 3(d)). Further, traditional sliver perturbation (Tournois et al., 2009) or the 
sliver exudation method (Cheng et al., 2000) is not suitable for our case, because it breaks the Poisson-disk sampling criteria 
or has little effect. To remove slivers, we use a similar optimization framework as above. For each sliver, the two vertices 
of the longest edge are first removed (one sliver and its longest edge, ac, are displayed in Fig. 5). Then, we collect the gap 
fragments caused by removing these vertices and refill them using the method described in Section 4.3. The optimization 
step terminates when there are no slivers.

4.5. Graded mesh generation

To generate a graded 3D mesh (corresponding to adaptive sampling), we design a sizing field in the whole domain that 
indicates the local sampling radius. A sizing function, μ(x), is first defined over the boundary surface, which is also used for 
adaptive boundary sampling. Then, it is further extrapolated to the grid cells in the interior of the domain by using a fast 
marching construction method (Alliez et al., 2005). As a result, the elements will be denser on the boundary where high 
resolution is generally desired, especially in the high-curvature regions. In the interior of the domain, the elements will be 
coarser and vary in size.
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Fig. 7. Tetrahedral meshing results on the Joint (uniform) and Sculpt (adaptive) models with sharp features preserved. Left: input boundary surfaces. Middle: 
cutaway view of the meshing results, while showing the features (green points are the feature vertices and pink lines are the sharp creases). Right: dihedral 
angle distributions (blue) and radius ratio distributions (green). (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 8. Number of slivers in relation to the number of iterations. The statistics are obtained on the Santa (uniform with 136K tetrahedra) and Elephant 
(adaptive with 133K tetrahedra) models.

Table 1
Comparison of uniform tetrahedral meshing qualities. |X| is the number of sampled points, |τ | is the number of generated tetrahedra.

Model Method |X| |τ | θmin θmax κmin κ̄ dH θ<10◦ (%) θ<18◦ (%)

Sphere TetGen 4.8K 25K 11.80 159.91 0.197 0.795 0.31 0 0.46
CVT 5.0K 26K 12.24 161.67 0.236 0.910 0.32 0 0.1
RODT 5.0K 26K 6.16 169.47 0.133 0.915 0.32 7.5 × 10−3 0.02
NODT 4.9K 26K 17.60 152.36 0.320 0.882 0.28 0 0.002
Ours 4.6K 25K 19.02 149.91 0.346 0.821 0.32 0 0.0

Fertility TetGen 42K 241K 6.84 165.73 0.104 0.782 0.31 3.7 × 10−4 0.35
CVT 41K 227K 7.43 162.37 0.187 0.894 0.26 0.06 0.16
NODT 40K 216K 15.82 156.76 0.217 0.879 0.32 0 0.01
Ours 41K 230K 17.20 154.97 0.281 0.808 0.34 0 0.04

Santa TetGen 37K 192K 7.47 165.98 0.086 0.781 0.27 1.2 × 10−4 0.29
CVT 38K 203K 8.45 169.61 0.193 0.911 0.25 0.04 0.19
NODT 39K 210K 15.05 158.41 0.208 0.863 0.24 0 0.01
Ours 39K 209K 17.30 154.79 0.292 0.810 0.33 0 0.03

Joint TetGen 20K 103K 8.79 161.20 0.181 0.789 0.23 3.3 × 10−4 0.38
CVT 21K 106K 10.01 165.24 0.191 0.886 0.20 0 0.12
NODT 21K 105K 16.13 156.42 0.205 0.868 0.22 0 0.008
Ours 21K 107K 18.51 153.96 0.298 0.815 0.27 0 0.0



JID:COMAID AID:1536 /FLA [m3G; v1.172; Prn:25/02/2016; 12:54] P.8 (1-14)

8 J. Guo et al. / Computer Aided Geometric Design ••• (••••) •••–•••
Table 2
Comparison of graded tetrahedral meshing qualities.

Model Method |X| |τ | θmin θmax κmin κ̄ dH θ<10◦ (%) θ<18◦ (%)

Botijo TetGen 39K 199K 7.15 167.15 0.089 0.773 0.32 9.2 × 10−4 0.38
CVT 38K 171K 4.94 171.10 0.085 0.768 0.32 0.12 0.98
NODT 37K 185K 14.63 156.25 0.197 0.874 0.31 0 0.02
Ours 38K 195K 16.31 155.70 0.201 0.796 0.33 0 0.11

Elephant TetGen 55K 291K 8.72 162.23 0.148 0.772 0.28 1.2 × 10−4 0.26
CVT 56K 289K 4.17 169.89 0.073 0.742 0.33 0.02 0.89
NODT 56K 294K 13.36 157.38 0.192 0.881 0.30 0 0.01
Ours 57K 301K 16.20 156.79 0.182 0.796 0.31 0 0.13

Sculpt TetGen 24K 128K 10.98 157.66 0.149 0.783 0.18 0 0.34
CVT 23K 127K 5.31 168.54 0.085 0.761 0.28 0.21 0.96
NODT 24K 128K 16.13 157.11 0.178 0.869 0.24 0 0.01
Ours 23K 127K 17.16 155.89 0.225 0.802 0.19 0 0.05

Fig. 9. Performance comparison of our method with TetGen, CVT and NODT. Left: uniform tetrahedral mesh; right: graded tetrahedral mesh. The running 
time of our algorithm also contains building the uniform grid.

In our approach, we adopt the local feature size (lfs) as the boundary sizing function, μ(x), but other functions can 
also be used with the same framework. We also set a maximal sampling radius, rmax = λ rmin (in default λ = 8), to avoid 
very big radii. The adaptive sampling process is similar to the uniform case, except for some differences in the details. In 
the dart-throwing stage, we evaluate the radius, ri , for each newly generated sample, si . Then, we perform a conflict check 
using a subset of � 2 ri

rmin/
√

3
�3 grid cells. In the mesh extraction stage, we adopt regular triangulation instead of Delaunay 

triangulation, where each sample, si , is associated with a weight, wi = r2
i . Instead of using the traditional Euclidean distance, 

the distance function used by the regular triangulation is the power distance, represented by d(si, wi, s j, w j) = ‖si − s j‖2 −
wi − w j .

5. Experimental results

Our algorithm is implemented in C++ using the CGAL library (CGAL, 2015) for 3D Delaunay/regular triangulation. The 
results shown in this paper are obtained on an Intel i7 3.07 GHz desktop with 12 GB memory.

Tetrahedral meshing. To verify the robustness and the validity of the proposed approach, we ran our algorithm on vari-
ous input domains with arbitrary topologies. Intuitively, our algorithm worked well because Poisson-disk samplers are well 
distributed, leading to well-shaped tetrahedra. Figs. 1 and 6 illustrate the tetrahedral meshing results, as well as the his-
tograms of the dihedral angle and radius ratio distributions. The radius ratio, κ , is defined as κ = 3rin

rcir
, where rin and rcir are 

the inscribed and circumscribed sphere radius of a tetrahedron, respectively. Furthermore, our algorithm can preserve the 
features of the input domain. Two examples of feature preserving are illustrated in Fig. 7.

In the mesh optimization stage, we set the default value of the desired minimal dihedral angle to 16◦ ∼ 18◦ . The 
optimization usually converges within 30 ∼ 50 iterations. Fig. 8 shows the convergence behavior of the mesh optimization 
process. Though we do not have a formal theoretical proof of the convergence, our algorithm works well in practice with 
various input domains.
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Fig. 10. Comparison between different algorithms in generating a graded tetrahedral mesh. For each row, from left to right we show the meshing result, its 
cutaway view, slivers with dihedral angles smaller than 10◦ and 18◦ , and distributions of dihedral angles (blue) and radius ratios (green). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Quality comparison. Next, we compare our approach with current state-of-the-art techniques, including the interleaved 
Delaunay refinement and optimization method (NODT) (Tournois et al., 2009), Centroidal Voronoi Tessellation (CVT) (Yan 
et al., 2013), revisited optimal Delaunay triangulation (RODT) (Chen et al., 2014) and a Delaunay-insertion-based approach
– TetGen (Si, 2015). Note that for TetGen, we provided as input the boundary of our optimized mesh for fair comparison, 
while NODT is implemented in CGAL with sliver perturbation.

Tables 1 and 2 list the mesh quality comparison results for uniform and adaptive meshing, respectively. Here θmin and 
θmax are the minimal and maximal dihedral angles of a tetrahedron, κmin and κ̄ are the minimal and average radius ratios. 
dH is the Hausdorff distance (divided by the diagonal length of the input mesh bounding box) between the input boundary 
and remeshing result. θ<10◦ and θ<18◦ are the percentages of dihedral angles smaller than 10◦ and 18◦ , respectively. The 
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Fig. 11. Comparison of our uniform tetrahedral mesh with those produced by other algorithms. For each row, from left to right we show the cutaway view 
of meshing result, slivers with dihedral angles smaller than 10◦ and 18◦ , and distributions of dihedral angles (blue) and radius ratios (green). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

best results are highlighted using bold font. Both of these tables suggest that our method achieves best min/max dihedral 
angles, θ , and the minimal radius ratios, κmin . Our κ̄ is not as good as NODT, CVT, RODT, while our θ<18◦ is comparable 
with NODT method. The reason is that we generate the point set by employing the randomized sampling, while the other 
three methods tend to generate more regular structures. The histogram distributions of dihedral angles and radius ratios 
shown in Figs. 10 and 11 also confirm this observation. However, randomized meshes are preferred in many simulation 
applications (Ebeida et al., 2011b), such as fracture simulations (Bolander and Saito, 1998) and fluid simulation (de Goes et 
al., 2015). Additional comparison results are provided in the supplemental material.
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Fig. 12. Structural analysis with the same force settings (arrows in (a)). The top row shows the stress map with color coding (zoom-in figures show a 
slightly different view), and the bottom row shows the interior structure.

Performance. We now evaluate the performance of our algorithm. The processing time mainly contains three components: 
sampling, Delaunay/regular triangulation, and mesh optimization. With the uniform grid as the implicit flat-array data struc-
ture, the sampling stage could achieve good performance. In the Delaunay/regular triangulation, we build a full triangulation 
once after the surface sampling. Then, in the later mesh extraction and optimization steps, we update dynamically for point 
removal and insertion. Note that in adaptive sampling, the resolution of the sub-grid used for conflict checking is much 
larger than that used for uniform sampling. Therefore, it reduces the performance of the graded mesh generation.

Fig. 9 presents a comparison of the time our algorithm consumes with that of previous methods. All the timing curves 
are computed on the Botijo model, with an increasing number of sample points. In all these algorithms, the dihedral 
angle bound is set to 15 degrees. As illustrated in this figure, our algorithm is reasonably fast. Though TetGen is the most 
efficient method, its meshing results contain many slivers. In summary, our algorithm is capable of generating high-quality 
tetrahedral meshes, while maintaining good efficiency.

Structural analysis. To demonstrate that our meshing method is useful in real-world engineering applications, we perform 
structural analysis on the generated tetrahedral meshes as shown in Fig. 12. The stress maps are computed by using the 
OOFEM library (Patzák and Rypl, 2012), an object-oriented finite element solver. First, an isotropic linear elastic material 
model is assigned to each mesh. After the user’s exterior forces (defined on the boundary facets of some specific tetrahedra) 
are included, a non-linear static analysis is performed. The output data provide a quantitative description of the stress over 
all tetrahedra, which is visualized using a continuous stress map. As demonstrated in this figure, the stress distribution over 
our meshing structure is more uniform than over the others, indicating that our mesh can resist more forces.

Comparison to sliver removal approaches. There are several approaches that are able to improve the meshing quality by 
suppressing slivers as a post-processing step. Two well-known representative approaches are sliver exudation (Cheng et 
al., 2000) and sliver perturbation (Tournois et al., 2009). The former tunes a weighted Delaunay triangulation that is free 
of slivers (minimal dihedral angles smaller than 5◦ in their method) based on a weight reassignment computation. This 
method eliminates slivers without adding new points or changing the positions of current points, while updating their 
connectivity. Sliver perturbation performs a gradient ascent search over the radius of the circumscribed sphere of a sliver as 
well as a gradient descent over the sliver’s volume.

To justify the validity of our mesh optimization strategy, we compare our results with sliver exudation (Cheng et al., 
2000) and sliver perturbation (Tournois et al., 2009). For a fair comparison, we first generate an initial tetrahedral mesh us-
ing our method without any optimization. Then, we compare with sliver exudation and sliver perturbation for improvement 
on this mesh. Fig. 13 shows the comparison results using the Bimba model, where a graded mesh is generated. We observe 
that sliver exudation has a limited effect, while sliver perturbation cannot always remove the slivers for a given threshold. 
Our strategy is able to generate meshes with larger minimal dihedral angles than these two state-of-the-art approaches.

Limitations. The main limitation of our proposed framework is that we do not have a theoretical proof of the lower bound 
of the dihedral angle that we can achieve. Our algorithm cannot guarantee the generation of a pleasant result if the required 
minimal dihedral angle bound is too large (e.g., 18◦). In addition, the proposed method has similar difficulties as previous 
methods (ODT, CVT, Delaunay refinement, etc.) in handling thin-sheet regions. We cannot generate a valid mesh if the 
sampling density does not meet the local feature size of the domain. Fig. 14 shows such an example. Finally, although 
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Fig. 13. Comparison with sliver exudation (Cheng et al., 2000) and sliver perturbation (Tournois et al., 2009) on the Bimba model. Left: cutaway view of 
the initial mesh and the optimized mesh; middle: sliver tetrahedra for a dihedral angle of 17 degrees; right: dihedral angle distributions (blue), and radius 
ratio distributions (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

sampling has been demonstrated to be useful in a variety of graphics applications including remeshing and modeling, 
exploring the relationship between blue-noise properties and mesh generation is still an open problem.

6. Conclusion

In this paper, we introduced a simple yet efficient method for high-quality tetrahedral mesh generation that is superior 
to the current state-of-the-art approaches. Our approach is based on the maximal Poisson-disk sampling framework, while 
taking boundary preservation and mesh grading into account. Several optimization steps are performed to greatly improve 
the meshing quality. We demonstrated the validity of our algorithm by meshing a variety of complex domains even with 
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Fig. 14. Our algorithm cannot guarantee a pleasant result when the minimal radius is larger than the local feature size of the domain. Left: surface 
remeshing after the boundary sampling stage. The non-manifold edges are shown in red. Right: tetrahedral meshing result with two zoom-in views. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

sharp features, as well as comparing it with the state-of-the-art approaches. In the future, we plan to extend our approach 
to anisotropic mesh generation. We are also interested in meshing implicit surfaces such as isosurfaces.
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