
Computer Aided Geometric Design 43 (2016) 172–185
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

Subdividing barycentric coordinates

Dmitry Anisimov a, Chongyang Deng b, Kai Hormann a,∗
a Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
b School of Science, Hangzhou Dianzi University, Hangzhou, China

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 20 February 2016

Keywords:
Barycentric coordinates
Subdivision

Barycentric coordinates are commonly used to represent a point inside a polygon as an 
affine combination of the polygon’s vertices and to interpolate data given at these vertices. 
While unique for triangles, various generalizations to arbitrary simple polygons exist, each 
satisfying a different set of properties. Some of these generalized barycentric coordinates 
do not have a closed form and can only be approximated by piecewise linear functions. In 
this paper we show that subdivision can be used to refine these piecewise linear functions 
without losing the key barycentric properties. For a wide range of subdivision schemes, 
this generates a sequence of piecewise linear coordinates which converges to non-negative 
and C1 continuous coordinates in the limit. The power of the described approach comes 
from the possibility of evaluating the C1 limit coordinates and their derivatives directly. We 
support our theoretical results with several examples, where we use Loop or Catmull–Clark 
subdivision to generate C1 coordinates, which inherit the favourable shape properties of 
harmonic coordinates or the small support of local barycentric coordinates.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Suppose we are given a planar n-sided simple polygon � ⊂ R
2 with n ≥ 3 vertices v1, . . . , vn ∈ R

2. For any p ∈ R
2, the 

values[
b1(p), . . . ,bn(p)

] = b(p) ∈ R
n

are called barycentric coordinates of p with respect to �, if
n∑

i=1

bi(p) = 1 and
n∑

i=1

bi(p)vi = p. (1)

Non-negativity is sometimes mentioned as an additional condition (Floater et al., 2006), but since this precludes the exis-
tence of barycentric coordinates at points outside the convex hull of the vertices vi , we prefer to consider the conditions 
in (1) as the defining properties and regard non-negativity as a desirable property only.

It is well known (Möbius, 1827) that the barycentric coordinates of p are unique for n = 3, when � is a triangle, and they 
are non-negative if and only if p ∈ � in this case. Instead, for n > 3 the conditions in (1) describe an (n − 3)-dimensional 
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affine subspace of Rn from which b(p) can be chosen. For example, Waldron (2011) suggests to consider barycentric co-
ordinates with minimal �2-norm and derives an explicit formula for computing them. He further shows that these affine 
barycentric coordinates are non-negative in a convex region that contains the barycentre v̄ = (v1 + · · · + vn)/n of �. Another 
example are Floater’s shape preserving coordinates (Floater, 1997) which are well-defined and non-negative for any p in the 
kernel of � and have been used successfully for mesh parameterization (Floater, 1997) and morphing (Floater and Gotsman, 
1999).

Both applications rely on pointwise barycentric coordinates, in the sense that b(p) with the properties in (1) must be 
determined for a single point p in the kernel of some polygon �. Instead, other applications, like geometric modelling (Loop 
and DeRose, 1989), colour interpolation (Meyer et al., 2002), rendering (Hormann and Tarini, 2004), shape deformation (Ju 
et al., 2005), and image warping (Warren et al., 2007), require barycentric coordinates for all p ∈ � and consider b(p) as 
a function of p over �. In this setting, the individual barycentric coordinate functions bi: � → R must satisfy the Lagrange 
property

bi(v j) = δi j =
{

1, if i = j,
0, otherwise, i, j = 1, . . . ,n (2)

in addition to the defining conditions in (1), so that the function f : � →R
d with

f (p) =
n∑

i=1

bi(p) f i (3)

interpolates the data f1, . . . , fn ∈ R
d at the vertices v1, . . . , vn . Most applications further expect the barycentric coordinate 

functions to be smooth, so that the barycentric interpolant f in (3) is C1 or even C2 continuous. And for some applications 
it is crucial that the coordinates are non-negative, because this guarantees that the interpolated values f (p) are contained 
in the convex hull of the data.

1.1. Related work

Wachspress (1975) was the first to describe a construction of rational barycentric coordinate functions for convex poly-
gons in the context of generalized finite element methods, but these Wachspress coordinates are not well-defined for arbitrary 
simple polygons. The same holds for discrete harmonic coordinates, which arise from the classical piecewise linear finite el-
ement approximation to Laplace’s equation (Strang and Fix, 2008) and have been applied for computing discrete minimal 
surfaces (Pinkall and Polthier, 1993) and mesh parameterization (Eck et al., 1995). Mean value coordinates (Floater, 2003)
overcome this drawback, as they are well-defined even for sets of nested simple polygons and for any p ∈ R

2 (Hormann 
and Floater, 2006). However, mean value coordinates can be negative inside concave polygons, and the same is true for met-
ric (Sukumar and Malsch, 2006), moving least squares (Manson and Schaefer, 2010), Poisson (Li and Hu, 2013), and cubic mean 
value coordinates (Li et al., 2013). Positivity inside arbitrary simple polygons is guaranteed by positive mean value (Lipman 
et al., 2007) and positive Gordon–Wixom coordinates (Manson et al., 2011), but both constructions deliver only C0 continuous 
coordinate functions.

All the aforementioned constructions provide closed-form coordinates, which can be evaluated exactly for any p ∈ � in a 
finite number of steps. At the same time, neither of these coordinates are smooth and positive inside non-convex polygons. 
So far the only barycentric coordinates known to have both properties are the harmonic (Joshi et al., 2007), maximum 
entropy (Hormann and Sukumar, 2008), and local barycentric coordinates (Zhang et al., 2014), but they all are computational 
coordinates in the sense that they lack a closed-form expression and must be treated numerically.

For example, harmonic coordinates can be approximated by using the complex variable boundary element method (Weber 
and Gotsman, 2010, Sec. 6.1) or the method of fundamental solutions (Martin et al., 2008, Sec. 5). The advantage of both 
approaches is that the resulting coordinates are smooth and harmonic and can be written in closed form after initially 
solving a rather small but dense linear system, but they only approximate the piecewise linear boundary conditions and 
thus do not satisfy the Lagrange property.

Another common strategy for computing harmonic coordinates (Eck et al., 1995; Joshi et al., 2007) is first to create 
a dense triangulation of �, then to fix the barycentric coordinates of the boundary vertices according to the Lagrange 
property (2) and such that the coordinates are linear along the edges of �, and finally to determine the coordinates at the 
interior vertices using the standard finite element discretization of the Laplace equation with Dirichlet boundary conditions. 
This approach is quite efficient, because it only requires solving a sparse linear system, but the resulting coordinate functions 
are merely piecewise linear approximations of the true harmonic coordinates. Local barycentric coordinates are approximated 
similarly, except that computing the coordinates at the interior vertices is more involved as it leads to a convex optimization 
problem with a non-smooth target function (Zhang et al., 2014, Sec. 4). However, the advantage of the resulting coordinate 
functions is that their support is smaller than the support of harmonic coordinate functions.

In both cases a global problem is solved to determine the barycentric coordinates for all interior vertices simultaneously. 
In contrast, maximum entropy coordinates are computed for any p ∈ � by solving a local convex optimization problem, 
which in turn can be done very efficiently with Newton’s method (Hormann and Sukumar, 2008, Sec. 5).
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1.2. Contributions

In this paper we describe a novel way to construct non-negative barycentric coordinate functions. The main idea is to 
start with a piecewise linear approximation of harmonic or local barycentric coordinates over a coarse triangulation of �
and then to use subdivision (Zorin and Schröder, 2000) to refine the coordinate functions (Section 2). While the coordinate 
functions remain piecewise linear after any finite number of subdivision steps, the refinement process gives C1 continuous 
and non-negative coordinates in the limit for many common subdivision schemes, and these limit coordinates can be evalu-
ated like maximum entropy coordinates by solving a local convex optimization problem (Section 2.1). In particular, we focus 
on Loop subdivision (Loop, 1987) and show that the resulting C1 limit coordinate functions combine the favourable shape 
properties of harmonic coordinates or the small support of local barycentric coordinates with the possibility of evaluating 
them and their derivatives efficiently at any p ∈ � (Section 3). We further discuss briefly how to obtain similar results with 
Catmull–Clark subdivision (Catmull and Clark, 1978) (Section 4). Our main contributions are:

• We prove that subdividing piecewise linear barycentric coordinates keeps all the desired properties, even in the limit, 
as long as the subdivision rules respect certain conditions.

• We show for Loop and Catmull–Clark subdivision how to avoid fold-overs at concave corners of � which would other-
wise lead to not well-defined limit coordinate functions.

• We present several examples that illustrate the properties and advantages of the proposed approach.

2. Refining piecewise linear barycentric coordinates

Our main observation, which motivated us to investigate the idea of subdividing barycentric coordinates, is that affine 
combinations of points and barycentric coordinates commute in the following sense.

Lemma 1. Suppose we are given m points p1, . . . , pm ∈ R
2 with barycentric coordinates b(p1), . . . , b(pm) and some weights 

α1, . . . , αm ∈ R which sum to one, 
∑m

j=1 α j = 1. Let p = ∑m
j=1 α j p j ∈ R

2 be the point given by the affine combination of the 
points p j with the weights α j and b(p) = ∑m

j=1 α jb(p j) be the affine combination of the coordinates b(p j) with the same weights. 
Then b(p) are barycentric coordinates of p. Moreover, if the coordinates b(p j) and the weights α j are non-negative, then so are the 
coordinates b(p).

Proof. To prove the first statement, we refer to (1) and observe that
n∑

i=1

bi(p) =
n∑

i=1

m∑
j=1

α jbi(p j) =
m∑

j=1

α j

n∑
i=1

bi(p j) =
m∑

j=1

α j = 1

and
n∑

i=1

bi(p)vi =
n∑

i=1

m∑
j=1

α jbi(p j)vi =
m∑

j=1

α j

n∑
i=1

bi(p j)vi =
m∑

j=1

α j p j = p.

The second statement follows, because convex combinations of non-negative values are non-negative. �
Another well known fact, which turns out to be useful in this context, is that affine combinations in general, and in 

particular those of barycentric coordinates, commute with linear functions.

Lemma 2. If the barycentric coordinates b(p j) of the points p j in Lemma 1 lie on a common linear function, that is, b(p j) = Ap j + c
for some A ∈R

n×2 , c ∈R
n, and j = 1, . . . , n, then so does their affine combination b(p).

Proof. The statement holds because

b(p) =
m∑

j=1

α jb(p j) =
m∑

j=1

α j(Ap j + c) = A

(
m∑

j=1

α j p j

)
+ c

(
m∑

j=1

α j

)
= Ap + c. �

Suppose now that T 0 is a triangulation of � and that we are given for each vertex p of T 0 some initial barycentric 
coordinates b(p). We then consider the piecewise linear function b0 = [b0

1, . . . , b
0
n]: T 0 → R

n which interpolates the given 
barycentric coordinates at the vertices of T 0.

Corollary 3. If the initial barycentric coordinates at the vertices vi of � are

b(vi) = δi = [δ1,i, . . . , δn,i], i = 1, . . . ,n, (4)
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Fig. 1. Main idea of refining piecewise linear barycentric coordinates: A triangulation T 0 of the polygon � is refined by a linear subdivision scheme with 
special rules to keep the boundary fixed. In parallel, the same subdivision rules are applied to the barycentric coordinates associated with the vertices of 
the triangulation, thus creating a sequence of piecewise linear barycentric coordinate functions bk

i (shown for the red vertex) with a C1 continuous limit. 
The white curves are the contour lines at 0.1, 0.2, . . . , 0.9. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

then the components b0
i of b0 are barycentric coordinate functions. If all initial barycentric coordinates are non-negative, then so are 

the functions b0
i .

Proof. For any p ∈ �, let T = [p1, p2, p3] be the triangle in T 0 that contains p, so that p = ∑3
j=1 α j p j , where α j are 

the unique barycentric coordinates of p with respect to T . By the definition of b0 we have b0(p) = ∑3
j=1 α jb(p j), and 

Lemma 1 assures not only that b0(p) are valid barycentric coordinates of p in the sense of (1), but also the statement about 
non-negativity. Condition (4) further guarantees that b0

i satisfies the Lagrange property (2). �
We then refine T 0 successively with some linear subdivision scheme S (Zorin and Schröder, 2000) to generate the 

sequence of triangulations T 0, T 1, . . . and apply the subdivision rules not only to the (x, y) coordinates of the vertices, 
but also to the associated barycentric coordinates. That is, if the vertex p of T k+1 is generated by the affine combination 
p = ∑m

j=1 α j p j of some vertices p1, . . . , pm of T k , then we associate with p the values b(p) = ∑m
j=1 α jb(p j), and it follows 

from Lemma 1 that b(p) are valid barycentric coordinates of p. As above, we now consider at each level k the piecewise 
linear function bk = [bk

1, . . . , b
k
n]: T k → R

n which interpolates the generated barycentric coordinates at the vertices of T k

(see Fig. 1).

Theorem 4. Let S be a subdivision scheme that

1. is convergent,
2. generates C1 continuous limits,
3. is equipped with boundary rules for interpolating corner vertices and preserving straight boundary segments.

Further assume that the triangulations T k are regular in the sense that they do not contain any degenerate or flipped triangles, even in 
the limit. Then the components bk

i of bk converge to C1 continuous barycentric coordinate functions b∞
i : � →R as k → ∞. Moreover, 

if the initial barycentric coordinates at the vertices of T 0 and the weights of the subdivision rules are non-negative, then so are 
the b∞

i .

Proof. Using the appropriate boundary rules along the edges of � ensures that T k is a triangulation of �. Moreover, 
tagging the vertices of � as corners and applying to them the interpolating subdivision rule guarantees that condition (4) is 
preserved at any level k. With the same reasoning as in the proof of Corollary 3 we then conclude that the bk

i are barycentric 
coordinate functions. Note that we have to assume here that T k is regular, because otherwise it could happen that some 
p ∈ � is contained in more than one triangle of T k and then bk

i would not be well-defined.
To study the limit behaviour of this subdivision process, we recall that the natural parameterization of a subdivi-

sion surface is the one with respect to the midpoint-subdivided control mesh (Zorin and Schröder, 2000). In our set-
ting, this means that we use � as our domain, consider the sequence of triangulations D0, D1, . . . , where D0 = T 0

and Dk+1 is derived from Dk by midpoint subdivision, and regard T k as the image of the piecewise linear function 
vk: � → � that maps from each triangle in Dk to the corresponding triangle in T k (see Fig. 2). Under the given con-
ditions on S , this sequence of functions converges to a C1 continuous mapping v: � → �. Likewise, subdividing the 
initial barycentric coordinates gives a C1 continuous mapping b = [b1, . . . , bn]: � → R

n in the limit. Putting both to-
gether, we conclude that the barycentric coordinate functions bk

i converge to the C1 continuous functions b∞
i = bi ◦ v−1. 

Note that we have to assume here the regularity of T k in the limit in order to ensure that v−1 exists and is 
C1 continuous, according to the inverse function theorem. The functions b∞

i are barycentric coordinate functions, be-
cause
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Fig. 2. Natural parameterization vk of the subdivided triangulation T k over the refined domain Dk for k = 0,1,2.

n∑
i=1

b∞
i (p) =

n∑
i=1

lim
k→∞

bk
i (p) = lim

k→∞

n∑
i=1

bk
i (p) = lim

k→∞
1 = 1

and

n∑
i=1

b∞
i (p)vi =

n∑
i=1

lim
k→∞

bk
i (p)vi = lim

k→∞

n∑
i=1

bk
i (p)vi = lim

k→∞
p = p,

and the statement about the non-negativity of b∞
i follows immediately from the given conditions. �

The conditions on S in Theorem 4 are not very restrictive and satisfied by many popular subdivision schemes (Zorin and 
Schröder, 2000; Cashman, 2012). However, we recommend to use approximating schemes, because interpolating schemes, 
like the butterfly scheme (Dyn et al., 1990; Zorin et al., 1996) have subdivision rules with negative coefficients, so that the 
non-negativity of the limit coordinates b∞ is not guaranteed. We further note that Corollary 3 and Theorem 4 work for any 
initial data, but in our examples we mainly focus on the setting where the initial piecewise linear barycentric coordinates b0

are either harmonic or local barycentric coordinates, computed for some triangulation T 0 of �. By construction, the initial 
coordinate functions b0

i are linear along the edges of � in these cases, and it follows from Lemma 2 and the third condition 
on S in Theorem 4 that the same is true for bk

i and the limit coordinate functions b∞
i .

2.1. Evaluation

For the evaluation of the limit coordinates b∞ , there are three possible scenarios. First, there are many applications, 
where it is sufficient to have a piecewise linear approximation of the coordinates. In this situation, we simply carry out a 
finite number of, say k = 5 or k = 6 subdivision steps, and take bk as the desired piecewise linear approximation over T k . 
We can further use the limit rules of S to snap the vertices p of T k to their limit positions p̄, thus giving a new triangula-
tion T̄ k . Concurrently we apply the same limit rules to the corresponding coordinates bk(p) to compute b∞(p̄). Overall this 
results in piecewise linear coordinates b̄k over T̄ k , which interpolate the limit coordinates at the vertices p̄ of T̄ k instead of 
only approximating them.

The other two scenarios require the availability of a general routine for evaluating the limit surfaces generated by S
at arbitrary parameter values, which in our setting allows to compute v(p) and b(p) at any p ∈ �. For spline subdivision 
schemes which generate polynomial patches in regular regions, such a routine with constant time complexity can be de-
signed by following the ideas of Stam (1998a, 1998b), and non-polynomial schemes can be evaluated with the approach of 
Schaefer and Warren (2007, 2008). On the one hand, we can then map any p ∈ � to its limit position p̄ = v(p) ∈ � and 
compute the limit coordinates b∞(p̄) = b(p) of p̄. This is sufficient, for example, for applications which require to evaluate 
b∞ at a dense set of points, but where the exact positions of the points do not matter. On the other hand, we can also 
determine the limit coordinates b∞(p) of p ∈ � itself by first finding q = v−1(p), which in turn requires solving the local 
convex optimization problem

min
q∈�

‖p − v(q)‖2, (5)

for example with Newton’s method (Nocedal and Wright, 1999). Once q is found we compute the limit coordinates of p as 
b∞(p) = b(q).

2.2. Connection to standard surface subdivision

Before continuing with some concrete examples, we would like to point out a different perspective on the subdivision 
process described above. Suppose we attach the i-th barycentric coordinate bi(p) as a z-coordinate to each vertex p of 
the triangulation T k . This turns T k into the 3D triangle mesh Mk

i , which is nothing but the graph of the barycentric 
coordinate function bk

i , and generating Mk+1
i from Mk

i is just the standard surface subdivision process. Under the given 
conditions on S in Theorem 4, it is then clear that the sequence of meshes M0

i , M1
i , . . . converges to a C1 continuous 

limit surface M∞
i , and the regularity of T k in the limit guarantees that M∞

i is the graph of a function, namely the limit 
coordinate function b∞ .
i
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Fig. 3. Standard Loop subdivision rules for interior vertices (a), interior edges (b), boundary vertices (c), and boundary edges (d). Corner vertices are simply 
interpolated. The modified edge rule (e) depends on the interior angle at the adjacent corner vertex (f).

Fig. 4. Consider the barycentric coordinate function for the concave vertex v (red) and the cross section along the line defined by this vertex and the 
neighbouring vertex w (dashed line). If this function is C1 at v , then it must be greater than one in the interior of �, which implies that another 
coordinate function is negative. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3. Loop coordinates

In order to verify the theoretical results from the previous section we decided to use Loop subdivision (Loop, 1987) with 
the modification proposed by Biermann et al. (2000). That is, we mark vertices and edges of � as corners and creases to 
preserve the boundary of the polygon and use the subdivision rules in Fig. 3, where the parameter α for an interior vertex 
with valency m is α = ( 5

8 − ( 3
8 + 1

4 cos 2π
m

)2)
/m. The standard rules are used everywhere, except at interior edges adjacent 

to exactly one corner. For these edges, the corner is weighted by the modified coefficient β = (1 + cos θ)/4, where mθ is 
the interior angle at the corner and m is the number of adjacent triangles.

As the subdivision rules have non-negative weights, they generate non-negative coordinate functions b∞
i in the limit. 

These rules further guarantee that the coordinate functions are C2 almost everywhere in the interior and along the edges 
of �, and they are C1 at extraordinary interior vertices with valency other than 6 and at convex corners. The b∞

i are only 
C0 at concave corners, but this is not surprising, because non-negative coordinate functions cannot be C1 at such corners 
(see Fig. 4).

3.1. Evaluation

To evaluate these Loop coordinates b∞ , we implemented the three strategies outlined in Section 2.1 in C++ on a MacBook 
Pro with 2.4 GHz Intel Core i7 processor and 8 GB RAM. The first option is to subdivide the triangulation T 0 and the 
initial barycentric coordinates b0 until T k has about one million vertices and to snap both the vertices p of T k and the 
corresponding coordinates bk(p) to the limit using the usual limit rules (Loop, 1987). This gives a rather detailed piecewise 
linear interpolant of b∞ . Our implementation takes about 2 seconds for subdividing the (x, y) coordinates of the vertices of 
the triangulation and managing the data structures, plus another 0.02n seconds for subdividing the associated barycentric 
coordinates, where n is the number of vertices of �. By means of the tangent vector rules, we can even determine the 
gradients ∇b∞

i of the limit coordinate functions at the limit points at an additional cost of 0.2 + 0.05n seconds. Note that 
computing harmonic coordinates for a triangulation with the same number of vertices costs about 0.2n seconds in our 
implementation, which is based on Eigen (Guennebaud et al., 2015), plus 15 seconds for assembling and factorizing the 
matrix. Hence, it is even a bit faster for small n, but the resulting piecewise linear coordinate functions do not interpolate 
the true harmonic coordinates at the vertices and gradients can only be approximated.

The second option is to evaluate for any p ∈ � the limit mappings v and b, so as to get the limit coordinates 
b∞(p̄) = b(p) at p̄ = v(p). To this end, we first subdivide T 0 and b0 twice in a preprocessing step, to separate extraor-
dinary vertices, and then find the triangle T in T 2 that contains p. If T is not adjacent to the boundary of T 2, then we use 
Stam’s algorithm (Stam, 1998b), otherwise we resort to the method of Zorin and Kristjansson (2002), which is slightly more 
complex but works for points near the boundary. With our implementation, which uses a quadtree to store the triangles 
of T 2, evaluating one million points this way takes about 3.2 seconds for finding the triangle T and computing p̄, plus 0.1n
seconds for evaluating b∞(p̄). We can further use Stam’s approach to compute first derivatives of b∞

i at p̄ at roughly the 
same cost and even second derivatives, except when p is an extraordinary vertex of T 2 without well-defined second deriva-
tives. To compute derivatives at points near the boundary, we subdivide the triangulation around p locally until the triangle 
that contains p is not adjacent to the boundary anymore before calling Stam’s routine, because Zorin and Kristjansson do 
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Fig. 5. Example of an initial triangulation T 0 for which the subdivided triangulations T k fold over at the concave corner.

Fig. 6. The foldovers in Fig. 5 can be avoided by our vertex adjustment strategy (see Fig. 7).

Fig. 7. Our vertex adjustment strategy relocates the vertices in the one-ring neighbourhood of a concave corner (left) so that all adjacent triangles have the 
same shape and size (right).

not discuss how to compute derivatives with their method. However, the cost of these local subdivisions has a negligible 
effect on the average runtime.

The third option is to compute b∞(p) for any p ∈ �, which requires to solve the optimization problem (5). We imple-
mented a simple Newton method with adaptive step size, taking advantage of the fact that we can use Stam’s method as 
explained above to get the gradient and the Hessian of the objective function. At extraordinary vertices, where the Hessian 
is undefined, we resort to a finite difference approximation of the Hessian. Our experiments show that the optimal point 
q = v−1(p) is usually found in less than three iterations with an accuracy of 10−7 at an average cost of 2 · 10−6 seconds 
per point. Note that this cost does not depend on n, since it is a problem in R2. Once q is found, we proceed to compute 
b∞(p) = b(q) as in the second option above. Overall, our implementation takes about 5 + 0.1n seconds for evaluating one 
million points this way. This is roughly on par with the runtime of our implementation of maximum entropy coordinates, 
which takes about 2 + 0.15n seconds for the same task.

While the third option is the least efficient, it is the only one that delivers the limit coordinates b∞(p) at an arbitrary 
p ∈ �. Moreover, the additional cost with respect to the second option becomes marginal for large n, and in comparison to 
the first option it requires less memory, as it needs to store only T 2 instead of T k .

3.2. Concave corners

In the reasoning above we tacitly assumed that the subdivision process gives regular triangulations T k , even in the limit 
as k → ∞. However, as noticed by Biermann et al. (2000), foldovers may occur at concave corners, not only in the limit, but 
already after a small number of subdivision steps (see Fig. 5). Consequently, the limit coordinates will not be well-defined 
in these regions. However, we can avoid this problem (see Fig. 6) by modifying T 0 before determining the initial barycentric 
coordinates b0.

To this end, we adjust the positions of the vertices pi in the one-ring neighbourhood of a concave corner p as shown in 
Fig. 7. That is, we first determine the length

r = min{r0, r1, . . . , rm},
where ri = ‖p − pi‖, of the shortest edge adjacent to the concave corner. We then place all neighbours regularly spaced on 
a circle with radius r around p,
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Fig. 8. For this convex triangulation with regular interior vertices, foldovers occur in the interior after two subdivision steps.

Fig. 9. To create the initial triangulation T 0 for a given polygon � (a), we first specify uniformly spaced vertices on the edges of � (b), then compute a 
constrained Delaunay triangulation (c), and finally modify the one-ring neighbourhood of each concave corner with our vertex adjustment strategy (d).

p′
0 = p + (p0 − p)r/r0, p′

i = p + Riθ (p′
0 − p), i = 1, . . . ,m, (6)

where θ is defined as above and Rγ denotes the rotation matrix for counterclockwise rotation by γ . If this vertex adjustment 
strategy creates foldovers of T 0 in the 2-ring neighbourhood of p, then we repeatedly halve r until the foldovers disappear. 
Note that this strategy generally requires that the one-ring neighbourhoods of the concave corners do not contain common 
vertices.

Theorem 5. If the neighbours of a concave corner p have been adjusted with the strategy in (6), then the triangulations T k are regular 
around p, even in the limit.

Proof. We first note that the adjusted neighbours of p satisfy

pi±1 = p + R±θ (pi − p), i = 1, . . . ,m − 1.

Recalling that

Rθ + R−θ = 2 cos θ I = (8β − 2)I,

where β is defined as above and I denotes the identity matrix, we find that after one subdivision step with the modified 
edge rule in Fig. 3 (e), the new interior neighbours p̃i of p for i = 1, . . . , m −1 are just the edge midpoints of the old interior 
edges,

p̃i = [8βp + (6 − 8β)pi + pi−1 + pi+1]/8

= [8βp + (6 − 8β)pi + 2p + (Rθ + R−θ )(pi − p)]/8

= [8βp + (6 − 8β)pi + 2p + (8β − 2)(pi − p)]/8

= [p + pi]/2.

As the same holds for the new boundary neighbours p̃0 and p̃m , due to the boundary edge rule in Fig. 3 (d), we conclude 
that each subdivision step simply scales the one-ring neighbourhood of p by a factor of 1/2. This clearly avoids foldovers 
at p, even in the limit. �
3.3. Internal foldovers

While our vertex adjustment strategy takes care of foldovers at concave corners, interior foldovers may still occur in the 
interior of T k , even for convex initial triangulations T 0 where all interior vertices are regular with valency 6 (see Fig. 8). 
A formal analysis of this problem is beyond the scope of this paper, but we observed that this problem does not appear if 
we construct the initial triangulation as shown in Fig. 9.

Given a polygon � and a target edge length h, we first sample each edge of � with uniformly spaced vertices such 
that the spacing is as close as possible to h. We then use Triangle (Shewchuk, 1996) to compute a conforming constrained 
Delaunay triangulation of � which contains the sample vertices, does not create any further boundary vertices, and has 
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Fig. 10. Example of Loop coordinate functions and the norm of their gradients (shown for the red vertices) using piecewise linear harmonic coordinates 
over T 0 as initial coordinates b0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 11. Comparison of the errors bH
i − b0

i (centre) and bH
i − b∞

i (bottom) between the true harmonic coordinate function bH
i , the piecewise linear approx-

imation b0
i , and the Loop coordinate function b∞

i for different resolutions of the triangulation T 0 with maximum edge lengths h
 . The top log–log plot 
shows the maximum errors ‖bH

i − b0
i ‖∞ (blue) and ‖bH

i − b∞
i ‖∞ (red) over h
 , and the bottom log–log plot shows the differences of the Dirichlet energies 

D(b0
i ) − D(bH

i ) (blue) and D(b∞
i ) − D(bH

i ) (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

triangles with areas less than A = h2
√

3/4, the area of the equilateral triangle with target edge length h. This usually 
generates a triangulation with a maximum edge length h
 close to h and not too many extraordinary vertices. In a final 
step we apply the vertex adjustment strategy from Section 3.2 to create the initial triangulation T 0 of �.

To test our conjecture that the limit mapping v is regular so that v−1 exists and the limit coordinates are well-defined, 
we generated 100 random simple polygons and triangulated them for different values of h. We then subdivided each initial 
triangulation until the number of triangles was above one million and applied three tests. For each triangle with three 
regular vertices (usually more than 99.9% of all triangles), we checked the condition in Ginkel et al. (2007, Lemma 3) to 
verify that the corresponding limit patch is regular. We further computed the limit tangents at all extraordinary vertices 
and checked that the limit mapping does not fold at these vertices. Both tests restrict the potential occurrence of foldovers 
to the triangles adjacent to extraordinary vertices and we evaluated the limit tangents at 1000 random points inside each of 
these triangles as explained in Section 3.1. All initial test triangulations passed these tests, which makes us confident that 
our conjecture is true.

3.4. Examples

Fig. 10 shows some examples of Loop coordinate functions for harmonic initial coordinates. Despite the low resolution 
of the triangulation T 0, the functions are smooth and no visual artefacts are recognizable at the extraordinary interior 
vertices. Not too surprisingly, they actually look very similar to harmonic coordinates, and Figs. 11 and 12 further illustrate 
this behaviour. In both examples, we first computed harmonic coordinates over a mesh with two million triangles and took 
this approximation as referential true harmonic coordinates bH . As expected, the log–log plots show that the piecewise 
linear harmonic coordinate functions b0

i over T 0 converge to bH
i as the maximum edge length h
 of T 0 tends to 0, and that 

the same holds for the Dirichlet energy
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Fig. 12. Comparison of the errors bH
i − b0

i (centre) and bH
i − b∞

i (bottom) between the true harmonic coordinate function bH
i , the piecewise linear ap-

proximation b0
i , and the Loop coordinate function b∞

i for different resolutions of the triangulation T 0 with maximum edge lengths h
 . The top log–log 
plot shows the maximum errors ‖bH

i − b0
i ‖∞ (blue) and ‖bH

i − b∞
i ‖∞ (red) over h
 , and the bottom log–log plot shows the differences of the Dirichlet 

energies D(b0
i ) − D(bH

i ) (blue) and D(b∞
i ) − D(bH

i ) (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 13. Comparison of local barycentric coordinates (top) and corresponding Loop coordinates (bottom) for different resolutions of the initial triangula-
tion T 0. For local barycentric coordinates, the contour line at 10−4 is shown in green, and the orange line marks the support of the Loop coordinates. The 
timings for computing local barycentric coordinates are given at the top. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

D( f ) = 1

2

∫
�

‖∇ f ‖2, f :� →R,

which is of course minimal for bH
i . The plots also show that the Loop coordinate functions b∞

i with b0
i as initial coordinates 

and their Dirichlet energies converge at the same rate and are consistently closer to bH
i . The behaviour is confirmed by the 

error visualizations which illustrate that Loop subdivision effectively smoothes out the error between approximate and true 
harmonic coordinates.

For the example in Fig. 13, the authors of Zhang et al. (2014) provided us with local barycentric coordinates for different 
resolutions of T 0. Although the theory suggests that these coordinate functions are locally supported, the numerical solver 
used in Zhang et al. (2014) generates small function values even outside the probable support and Zheng et al. suggest 
to consider all values below 10−4 as numerically zero. We modified their data in the following way. For each vertex p of 
T 0 with one or more coordinates bi(p) < 10−4 we set bi(p) to exact zero and perturbed the other coordinates in a least 
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Fig. 14. Comparison of different barycentric coordinate functions for the two red vertices. Loop coordinates were computed for the initial triangulation T 0

in the bottom left. The insets show the cross sections along the dashed line. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

Fig. 15. Comparison of barycentric coordinate functions for the two red vertices and different initial triangulations T 0 and T̂ 0 using piecewise linear 
harmonic coordinates as initial coordinates. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

squares sense to restore the barycentric properties in (1). We then used these modified coordinates as b0. The plots show 
that the corresponding Loop coordinates are truly locally supported and that the support is slightly larger, but also smoother 
than the numerical support of the original local coordinates. We further observe that the shape of the Loop coordinates for 
the initial triangulations with 1784 and 6979 vertices is visually the same, which suggests that, given the exponential cost 
of computing local barycentric coordinates, it is better to smooth them with Loop subdivision instead of further increasing 
the resolution of the initial triangulation. The fact that the coordinate functions for the triangulation with 27 605 vertices 
look apparently different from the others is probably due to the fact that the solver had not fully converged, even after the 
indicated 59 172 seconds.

For the example in Fig. 14, we computed Loop coordinates for a triangulation T 0 without interior vertices, using only 
the barycentric coordinates in (4) as initial coordinates at the vertices vi of �. Because of the lack of extraordinary interior 
vertices, the resulting coordinate functions are C2 in the interior of �. The comparison to harmonic (HC), maximum entropy 
(MEC), and mean value coordinates (MVC) shows that Loop coordinates are more local at convex and less steep at concave 
corners.

One potential drawback of our approach is that the Loop coordinates b∞ depend on the initial triangulation T 0. An 
example of this effect is given in Fig. 15, which shows two coordinate functions for two different initial triangulations as well 
as the difference between them. For convex corners, this difference is usually less than 0.5% and less than 2% for concave 
corners, but the contour and gradient plots confirm that the global shapes of the coordinate functions are very similar.

4. Catmull–Clark coordinates

The refinement process described in Section 2 works analogously with linear subdivision schemes for quadrilateral 
meshes. We start from an initial quadrangulation Q0 of � with given barycentric coordinates at the vertices p of Q0, 
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Fig. 16. Standard Catmull–Clark subdivision rules for faces (a), interior vertices (b), interior edges (c), boundary vertices (d), boundary edges (e), and 
modified edge rule (f). Corner vertices are simply interpolated.

and use the scheme to generate the sequence of quadrangulations Q0, Q1, . . . as well as to compute barycentric coor-
dinates at the vertices of each Qk . Under the same conditions as in Theorem 4, this gives C1 continuous barycentric 
coordinate functions in the limit. The main difference is that we need to be careful with the definition of the functions 
bk = [bk

1, . . . , b
k
n]: Qk → R

n , which interpolate the initial or computed barycentric coordinates at the vertices of Qk , so as to 
guarantee the equivalent of Corollary 3. One possibility is to split each quadrilateral of Qk into two regular triangles and let 
bk be piecewise linear over the triangles obtained this way. Another choice is to let bk be smooth over each quadrilateral 
by utilizing mean value coordinates in the following way. For any p ∈ �, let Q = [p1, p2, p3, p4] be the quadrilateral in 
Qk that contains p, let α1, . . . , α4 be the mean value coordinates of p with respect to Q , that is, p = ∑4

j=1 α j p j , and set 
bk(p) = ∑4

j=1 α jbk(p j). Lemma 1 then guarantees that bk(p) are valid barycentric coordinates of p, and since the weights 
α j are non-negative, even for a concave quadrilateral Q (Hormann and Tarini, 2004), the non-negativity statement in Corol-
lary 3 carries over to the quadrilateral setting.

As a case study for this quadrilateral setting we decided to use Catmull–Clark subdivision (Catmull and Clark, 1978)
with the modifications proposed by Biermann et al. (2000). As in Section 3, we mark vertices and edges of � as corners 
and creases to preserve the boundary of the polygon and use the subdivision rules in Fig. 16, where the parameters for 
an interior vertex with valency m are α1 = 3

2m and α2 = 1
4m and the coefficient for the modified edge rules is β = (3 +

2 cos θ)/8 with θ as in Section 3. Like Loop coordinates, these Catmull–Clark coordinates are C2 almost everywhere, except 
at extraordinary interior vertices and convex corners, where they are only C1 and at concave corners, where they are C0. 
To evaluate them, we implemented the same three options as described in Section 3.1 with similar runtimes, using Stam’s 
algorithm (Stam, 1998a) for the evaluation of v and b in the interior and the method of Zorin and Kristjansson (2002) near 
the boundary. The vertex adjustment around a concave corner p is done as in (6) for the adjacent neighbours p0, . . . , pm

of p, and the opposite corners q0, . . . , qm−1 of the adjacent quadrilaterals are moved to

q′
i = p′

i + p′
i+1 − p, i = 0, . . . ,m − 1,

so that all adjacent quadrilaterals become congruent parallelograms. With the same arguments as in Theorem 5, one can 
then show that this configuration scales by a factor of 1/2 with each subdivision step, thus avoiding foldovers at p, even 
in the limit. We did not further investigate the issue of internal foldovers, but did not experience any problems in our 
numerical examples.

4.1. Examples

Fig. 17 is the analogue to Fig. 10 and shows some examples of Catmull–Clark coordinate functions for harmonic initial 
coordinates. Since the initial quadrangulation has no extraordinary interior vertices, these functions are C2 in the interior 
of �, and the plots confirm that they are also visually smooth.

In Fig. 18 we computed harmonic coordinates over a triangulation T 0 and a quadrangulation Q0 of the same polygon 
and used them as initial coordinates for Loop and Catmull–Clark coordinates, respectively. The example shows that both 
subdivision schemes have a very similar smoothing effect and that the coordinate functions are almost identical. Since 
quadrangulating a given polygon is much harder than triangulating it, this suggests that Loop coordinates are probably the 
method of choice in most cases.

However, for certain polygons like the one in Fig. 19 it is more natural to use Catmull–Clark coordinates. Similarly to the 
example in Fig. 14, this figure shows Catmull–Clark coordinates for a quadrangulation Q0 without interior vertices, using 
only the barycentric coordinates in (4) as initial coordinates at the vertices of �. Consequently, the resulting coordinate 
functions are C2 in the interior of �. The comparison to harmonic (HC) and maximum entropy coordinates (MEC) shows 
that Catmull–Clark coordinates (CCC) are more local at convex and less steep at concave corners, and they are smoother, 
but less local than local barycentric coordinates (LBC).
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Fig. 17. Example of Catmull–Clark coordinate functions and their gradients (shown for the red vertices) with harmonic coordinates over Q0 as initial 
coordinates b0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Comparison of Loop (left) and Catmull–Clark (right) coordinate functions (shown for the red vertices) with harmonic coordinates over T 0 and Q0, 
respectively, as initial coordinates b0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 19. Comparison of different barycentric coordinate functions for the two red vertices. Catmull–Clark coordinates were computed for the initial quad-
rangulation Q0 shown in the bottom left. The inset shows the cross section along the dashed line. The contour line at 10−4 is shown in green, and the 
orange line marks the support. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

5. Conclusions

Mesh subdivision is widely known in computer graphics as a technique for creating smooth surfaces with arbitrary 
topology by repeatedly refining an initial base mesh with simple local rules. In this paper we show that subdivision can 
also be used to construct barycentric coordinates with favourable properties. While the theory developed in Section 2 is 
general and works for a large class of subdivision schemes, we believe that Loop subdivision is the method of choice, for 
two reasons. On the one hand, it is simple and comes with well-understood boundary rules and exact evaluation routines. 
On the other hand, our examples confirm that the main shape of the limit coordinate functions b∞

i is dictated by the initial 
functions b0

i , and we do not expect other subdivision schemes to yield qualitatively better results.
However, it still remains future work to develop a strategy for constructing initial triangulations T0, for which it can 

be formally proven that the refined triangulations Tk are regular in the interior, even in the limit. Note that this problem 
is not restricted to the construction of well-defined Loop coordinates, as it addresses the general question under which 
conditions the two-dimensional Loop mapping v: � → � is bijective. Another direction for future work is the extension of 
our approach to 3D by using volumetric subdivision schemes (Chang et al., 2002; Schaefer et al., 2004).
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