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In the field of mesh segmentation, co-segmentation techniques achieve state-of-the-art
performance; however, the segmentation results rely on the shape descriptors used in
the segmentation process. In this paper, we propose a novel type of descriptor called the
“volumetric shape context” (VSC). For each triangle in the mesh, the VSC describes the
distribution of the shape’s volume relative to the center of the triangle. This descriptor
is descriptive, robust, and invariant under rigid transformations, uniform scaling, mirror
imaging and model degeneration. We compare the VSC with state-of-the-art descriptors
in a supervised mesh segmentation framework, and the results show that the VSC is
most frequently selected as the first descriptor and that combining the VSC with other
descriptors improves the segmentation results, thereby demonstrating the descriptiveness
of the VSC.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many mesh segmentation techniques have been proposed, and these techniques can be classified into two types: part
segmentation and surface-patch segmentation (Shamir, 2008). In this paper, we discuss part segmentation, in which a mesh 
is segmented into semantic parts. For example, a human body model can be segmented into several such parts: the head, 
torso, arms and legs. In recent years, researchers have realized that segmenting a set of shapes as a whole (co-segmentation) 
can yield better performance than segmenting individual shapes or pairs of shapes. For most co-segmentation approaches, 
their performance relies heavily on the 3D shape descriptors that are used. In these approaches, the triangles in the mesh 
are clustered into several semantic parts according to the similarity of their descriptors.

There are many descriptors that are widely used for mesh segmentation, but most are designed for solving problems in 
other fields, such as object recognition, and few studies have focused on the design of specialized descriptors for mesh co-
segmentation. Furthermore, no descriptor is effective for all categories of models, and combinations of different descriptors 
can yield better performance than only one. Thus, co-segmentation approaches will benefit from the proposal and adop-
tion of new descriptors, especially descriptors that provide significantly different information from that offered by existing 
descriptors.

In this paper, we propose a 3D shape descriptor for mesh segmentation named the “volumetric shape context” (VSC), 
which describes the volume distribution of the model around the center of each mesh triangle. It is robust to noise because 
of its context-based nature, and it is invariant under rigid transformations, uniform scaling, mirror imaging and model 
degeneration. The proposed descriptor is inspired by context analysis, which has been proven to be robust and effective in 
measuring the similarity between 3D shapes (Osada et al., 2002) or semantic parts (Laga et al., 2013).
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The VSC was evaluated in the framework of Kalogerakis et al. (2010), which is a supervised co-segmentation method 
that achieves state-of-the-art segmentation and labeling results. In this framework, several shape descriptors are extracted 
to form a descriptor vector, and JointBoost classifiers (Torralba et al., 2007) automatically select the descriptors that are 
most useful for a particular segmentation task. Hence, this framework is suitable for comparing the descriptiveness of 3D 
shape descriptors. The experimental results demonstrate that the VSC is most frequently selected as the first descriptor by 
JointBoost. With regard to the effect of removing a single descriptor, the labeling accuracy decreases most significantly upon 
the removal of the VSC, thereby indicating that the VSC represents the largest contribution to the high labeling accuracy 
achieved in the experiments.

The main contribution of this paper is our proposal of a new descriptor for mesh co-segmentation, which is descriptive 
and significantly improves the labeling accuracy. A secondary contribution is our proposal of an automatic context-based 
method and an interactive method to estimate the auxiliary orientations of the models. Both methods produce consistent 
auxiliary orientation estimation results, thereby verifying the descriptiveness of the VSC.

2. Related work

In this section, we review several 3D descriptors that are widely used in mesh segmentation methods and several mesh 
co-segmentation methods that take advantage of 3D descriptors.

There are many descriptors that are widely used for mesh segmentation, such as the curvature (Gal and Cohen-Or, 2006), 
principal component analysis (PCA) singular values, the shape diameter function (Shapira et al., 2010), the volumetric shape 
image (Liu et al., 2009), the average geodesic distance (Hilaga et al., 2001; Zhang et al., 2005), the shape context (Belongie 
et al., 2002), the spin image (Johnson and Hebert, 1999), the light field descriptor (Ding-Yun et al., 2003), the conformal 
factors (Ben-Chen and Gotsman, 2008), and the geodesic distance to the base of the shape (Sidi et al., 2011). Of these, the 
shape context and the spin image are originally 2D descriptors, and they have been adapted for extension to the 3D mesh 
segmentation task. These descriptors have proven to be effective for achieving good segmentation results, but none of them 
describes the volume distribution information of the models.

The shape context is widely used in mesh segmentation approaches and exhibits high descriptiveness. It treats a 3D 
model as a shell model and evaluates the distribution of the surface area; thus, the volume distribution information is not 
considered. Moreover, it does not construct a local 3D reference frame on each triangle; instead, it divides the neighboring 
space in only two dimensions, yielding insufficiently detailed distribution statistics.

The 3D shape context (Frome et al., 2004) extends the concept of the shape context to 3D point clouds and offers a 
solution for constructing local 3D reference frames. In this solution, the spherical support region is regarded as a globe, and 
the direction of the North Pole is the normal estimated at the base point. The globe is equally divided in the azimuthal and 
elevational dimensions and is logarithmically divided in the radial dimension. The local reference frames that are constructed 
in this manner are not unique, and one degree of freedom remains (the globe can rotate around its own central axis); as a 
result, the descriptors based on this solution are not unique and, consequently, are not suitable for mesh co-segmentation.

Many different mesh segmentation approaches have been proposed. Several surveys can be found in Agathos et al. (2007), 
Attene et al. (2006), Shamir (2008), Theologou et al. (2015). In recent years, researchers have realized that high-level analy-
ses of 3D models can yield better performance than can the use of low-level geometric cues alone and thus have proposed 
co-segmentation approaches. Co-segmentation approaches can be classified into three categories: supervised (Kalogerakis et 
al., 2010; Van Kaick et al., 2011), unsupervised (Hu et al., 2012; Huang et al., 2011; Luo et al., 2013; Meng et al., 2013;
Shapira et al., 2008; Sidi et al., 2011; Wang et al., 2012; Wu et al., 2014, 2013; Xu et al., 2010) and semi-supervised (Lv et 
al., 2012). Supervised approaches can achieve the highest labeling accuracy but require training data consisting of a set of 
manually segmented and labeled models, and the training phase is time-consuming. Unsupervised approaches offer lower 
performance than do supervised methods, which is not surprising because they use less information, but they also do not 
require training data and are much faster. The semi-supervised approach is a trade-off between the supervised and unsuper-
vised approaches in that it learns from both labeled and unlabeled models. Descriptors are used in the algorithms of almost 
all co-segmentation approaches in these 3 categories, and their performance relies heavily on the adopted descriptors. In 
fact, among all of the approaches mentioned above, there was only one early study (Shapira et al., 2008) in which descrip-
tors were not adopted, and the approaches in which descriptors are applied exhibit better performance. Supervised and 
semi-supervised methods use descriptors to form descriptor vectors, whereas unsupervised methods use descriptors pre-
dominantly for patch clustering and over-segmentation. These approaches will all benefit from the proposal and adoption 
of novel descriptors.

The proposed VSC descriptor was evaluated in the framework of Kalogerakis et al. (2010), which is a representative 
supervised mesh segmentation method. In this framework, the labeling of parts of the mesh is regarded as a problem of 
optimizing a conditional random field (CRF) (Lafferty et al., 2001). Several descriptors are extracted to form the descriptor 
vectors for all mesh triangles, and these descriptor vectors are used to train the basic terms of the CRF using JointBoost 
classifiers (Torralba et al., 2007). Different types of descriptors can be used in this framework, and adding more descriptors 
typically improves the performance; therefore, this framework is suitable for evaluating the descriptiveness of different 
descriptors.
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Fig. 1. Procedure for extracting the VSC. (a) A 3D mesh model. (b) For the center of a triangle on the arm as an example base point, a local 3D reference 
frame (LRF) is constructed at the base point. (c) The voxelization result for the model. (d) The spherical support region is divided into several bins using 
different bin division resolutions with reference to the LRF. (e) The normalized bin values corresponding to the 3 bin division resolutions, which describe 
how much of the volume of the model falls into the bins. (f) All bin values are combined to obtain the final VSC of the considered triangle on the arm.

3. Volumetric shape context

3.1. Overview

The VSC is a descriptor defined at the center of a mesh triangle (called the “base point” of the triangle) and describes the 
volume distribution of the model relative to the base point. The procedure for defining the VSC is illustrated in Fig. 1. First, 
a local reference frame (LRF) is constructed at the base point. Then, the spherical support region is divided into bins using 
different bin division resolutions with reference to the LRF. For each bin division resolution, the bin values are calculated as 
the volume of the model that falls into each bin. Finally, the bin values at the different bin division resolutions are combined 
to obtain the final VSC.

3.2. Local reference frame

The first step of the procedure is to construct a 3D Cartesian LRF at each base point. By introducing the LRF, the support 
region can be divided in 3 dimensions, thereby enhancing the descriptiveness of the proposed descriptor. We must first de-
fine two orthogonal coordinate axes, and the third is then determined by the other two coordinate axes using the left-hand 
or right-hand rule.

Because the VSC is defined at the center of a triangle, the outward normal to the triangle can serve as one axis of 
the LRF. Selecting a second axis is challenging, however, because no other intuitive choice is available. Thus, an “auxiliary 
orientation” is defined according to the shape of the mesh model. Note that the auxiliary orientation is estimated at the 
model level, not at the triangle level; therefore, it is consistent for the LRFs of all triangles in the model.

The auxiliary orientations should be defined such that they are semantically consistent among different models in the 
same category. For example, the auxiliary orientations of human bodies are consistent if they all point to the head or all 
point to the feet. To the best of our knowledge, no existing method can achieve good consistency in auxiliary orientation 
for all categories of models. Here, we present two methods of defining the auxiliary orientations, one of which is interactive 
and the other of which is automatic.

Semantic consistency can only be judged by humans; therefore, human interaction is a suitable means of defining the 
auxiliary orientations. The procedure for estimating the auxiliary orientation of a model is intuitive. For example, a 3D model 
can be dragged and rotated until the user’s desired auxiliary orientation is orthogonal to the screen and points outward. 
In our experiments, an untrained user was able to define the auxiliary orientation of a model in less than 2 seconds on 
average. Thus, in practice, the interactive method is acceptable if the quantity of models is not too large.
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Fig. 2. Procedure for constituting the automatic context-based orientation estimation method. (a) The original model. (b) The voxelization result for the 
model. (c) The 6 directions defined based on (b). (d) Context C for the reference model. (e) The Context Cs corresponding to the 6 directions indicated 
in (c). The orientation of the model is set to the direction for which the Context C is most similar to (d).

Because the VSC is designed for automatic mesh segmentation, we also propose an automatic method of estimating 
the auxiliary orientations. The most popular methods for this purpose, such as CPCA (Vranić, 2004) and NPCA (Papadakis 
et al., 2007), are based on PCA; however, the central axes derived using PCA-based methods are not always semantically 
consistent among different models. PCA-based methods work well for long, thin models such as screws and fish, for which 
the largest eigenvalue is much greater than the other eigenvalues. Unfortunately, this condition does not hold for many 
other categories of models, such as planes and birds. Moreover, the axes generated using PCA-based methods do not have 
inherent directions; therefore, selecting consistent directions for the axes is also a challenging task.

We propose a context-based method based on PCA to select the correct axes and directions to improve the consistency 
of the auxiliary orientations. As illustrated in Fig. 2, the procedure is as follows:

1. A reference model is selected from each category. Models in the same category are generally similar to each other, 
although a few may somewhat differ from the others in shape or pose. The criterion for selecting the reference model 
is that it must be representative of its category. The auxiliary orientation of the reference model is specified interactively.

2. For each model in each category except the reference model, all 3 PCA axes are calculated, yielding 6 directions (each 
axis has 2 opposing directions, for a total of 6 directions). Then, the direction for which the context is most similar to 
the context of the reference model is selected. For convenience, we call the context used to select the best direction 
out of the 6 possible directions “Context C”.

Unlike the VSC, Context C is a global descriptor that is defined on a model with reference to a reference direction; by 
contrast, the VSC is a local descriptor that is defined at the center of a triangle and does not rely on any reference direction. 
The definition of Context C is as follows. The reference direction determines the North Pole direction, and the bounding 
sphere of the model is divided into M and N segments in the radial and latitudinal dimensions, respectively, as shown in 
Fig. 3. Then, we voxelize the model and count how many voxels fall into each bin. The resulting vector of bin values is 
precisely the Context C of the model with reference to the reference direction. Because determining the VSC also requires 
voxelization, the algorithm for determining Context C can share the voxelization result calculated for determining the VSC 
to save computation time and memory space.

Let vr be the Context C of the reference model r, and let v i j be the Context C of another model i corresponding to 
reference direction j. The difference between v i j and vr is measured as follows:

Dij =

M×N∑

t=1

∣
∣v i j[t] − vr[t]

∣
∣

M × N

Here, v i j[t] is the tth element of vector v i j , and vr[t] is the tth element of vector vr . The bins related to the Context C can 
be organized in any order, as long as the orders are consistent among different Context Cs, because each bin value is treated 
equally in the calculation of the difference.

From among the 6 possible directions, j∗ , which minimizes Dij , is selected as the auxiliary orientation of the model.
The auxiliary orientation is probably not orthogonal to the normal to the considered mesh triangle; therefore, it cannot 

directly serve as the second axis. Instead, we select the orientation of the cross product of the normal and the auxiliary 
orientation as the second axis. If the normal and the auxiliary orientation are approximately collinear, thereby invalidating 
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Fig. 3. Bin division scheme for Context C. In this example, the radius is evenly divided into 3 segments, as shown by the red lines and red points, and the 
180 degrees of the latitudinal dimension are evenly divided into 6 segments, as shown by the green lines. As a result, the bounding sphere is divided into 
18 bins. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

this method of determining the second axis, we simply replace the auxiliary orientation with a random orientation that is 
perpendicular to the original auxiliary orientation to obtain a viable second axis. Fortunately, this situation rarely arises, and 
experimental results indicate that it has little influence on the descriptiveness of the VSC.

Once two orthogonal axes have been obtained, the third axis can be straightforwardly determined, yielding the LRF. We 
use x+, y+ and z+ to represent the positive directions of the three axes of the LRF. The normal to the triangle serves 
as z+, the cross product of the normal and the auxiliary orientation serves as x+, and the cross product of x+ and z+
serves as y+.

3.3. Bin division

Before the bin division procedure is applied, the support region for the VSC of each triangle must be specified. Different 
shapes of support regions could be considered, such as a spherical one or a cubic one, and the one we adopt in this paper 
is a solid sphere whose center coincides with the center of the triangle. The radius of the sphere is related to the size of 
the model and will be discussed at the end of this section.

As described in Section 3.2, a unique LRF is defined at the center of each triangle. By regarding the support region 
as analogous to a globe, with the z+ direction corresponding to the direction of the North Pole and the x+ direction 
corresponding to a longitude of 0, the support region can be divided along three dimensions — the radial, longitudinal and 
latitudinal dimensions — as shown in Fig. 4.

The radial dimension is divided logarithmically, such that the region near the origin of the LRF contains a larger num-
ber of bins. Because the values of the bins near the origin are more closely related to the base point (the center of a 
triangle), this approach ensures that more information is collected nearer to the underlying triangle, thereby improving the 
descriptiveness of the descriptor. Suppose that the support region is logarithmically divided into M segments in the radial 
dimension. Let ri represent the radius of the ith smallest boundary sphere, where i is an index that takes values from 1 to 
M . ri can be expressed in the following form:

ri = a × bi−1

Here, a and b are two unknown variables. Let rmax be the radius of the solid spherical support region. Given only M and 
rmax , the division of the radial dimension is not unique; thus, rmin is defined as the radius of the minimum boundary sphere. 
We then have

rmin = r1 = a × b0 = a

rmax = rM = a × bM−1

Upon eliminating a and b, the radius of any boundary sphere can be expressed in terms of M , rmax and rmin:

ri = r(i−1)/(M−1)
max × r(M−i)/(M−1)
min
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Fig. 4. Bin division scheme for the VSC. The support region, a solid sphere, is divided along 3 dimensions — the radial dimension, the longitudinal dimension 
and the latitudinal dimension — in analogy to a globe. The face normal corresponds to the direction of the North Pole, and the cross product of the face 
normal and the auxiliary orientation corresponds to a longitude of 0 degrees. The region demarcated by red lines is an example of a bin. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

The support region is evenly divided into N segments from 0 to 2π in the longitudinal dimension and evenly divided into 
P segments from 0 to π in the latitudinal dimension.

The bins can be organized in any order, as long as the orders are consistent among different VSCs; that is to say, bins in 
similar positions with respect to their corresponding LRFs should have the same order.

The radius of the support region should be comparable to the radius of the bounding sphere of the model for the follow-
ing reasons. Obviously, the descriptiveness of the VSC would be enhanced in the case of a larger radius. The disadvantage of 
a larger radius is that more computation time and more memory space are required. Fortunately, however, the logarithmic 
division schema ensures that only a few bins will be added as the radius is increased. If the radius is too small, the VSC 
will tend to be local, and its resistance to noise will be reduced. However, once the support region is sufficiently large that 
it already contains the entire model, it is meaningless to further enlarge the radius. In summary, it is recommended that 
the radius of the support region be comparable to the radius of the bounding sphere of the model.

In our implementation, the radius of the support region (i.e., rmax) is set equal to the radius of the bounding sphere of 
the model, and rmin is set to rmax/100.

3.4. Bin value calculation

As is described in previous sections, the VSC of a mesh triangle describes the volume distribution of the model relative 
to the base point of the constructed LRF (the center of that triangle), and the value of each bin represents the portion of the 
volume of the model that falls into that bin. Because the volume of the model is difficult to calculate, voxelization is applied 
to simplify the calculation. If the automatic context-based auxiliary orientation estimation method is used, the voxelization 
results can be shared with the auxiliary orientation estimation procedure.

The procedure for calculating the bin values is as follows. First, we construct a bounding box for the model and divide 
this bounding box into K 3 voxels. K controls the voxelization resolution of the model, and the proper selection of the value 
of K will be discussed in Section 4.2. Then, we remove the voxels whose centers are located outside the model and count 
how many of the remaining voxels’ centers are located inside each bin. Finally, we normalize the bin values by dividing 
them by the sum of all bin values. In fact, we combine the results for different bin division resolutions to enhance the 
descriptiveness; each bin division resolution yields a corresponding vector of bin values, and the vectors of bin values for 
different bin division resolutions are combined to obtain the final VSC vector of the triangle, as shown in Fig. 1.

4. Results

For simplicity, in Table 1, we define abbreviations for the descriptors discussed in this section. Additionally, the VSCs 
calculated using the two different auxiliary orientation estimation methods, i.e., the interactive and automatic methods, are 
referred to as the “interactive VSC” and the “automatic VSC”, respectively.
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Table 1
Abbreviations of descriptors.

Descriptor Abbreviation References

Volumetric shape context VSC
Curvature CUR Gal and Cohen-Or (2006)
PCA singular values PSV
Shape context SC Belongie et al. (2002)
Average geodesic distance AGD Hilaga et al. (2001), Zhang et al. (2005)
Shape diameter function SDF Shapira et al. (2010)
Volumetric shape image VSI Liu et al. (2009)
Spin image SI Johnson and Hebert (1999)

4.1. Dataset and evaluation methods

We tested the VSC on Kalogerakis’ dataset (Kalogerakis et al., 2010), which was drawn from the Princeton Segmentation 
Benchmark (Chen et al., 2009) with certain modifications to suit the supervised mesh segmentation framework. The dataset 
contains 19 model categories, each containing 20 mesh models. The ground truths for segmentation and labeling are also 
included in the dataset.

To evaluate the performance of the VSC, we employed a supervised mesh segmentation framework (Kalogerakis et al., 
2010) that simultaneously segments and labels meshes. This segmentation framework was briefly introduced in Section 2, 
and an excellent detailed explanation is provided in Kalogerakis et al. (2010).

The labeling accuracy is the major criterion used to measure the descriptiveness of descriptors. The labeling accuracy of 
a single mesh can be expressed as follows:

A = areacor

areaall

where areacor is the sum of the areas of the correctly labeled triangles and areaall is the sum of the areas of all triangles in 
the mesh. The labeling accuracy of a set of meshes (e.g., the labeling accuracy of all meshes in the same category) is the 
average labeling accuracy of all meshes in that set:

As =
∑

Ai

n
where Ai is the labeling accuracy of the mesh with index i and n is the number of meshes in the set.

Because the segmentation framework is a supervised-learning-based method, the dataset was divided into 3 subsets: the 
training set, the validation set and the test set. In our experiments, the 20 models in each category were evenly divided into 
5 groups, each containing 2 training models, 1 validation model and 1 test model. Hence, the average labeling accuracy of 
the 5 test models in each category was the labeling accuracy for that category, and the average labeling accuracy of all 19 
categories was the labeling accuracy for the entire dataset.

4.2. VSC parameters

The voxelization resolution and bin division resolution are important parameters of the VSC and exert considerable 
influence on its descriptiveness and efficiency.

The voxelization resolution for the VSC is K 3, where K is the number of voxels in each dimension. As K increases, the 
accuracy of the volume calculation also increases and, consequently, the descriptiveness of the VSC increases; concurrently, 
however, the calculation of the VSC becomes more time-consuming and requires more memory space. To achieve a com-
promise between descriptiveness and efficiency, we tested various values of K to determine the best one. The entire test 
addressed two cases: segmentation using the VSC only and segmentation using the VSC and 7 other descriptors (CUR, PSV, 
SC, AGD, SDF, VSI and SI). Auxiliary orientations specified via human interaction were used in both cases. For each case, 
we tested 14 different values of K : 2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. Because the supervised approach 
is quite time-consuming, this experiment could not be performed for the entire dataset. The experiment was instead con-
ducted on only 6 categories (human, cup, ant, chair, teddy and vase), which were selected based on their variance in model 
shape and complexity.

As shown in Fig. 5, in both cases, the labeling accuracy increases as K increases from 2 to 20, but it tends to remain 
steady as K increases from 20 to 100. Therefore, K was set to 20 in our experiments. In fact, 20 is a very small resolution 
parameter for voxelization; therefore, the VSC results could be rapidly extracted and consumed little memory space.

Suppose that the bin division resolution for the VSC calculation is (M ,N ,P ), corresponding to the numbers of segments in 
the radial, longitudinal and latitudinal dimensions, respectively. Then, the length of the vector of bin values corresponding 
to this bin division resolution is M × N × P . After trying different bin division resolution options, two of them are chosen 
in our implementation. One is (5, 5, 5), which works the best when the VSC is used alone; the other is a combination of 13 
bin division resolutions — (5, 6, 4), (5, 6, 1), (5, 1, 4), (1, 6, 4), (1, 1, 2), (1, 1, 4), (1, 1, 6), (1, 2, 1), (1, 4, 1), (1, 6, 1), (2, 1, 1), 
(4, 1, 1) and (6, 1, 1) — which works the best when the VSC is used together with the other 7 descriptors mentioned above.
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Fig. 5. The relation between the labeling accuracy and the voxelization resolution for the VSC calculation. The dotted line shows the labeling accuracy 
achieved using multiple descriptors, including the VSC and 7 other descriptors, whereas the solid line shows the labeling accuracy achieved using only the 
VSC.

Fig. 6. Logarithmic values of the extraction times (in seconds) for the descriptors that were considered in this experiment.

4.3. Extraction time

The extraction times for the VSC and the other 7 descriptors (CUR, PSV, SC, AGD, SDF, VSI, and SI) were compared in this 
experiment. The same bin division resolutions used in Section 4.2 were adopted, and the voxelization resolution was set to 
20. The SC and AGD were extracted together to reduce the necessary extraction time because they both rely on geodesic 
distances. The SDF and VSI were also extracted together because of their similarity. The experiments were performed on a 
PC with an Intel Core i7-4790 4 GHz CPU (only one CPU core was used) and 32 GB of RAM. The extraction times for the 
descriptors are shown in Fig. 6.

The automatic auxiliary orientation estimation procedure requires only an additional 0.03 seconds, so the automatic and 
interactive VSCs are not distinguished here. The experimental results show that approximately 29 seconds on average is 
required to extract the VSC. This is a much shorter time than that required for “SDF+VSI” or “SC+AGD”, primarily because 
an additional voxelization step is applied to speed up the extraction process.
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Fig. 7. Descriptor selection results. The length of each bar represents the percentage of being selected by JointBoost. The interactive VSC was used in Case 1, 
and the automatic VSC was used in Case 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 8. Labeling accuracy achieved using a single descriptor (VSC) for mesh segmentation and labeling.

4.4. Descriptor selection

In this experiment, in each of the 95 groups (19 categories, each containing 5 groups, as described in Section 4.1), 
the VSC and the other 7 descriptors (CUR, PSV, SC, AGD, SDF, VSI, and SI) were adopted in the segmentation, and the 
descriptor vectors of these 8 descriptors were simply concatenated into a new descriptor vector. JointBoost automatically 
selected suitable elements one by one from the new descriptor vector. When an element is selected, we also say that 
the descriptor to which this element originally belongs is selected. A descriptor is considered to be more descriptive if its 
elements are selected earlier and more frequently by JointBoost. The experiments were performed in 2 cases: the interactive 
VSC was adopted in Case 1, and the automatic VSC was adopted in Case 2. We compare these 8 descriptors, according to the 
frequency of their elements being selected as the first element/in the first ten elements/in all the elements by JointBoost, 
in all the 95 groups.

The descriptor selection results are shown in Fig. 7. In terms of their frequency and order of selection, the VSC, SC 
and VSI are the 3 most descriptive descriptors. Moreover, regardless of whether the auxiliary orientations were estimated 
interactively or automatically, the VSC was most frequently selected as the first descriptor, demonstrating its descriptiveness.

4.5. Labeling results obtained using a single descriptor

Although almost all co-segmentation methods employ more than one descriptor in their approaches, we tested the 
labeling results obtained using a single descriptor to compare the descriptiveness of the descriptors.

As shown in Fig. 8, the VSC, SC, SI and VSI are the most descriptive descriptors. The labeling accuracy obtained using the 
interactive VSC is the highest. The accuracy decreases with the automatic VSC, but it remains higher than those of the other 
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Fig. 9. Decrease in labeling accuracy upon the removal of a descriptor. The interactive VSC was considered in (a), and the automatic VSC was considered 
in (b). A negative value means that the labeling accuracy increases upon the removal of the corresponding descriptor.

5 descriptors. Therefore, the VSC is among the most descriptive descriptors, regardless of whether the auxiliary orientations 
are estimated interactively or automatically.

4.6. Labeling results obtained using multiple descriptors

In most co-segmentation approaches, multiple descriptors are used in combination; therefore, the labeling results ob-
tained using multiple descriptors can better reflect the descriptiveness of the descriptors in practice. All 8 descriptors were 
initially employed, and one was then removed to test the extent to which the labeling accuracy would decrease. A descriptor 
was considered more useful if the labeling accuracy decreased to a greater extent upon its removal.

The interactive and automatic VSCs were evaluated separately. For the interactive VSC, the labeling accuracy obtained 
using all 8 descriptors was 84.15%, whereas the labeling accuracy was 82.94% for the automatic VSC. Fig. 9(a) shows that 
the labeling accuracy decreased by 2% upon the removal of the interactive VSC, a much larger decrease than those for the 
other 7 descriptors. Fig. 9(b) shows that the labeling accuracy decreased by more than 1% upon the removal of the automatic 
VSC, SC or CUR, thereby demonstrating the descriptiveness of them.

A descriptor is useful if it is descriptive and provides significantly different information from that offered by the existing 
descriptors. If a descriptor is not sufficiently descriptive, then the labeling accuracy will not markedly decrease upon its 
removal. If a descriptor provides information that is similar to that offered by the existing descriptors, it will be effectively 
replaced by the other descriptors upon its removal, and again, the labeling accuracy will not markedly decrease. Therefore, 
the results of this experiment prove that the VSC not only is descriptive but also provides information that is considerably 
difference from that offered by the existing descriptors.

4.7. Consistency of the auxiliary orientations

In this experiment, we analyzed the results of auxiliary orientation estimation obtained using 3 different methods: 
human interaction, the simple PCA method and the context-based PCA method. Because the simple PCA method can extract 
only an undirected axis for a model, we used the following simple method to assign a direction to this axis. We first defined 
a vector beginning at the center of the bounding sphere of the model and ending at the center of gravity of the model. 
Then, the axis was assigned the direction for which the angle between the directed axis and this vector was no more than 
π/2.

The simple PCA method was found to work well for certain categories, such as the human body category and the bearing 
category, but poorly for others, such as the airplane category and the teddy bear category. In the airplane category, 10 of 
the auxiliary orientations pointed to the head, 4 pointed to the wing and 6 pointed to the tail; therefore, there were 10 
auxiliary orientations that were inconsistent with the others. In the teddy bear category, 3 of the auxiliary orientations 
were inconsistent with the other 17. By contrast, in the case of the context-based method, only 1 auxiliary orientation was 
inconsistent with the other 19 for the airplane category, and all auxiliary orientations were consistent for the teddy bear 
category. The auxiliary orientations obtained using the simple PCA method and the context-based method are depicted in 
Fig. 10.
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Fig. 10. Comparison of orientation consistency between the results of the simple PCA method and the context-based PCA method. In (a) and (c), the 
orientations were estimated using the simple PCA method; in (b) and (d), they were estimated using the context-based method. Each subfigure contains 
20 models, and models with consistent orientations are grouped together. Because the models of airplanes are symmetrical, auxiliary orientations pointing 
to both wings are considered to be consistent. The colors show the manual ground-truth segmentations. (For interpretation of the colors in this figure, the 
reader is referred to the web version of this article.)

The experimental results show that the context-based PCA method yields better consistency in auxiliary orientation and 
better labeling results than does the simple PCA method. Among these 3 auxiliary orientation estimation methods, the 
human interaction method exhibits the best performance.

5. Conclusions and future work

In this paper, we propose a novel 3D descriptor for mesh co-segmentation named the “volumetric shape context” (VSC), 
which describes the volume distribution of a mesh. The performance of this descriptor relies on the auxiliary orientations 
extracted from the mesh; therefore, we also propose an interactive method and an automatic context-based method of 
estimating the auxiliary orientations. The experimental results prove that the VSC offers state-of-the-art descriptiveness 
and can significantly improve the results of segmentation and labeling when it is employed in combination with other 
descriptors, regardless of which auxiliary orientation estimation method is applied.

Although the VSC obtained using the automatic context-based auxiliary orientation estimation method has been proven 
to be descriptive, the context-based method was not meticulously designed. In our future work, we plan to further improve 
the performance of the context-based method. For example, the symmetry of the models could be considered. At present, 
we select the best direction from among 6 possible directions; however, we could also design an algorithm to select the 
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best direction from among all possible directions. Moreover, the consistency of the auxiliary orientations is still an open 
problem, and the VSC would benefit from the proposal of other effective automatic methods for their extraction.

The VSC is designed for use in mesh co-segmentation, including supervised, unsupervised and semi-supervised ap-
proaches. In our experiments, the VSC was successfully applied in a supervised approach, but the parameters used in our 
experiments may not be suitable for use in unsupervised or semi-supervised approaches. Therefore, it will be necessary to 
investigate what values of the parameters are most suitable in these cases.
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