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We present a real-time algorithm for computing the Voronoi diagram of planar freeform 
piecewise-spiral curves. The efficiency and robustness of our algorithm is based on a simple 
topological structure of Voronoi cells for spirals, which also enables us a direct construction 
of Voronoi structure without relying on intermediate polygonal or biarc approximations to 
the given planar curves. Using a Möbius transformation, we provide an efficient search 
for maximal disks. The correct topology of Voronoi diagram is computed by sampling 
maximal disks systematically, which entails subdividing spirals until each belongs to a 
pair/triple of spirals under a certain matching condition. The matching pairs and triples 
serve as the basic building blocks for bisectors and bifurcations, and their connectivity 
implies the Voronoi structure. We demonstrate a real-time performance of our algorithm 
using experimental results including the medial axis computation for planar regions under 
deformation with non-trivial self-intersections and the Voronoi diagram construction for 
disconnected planar freeform curves.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Voronoi diagram is a partition of space into cells, each containing points closer to a specific site than to any other sites 
(Aurenhammer, 1991; Okabe et al., 2000). Common boundaries of adjacent Voronoi cells can be used for the construc-
tion of Medial Axis Transform (MAT) or Skeleton, a powerful shape descriptor originally introduced by Blum (1967, 1973). 
Nevertheless, the skeleton may not always be constructed by removing some redundancies from the common boundaries. 
(There may be certain skeletal parts missing from the Voronoi edges when some non-convex sites have self-bisectors in 
the interior of their Voronoi cells.) To avoid this problem, we consider sites which are spirals. (Spiral curve is a curvature 
monotone planar curve with no inflection point in the curve interior Barton and Elber, 2011; Meek and Walton 1995, 1999.)
Spirals provide many useful geometric properties for the development of efficient and robust algorithms for planar curves 
(Aichholzer et al. 2009, 2010; Lee et al. 2015a, 2015b; Oh et al., 2012).

Regarding the construction of Voronoi diagram and medial axis for planar freeform curves, the segmentation into spirals 
makes the computation of topological structures very stable (Aichholzer et al. 2007, 2009, 2010; Aigner, 2007). Motivated 
by the theoretical guarantee on the convergence of the medial axis for spiral biarc spline approximation to the exact medial 
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Fig. 1. A spiral curve C(t) =
(

1
2 t2,−t

)
, 0 ≤ t ≤ 1, and its Voronoi diagram: the regions of different color correspond to the Voronoi cells of C(0), C(1), and 

the curve interior. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 2. Voronoi diagram for three spiral curves and their endpoints. (For interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)

Fig. 3. Lower envelope of distance maps.

axis of the original curve (Aichholzer et al., 2007; Aigner, 2007), we develop an algorithm that accelerates the construction 
of Voronoi cells for planar spiral curves by directly computing the correct topology of Voronoi diagram using a small num-
ber of properly sampled maximal touching disks to the original freeform curves. The theoretical guarantee on the correct 
topology (in a finite number of sampling steps) also leads to the efficiency and robustness of our algorithm in practice. 
The bifurcation locations can be computed precisely using a numerical method (Hu and Wallner, 2005). The sequence of 
bisectors connecting bifurcations and terminals can be constructed very efficiently (within a given Hausdorff error bound) 
using the conic bisectors between spiral biarc approximations to the given planar curves (Aichholzer et al. 2007, 2009, 2010; 
Aigner, 2007).
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Fig. 4. Colored region R for a matching pair or triple: (a) two matching curves, (b) three matching curves subdivided to three pairs of matching curves, and 
(c) four matching curves subdivided to two triples of matching curves. (For interpretation of the references to color in this figure, the reader is referred to 
the web version of this article.)

Before proceeding with the algorithm, we first illustrate a few simple examples. Given a spiral C(t) =
(

1
2 t2,−t

)
, 0 ≤ t ≤

1, Fig. 1 shows three Voronoi cells that correspond to the disjoint sites: s0 = {C(0)}, s1 = {C(t) | 0 < t < 1}, and s2 = {C(1)}. 
The curve B(t) =

(
1 + 3

4 t2, 1
4 t3

)
, 0 < t < 1, is a bisector between a point s0 and the curve s1, and the borderline L (between 

the Voronoi cells for s0 and s2) is on the bisector between C(0) and C(1). The evolute curve of C(t), i.e., E(t) =
(

1 + 3
2 t2, t3

)
, 

is totally contained in the Voronoi cell of C(0); thus the spiral C(t), 0 < t < 1, has no self-bisector in its own Voronoi cell. 
This example is generic in the sense that all inflection-free spiral curves (also monotone along the x and y directions) have 
the same Voronoi cell structure as the one shown in Fig. 1.

Overlaying two simple Voronoi diagrams for spirals, we can construct the Voronoi diagram for two spiral curves. As 
shown in Figs. 2(a)–(b), each Voronoi cell for a spiral is bounded by relatively simple bisector curves and there appears no 
bifurcation point (with three or more branches) where three different curve–curve bisectors can meet. As shown in Fig. 2
with different colors, it is convenient to treat the convex and concave sides of a spiral curve C(t) as different sites, i.e., 
C+(t) and C−(t), with their respective normals facing to two opposite directions. Curve endpoints are considered as circular 
arcs spanning angle π but with radius 0. When two spirals share a common endpoint at a sharp corner, we assign a range 
of normal angles to the convex side of the point, but no angle to the concave side. Similarly, when two spirals intersect 
transversally at a point, we split them into four spirals and assign no angle to the intersection point as the four sides are 
all concave.

Now to discuss the case of three spirals (which may have a bifurcation), we use the lower envelope concept of Hanniel 
et al. (2007), which provides a direct translation of the definition of Voronoi cell to a graphical form. Fig. 3(a) shows the 
lower envelope of the distance maps from the spiral (except the endpoints) in the lower right to the bisectors with the 
spiral (including the two endpoints) in the upper left (see Fig. 2(a)). Note that the lower envelope represents the distance 
maps to three different bisectors, two point-curve bisectors and one curve–curve bisector. Similarly, Fig. 3(b) shows the 
lower envelope of the distance maps from the lower-right spiral to another spiral in the upper right (see Fig. 2(b)). Finally, 
Fig. 3(c) shows the lower envelope of the two lower envelopes, which represents the distance maps from the lower-right 
spiral to the bisectors with the other two spirals (see Fig. 2(c)). In this example, there is a crossing between the first 
two lower envelopes, which corresponds to a bifurcation for the three spirals. One may wonder why there exists a unique 
bifurcation for this configuration of three spirals. We answer this question below.

Figs. 4(a)–(b) show the two base cases of our algorithm. An initial setup of our algorithm (Section 5) will clear other 
spirals from the colored region. Then, the first case of two matching spirals has no bifurcation (Fig. 4(a)). Using the lower 
envelope of the distance maps from C(t) to the bisectors with D(u) and E(v), the existence of bifurcation can be shown 
for the second case (Fig. 4(b)). The uniqueness of bifurcation is a direct consequence of splitting a matching triple to three 
matching pairs (Fig. 4(b)), where each pair produces no further bifurcation. The existence of a unique bifurcation for each 
matching triple plays a pivotal role in the acceleration of our spiral-based algorithm and also in computing the correct 
topology of Voronoi diagram. By sampling maximal disks in a systematic way (see Fig. 4(c) and more details in Section 5), 
the bifurcation problem (for computing the correct topology) can be reduced to a number of subproblems, where each 
belongs to one of two base cases: (i) a matching pair of spirals with no bifurcation (Fig. 4(a)) or (ii) a matching triple of 
spirals with a unique bifurcation (Fig. 4(b)).

For an efficient computation of maximal disk O t , we introduce a Möbius transformation that converts all tangent circles 
to parallel lines and reduces the problem to a numerical search in the parameter domain of a scalar function (see more 
details in Section 4). In the final stage of the Voronoi diagram construction, we approximate the bisectors with low degree 
curves (e.g., conics). (The exact bisectors are, in general, algebraic curves of extremely high degree, Elber and Kim, 1998.) 
For estimating the Hausdorff distance error in the bisector approximation, Aichholzer et al. (2009) used an upper bound: 
4ε/[1 − cos(ξ/2)], where ξ is the angle between the two lines from the center of O t to the two touching points. As this 
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bound can be very large for a small value of ξ , in Section 5.3, we develop a different method that bounds the error more 
efficiently in this special case.

The rest of this paper is organized as follows. In Section 2, we briefly review related previous work on computing the 
Voronoi diagram and the medial axis for planar freeform curves. We then explain the basic ideas in Section 3, by illustrating 
the construction steps for a simple example. Section 4 presents a transformation technique that converts the search for 
maximal disk to a function optimization problem. In Section 5, we discuss how to construct the Voronoi cells of spirals 
with a correct topology of bifurcations and also bound the Hausdorff distance error in the bisector curve approximation. 
Some experimental results are presented in Section 6, and finally, Section 7 concludes the paper.

2. Related work

Early developments (mostly in the area of computational geometry) for computing the Voronoi diagram and medial axis 
transformation of discrete objects (such as points, line segments, polygons, polyhedra, and even circles and circular arcs) 
are very well documented in an extensive literature survey of Aurenhammer (1991). This section thus mainly focuses on 
the Voronoi diagram and medial axis constructions and other related geometric computations on planar freeform curved 
objects.

Lavender et al. (1992) made the first attempt to construct the Voronoi diagram for general curved sites, given as set-
theoretical solid models. Using a divide-and-conquer construction scheme for set models, the algorithm generates the 
Voronoi diagram in a quadtree/octree representation. In the case of handling planar sites in 2D, the same representation 
can be computed considerably more efficiently in real-time using a graphics hardware-based method of Hoff et al. (1999). 
Nevertheless, the precision of geometric computation is limited to an image resolution as is often the case in the majority 
of image processing applications.

For CAD/CAM applications, Chou (1995) proposed a solution to the medial axis construction for planar simply-connected 
curved regions, where a fast numerical method was used for tracing the bisector curves on the medial axis. Farouki and 
Ramamurthy (1998) presented a bisector tracing technique using the envelope of point-curve bisector curves. By marching 
along the boundary curves (instead of tracing along the bisector curves on the medial axis), Ramanathan and Gurumoorthy
(2003) extended the medial axis construction to the general multi-connected planar curved regions possibly with interior 
holes. In the current work, we also take an approach that moves along each spiral curve but the conceptual paradigm is 
based on the lower envelope scheme for the Voronoi cell construction of Hanniel and Elber (2009) while the spiral curves 
greatly simply the envelope structure of distance maps.

Seong et al. (2008) focused on the construction of bifurcation points by solving a set of polynomial equations. Using os-
culating circles of spirals, we present an efficient method for computing bifurcation points, which can be made numerically 
stable even for degenerate cases based on the curvature monotonicity of spiral. Though not needed for the current work, 
the saddle point computation of Cao et al. (2011) can also be significantly accelerated and numerically stabilized using 
osculating circles of spirals.

Spiral segmentation accelerates many other distance-related geometric computations as well. For example, using the 
properties of spiral, Oh et al. (2012) greatly simplified the point projection problem, i.e., the problem of projecting points 
to the nearest footpoints on the planar rational curves. Using a dynamic bounding volume hierarchy of bounding circular 
arcs (BCAs) efficiently generated for deformable spiral curves, Lee et al. (2015a) accelerated the offset curve trimming for 
planar freeform curves. There are also other types of tight bounding volumes such as spiral fat arcs (Barton and Elber, 
2011) and bilens (Kurnosenko, 2013) which have great potential in accelerating other types of geometric computations. 
Spiral segmentation also provides a handy tool for proving the cubic convergence of biarc approximation to freeform planar 
curves (Meek and Walton 1995, 1999).

Choi et al. (1997) introduced an important construction paradigm, the so-called domain decomposition, which greatly 
simplifies the medial axis computation for planar regions. They used maximal disks to split the medial axis into simple 
components. Based on the domain decomposition paradigm, Aichholzer et al. (2009, 2010) introduced a spiral biarc-based 
approach to develop an efficient and robust algorithm for computing the medial axis of planar freeform shapes. The 
G1-continuity of biarcs eliminates many artifacts arising from the polygonal approximation of planar curves. Moreover, the 
spiral biarc approximation is essential in the preservation of the topological structure of medial axis (Aichholzer et al., 2007;
Aigner, 2007).

Motivated by the preservation of topology under spiral biarc approximation (Aichholzer et al., 2007; Aigner, 2007), we 
take a direct approach to computing the correct topology of Voronoi diagram. We show that some important properties 
of the spiral biarc-based approach Aichholzer et al. (2009, 2010) can be preserved to our case using relatively simple 
topological arguments. The main advantage of our spiral-based algorithm is that we have only two base cases (i.e., matching 
pairs or triples) to consider and they can be determined more efficiently.

3. Example of medial axis construction

We explain the basic construction steps for our algorithm using an illustrative example. Fig. 5(a) shows a planar simply-
connected region bounded by a closed cubic B-spline curve. The boundary curve is first segmented into inflection-free 
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Fig. 5. Example of medial axis construction. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

curvature monotone spirals which are also monotone along the x and y-directions. At each endpoint of spiral, the maxi-
mal disk is computed. The mapping from each endpoint (black dot) to the disk center (red arrow) and then to the other 
touching point (blue arrow) is shown in Fig. 5(a). We further segment the spirals at the touching points. The curvature max-
imum (convex) endpoints are shown with bidirectional arrows (green) to the centers of osculating maximal disks, which 
correspond to the terminal points of the medial axis.

When two spirals C(t) and D(u) share the same maximal disks at their endpoints, they form a matching pair and 
generate a bisector curve segment on the medial axis. The bisector between two matching spirals has no self-intersection, 
i.e., no bifurcation may occur in this part of the medial axis.

Now we consider three spirals C(t), D(u), E(v), each pair of which share only one maximal disk at their respective 
endpoints. The three spirals form a matching triple and they generate a bifurcation point with three branches of bisectors, 
each of which is generated by a pair of spirals. The bifurcation point is the center of a common tangent disk to the three 
spirals. The existence of bifurcation for a matching triple can be proven using the lower envelope of two distance maps (see 
related discussions in Introduction). By subdividing the three spirals at their touching points (with the common tangent 
disk), we have three matching pairs of spirals, each of which generates a bifurcation-free bisector segment. This proves the 
uniqueness of bifurcation for a matching triple.

In Fig. 5(a), there is one matching triple (with the rightmost endpoint and the rightmost green arrow), which is special 
in that two spirals share not only the same maximal disk but also their common endpoint. This triple generates a terminal 
point as well as a bifurcation. Fig. 5(a) also shows a region (shaded) with a matching quadruple of spirals. When we 
subdivide the spiral on the right, the four-spiral region is reduced only in size but not in the number of spirals. Subdividing 
the spiral at the bottom, we can finally split the region into two subregions, each with a matching triple of spirals. Fig. 5(b) 
shows the result of medial axis construction after the above two subdivisions of spirals. The topology of medial axis is the 
same as the connection structure of the matching pairs and triples. Multiply-connected regions can be handled in a similar 
way by converting them to simply-connected ones as shown in Fig. 5(c).

Replacing spirals by spiral biarcs, we can show that the matching conditions and the uniqueness of bifurcation also hold 
in the same way. This is a direct proof for the preservation of topology under spiral biarc approximation (Aichholzer et al., 
2007; Aigner, 2007).

4. Efficient search for maximal disk

Each interior point p on an oriented spiral curve C(t) has a unique normal line LN (t) along the normal direction N(t)
of the curve. The maximal disk touching at p will have its center located on the normal line LN (t). Once we can efficiently 
compute the radius of maximal disk for each p, the Voronoi diagram construction is essentially done for the spiral curve 
C(t). For the sake of simplicity of presentation, by translation and rotation if necessary, we assume p is located at the origin 
(0, 0) and the curve C(t) is tangent to the y-axis at the origin and with (1, 0) as its unit normal. The circles tangent at the 
origin (0, 0) is given in the following form:

(x − r)2 + y2 = r2, or
x2 + y2

2x
= r > 0.

If the maximal circle has another contact point at a different spiral curve Di(u) = (xi(u), yi(u)), 0 ≤ u ≤ 1, the corresponding 
radius r > 0 will be the minimum among all such values:

r = min
u

[
x2

i (u) + y2
i (u)

2xi(u)

]
> 0.
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Fig. 6. Inversion of the maximal inscribed tangent circle to the rightmost tangent line along the y-direction.

The search for the minimum radius can be done equivalently by the search for the maximum of its reciprocal:

1/r = max
u

[
2xi(u)

x2
i (u) + y2

i (u)

]
> 0.

There are some computational advantages of taking this reciprocal approach. First of all, there needs no special consideration 
of the case xi(u) ≤ 0 and this function converges to the radius of curvature of C(t) when Di(u) is taken as the curve C(t)
itself and u → t . (In the current work for spirals only, we filter out these cases from further consideration; but these 
properties are useful for other distance-related applications.) More importantly, the inversion 1/z (of the representation z
of a point (x, y) as a complex number z = x + yi) transforms all circles tangent at (0, 0) to the y-axis to lines parallel to 
the y-axis and all other circles to circles, and thus bounding circular arcs of Di(u) to similar ones (except those containing 
the origin (0, 0), which can easily be detected and replaced by others). Fig. 6 shows the result of inverting a planar closed 
curve, where the maximal circle is converted to the rightmost tangent line along the y-direction. As in this example, it is 
usually relatively easy to find the range of parameters [u1, u2] where the exact touching parameter u of Di(u) is contained 
(e.g., via a simple overlap test for a hierarchy of bounding circular arcs of Di(u) against a tangent disk slightly larger than 
the maximal disk). The parameter u itself can be found more efficiently using numerical iterations near the exact solution.

5. Construction of the Voronoi diagram

We first start with computing maximal disks at the endpoints of all spirals. For the sake of simplicity in designing algo-
rithm and proving its correctness, we assume that all spiral curves are segmented into non-self-intersecting, inflection-free, 
and x and y-monotone pieces, and each is further segmented into smaller pieces at the touching points of maximal disks 
constructed in the initial step. (See more details in Section 6.)

5.1. Voronoi cell for a spiral curve

Given a spiral C(t) (0 ≤ t ≤ 1), we consider a matching spiral D(u) (0 ≤ u ≤ 1), sharing a maximal disk O 0 touching at 
C(0) and D(0), and similarly a matching spiral E(v) (0 ≤ v ≤ 1), sharing a maximal disk O 1 touching at C(1) and E(1). (We 
assume that the proper side of each spiral is under consideration with suitable reparameterization. Degenerate circular arcs 
of radius 0 are also treated as spirals in a similar manner.) There are three different cases to consider.

1. D(u) and E(v) are the same spiral. (This means that C(t) and D(u) form a matching pair.) Then there should be no 
other spiral in the region R bounded by C(t), D(u), and the two disks O 0 and O 1 (see Fig. 4(a)). Suppose there were 
some other spirals inside R; then, the maximal disks at some spiral endpoints (e.g., the y-extreme endpoints among 
these other spirals) would touch C(t) or D(u) in the curve interior. This is a contradiction to the segmentation of C(t)
and D(u) so that no further touching point could appear in the curve interior. By inserting the bisector of C(t) and 
D(u) in the middle of R , the Voronoi cell for C(t) can be constructed, and similarly for D(u).

2. D(u) and E(v) share a maximal disk Ô touching at D(1) and E(0). (This means that C(t), D(u), and E(v) form a 
matching triple.) Then we detect a bifurcation point where the maximal disk O t of C(t) (0 ≤ t ≤ 1), changes the 
matching curve from D(u) to E(v) at some t = t∗ . (See Fig. 4(b).) We discuss more details in Section 5.2.

3. Otherwise, there is a unique sequence of spirals Ci ’s, i = 1, · · · , N (starting from C1 = D and ending at CN = E), where 
each pair of consecutive spirals share a maximal disk at their proper endpoints. We show that the problem can be 
reduced to the base cases of matching pairs and triples, or to subproblems of smaller size by recursive subdivision, 
which provides a proof by construction for the termination of algorithm. There are three different cases to consider.
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(a) There exists a common tangent disk for C(t), D(u), E(v) which is also a maximal disk for C(t) at some curve 
interior. Then we break each of C(t), D(u), E(v) into two pieces at their respective touching parameters t = t∗ , 
u = u∗ , v = v∗ . (See the discussion in Section 5.2.) By inserting bisectors, we construct the Voronoi cells for C(t)
(0 ≤ t ≤ t∗), and D(u) (0 ≤ u ≤ u∗), and also the Voronoi cells for C(t) (t∗ ≤ t ≤ 1), and E(v) (v∗ ≤ v ≤ 1). The 
problem is reduced to a subproblem with a shorter sequence of spirals.

(b) The common tangent disk exists but contains some other spiral in its interior. As shown in Fig. 4(c), we compute 
the maximal disk O ∗ of C(t) at the touching parameter t = t∗ , and find the matching spiral F (s) (0 ≤ s ≤ 1). (Since 
there are only a finite number of spirals, F (s) = Ck(s), for some 2 ≤ k ≤ N −1; otherwise, we could construct another 
sequence of matching Ci ’s from D to E , which is impossible.) After breaking each of C(t) and F (s) into two pieces 
at the touching parameters t = t∗ and s = s∗ , we repeat the construction recursively with two reduced subproblems, 
each with a shorter sequence of Ci ’s. At the end of the recursion, we will end up with each subproblem with only 
three spirals to deal with.

(c) There is no common tangent disk for C(t), D(u), E(v) (e.g., when D(u) and E(v) are very short and almost flat). 
Using a bisection search, we can find a matching spiral Ck(s), for some 2 ≤ k ≤ N − 1, and repeat the construction.

5.2. Detecting bifurcations

Given a matching triple of spirals C(t), D(u), E(v), each pair of which sharing a maximal disk at their respective end-
points, we first compute a common tangent disk O ∗ to the three spirals at some parameters: 0 < t = t∗ , u = u∗ , v = v∗ < 1, 
and the disk interior contains no part of these spirals. (An argument similar to the case of a matching pair can show that 
there can be no other spiral in the colored region R of Fig. 4(b).) We break each of C(t), D(u), and E(v) into two pieces 
at t = t∗ , u = u∗ , and v = v∗ . By inserting bisectors, we construct the first-half Voronoi cell for C(t) (0 ≤ t ≤ t∗), using 
the bisector with D(u) (0 ≤ u ≤ u∗), and the second-half Voronoi cell for C(t) (t∗ ≤ t ≤ 1), using the bisector with E(v)

(v∗ ≤ v ≤ 1). The Voronoi cells for D(u) and E(v) can also be constructed in a similar way.
A common tangent circle to three spirals can be computed using a generalized version of the Apollonius problem (Elber 

and Kim, 2001). Instead of solving a system of trivariate polynomial equations, in the current work, we apply a numerical 
improvement procedure to three sequences of osculating circles to the spirals C(t), D(u), E(v), and efficiently compute 
the common tangent circle with a correct orientation to the three osculating circles. The touching points on the osculating 
circles are then projected back to the three spirals (Hu and Wallner, 2005) and the iteration can be repeated. The approach 
of using osculating circles has been observed to be numerically stable; nevertheless, the convergence to the exact solution 
can be slowed down in various situations where the osculating circles do not provide a good approximation to the real 
geometry. In the case of slow convergence, we switch to a bisection method which guarantees at least a linear convergence 
to the exact solution.

The bisection approach is also a good method of choice for resolving numerical instabilities that may arise in this 
problem. In the case of multiple matching spirals C(t), D(u), E(v), F (s), · · · , by subdividing at the mid-parameter of each 
spiral in this order and iterating if necessary, we can end up with the base cases of matching pairs and triples. Degenerate 
bifurcation, with four or more branches at the same point, can be detected from a common tangent circle that touches 
some spiral(s) other than the three constructor spirals.

5.3. Bounding Hausdorff distance error in bisector construction

Aichholzer et al. (2009) approximated the exact bisector curve using the bisectors (conics) for spiral biarc approximation 
to the boundary curve. They used an upper bound: 4ε/[1 − cos(ξ/2)], for estimating the Hausdorff distance error in the 
bisector construction, where ε is the error in the spiral biarc approximation and ξ ∈ [0, π ] is the angle between the two 
lines from the disk center to the two touching points on the matching spirals. This closed-form formula provides an efficient 
algorithm for bounding the bisector approximation error. Nevertheless, when the angle ξ approaches to zero, the upper 
bound can be unnecessarily large. Thus, for the case of small values of ξ , we develop a different method for bounding the 
error tightly.

The exact bisector of two spirals is totally contained in the common intersection of the Voronoi cells for the two spirals. 
Fig. 1 shows that the Voronoi cell for the concave side of C(t) is bounded by two line segments and a bisector curve B(t). 
Replacing B(t) by the chord line segment connecting B(0) and B(1), we can generate a slightly enlarged region, bounded 
by C(t) and three line segments. (Any superset of Voronoi cell may serve for the purpose of enclosing the exact bisector.) 
Fig. 7 shows two examples where the exact bisector is contained in a quadrangle, which is the intersection of two such 
supersets (each enclosing the respective Voronoi cell). In Fig. 7(a), the left corner of the yellow quadrangle is the bisector 
terminal point and the right corner is the intersection between the two normal lines at the other (curvature-minimum) 
endpoints of two spirals. On the other hand, in Fig. 7(b), the left corner is the intersection between two normal lines at 
the inner (curvature-maximum) endpoints of two spirals. The thickness of quadrangle provides a simple upper bound for 
the Hausdorff distance error in the bisector curve approximation. The examples of Fig. 7 illustrate typical cases where a 
small value of ξ may occur. Two almost flat concave spirals sharing a common endpoint at their curvature maximum may 
generate an almost linear bisector curve, for which our geometric error bound provides an effective way of estimating the 
approximation error.
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Fig. 7. Exact bisector is contained in a quadrangle. (For interpretation of the references to color in this figure, the reader is referred to the web version of 
this article.)

Fig. 8. Computing time for the correct topology and the total construction complete with bisector approximation: (a) the medial axis and (b) the Voronoi 
diagram, where the horizontal axis displays the frame numbers of the 800 test examples in an animation sequence, some snapshots of which are shown in 
Figs. 9 and 10.

In the current work, employing the bisector construction method of Aichholzer et al. (2009), we approximate the exact 
bisector (typically high-degree algebraic curves) using the exact bisectors (conics) of spiral biarc approximation. Even in the 
case of small values of ξ , the spiral biarcs produce their bisectors (conics) within the geometric error bound estimated by 
our method discussed above. In the case of small values of ξ , we can alternatively use biarcs (conics) interpolating the 
boundary conditions of exact bisectors, as it is quite easy to test the containment of biarcs in bounding quadrangles. This is 
the approach we have taken in our experiments to be reported in the following section.

6. Experimental results

We have implemented our Voronoi diagram construction algorithm in C++ on an Intel Core i7-4790 3.6GHz PC with 
an 8GB main memory. To demonstrate the effectiveness of our approach, we have tested our algorithm to the same 800 
examples of planar freeform curves that had been used in the experiments of Lee et al. (2015a) for offset curve trimming, 
where the spiral segmentation was also applied to the freeform curves in each example. (Details of the test results are 
reported in Figs. 8–10.) Some of these planar curves have non-trivial self-intersections and sharp corners. (The computation 
of all self-intersection points can be done efficiently using a hierarchy of bounding circular arcs in a similar way as in the 
offset self-intersection computation, Lee et al., 2015a. Moreover, sharp corners are handled as degenerate arcs in the same 
way as they were used for generating circular offset arcs.) This means that the medial axis (in the conventional sense) 
may not be well-defined for the self-intersecting curves. Nevertheless, there are still a finite number of closed regions, each 
bounded by piecewise continuous planar freeform curves. We compute the medial axis for each of these bounded planar 
regions using the Voronoi cell structure for the spirals on the boundary freeform curves.

Fig. 8(a) reports the computing time for determining the correct topology of medial axes for the bounded planar regions 
(in each of the 800 examples), and a complete medial axis construction within a given Hausdorff distance error bound of 
10−5, where all the freeform curves are defined in the normalized window of [−1, 1] × [−1, 1]. Both the topology and the 
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Fig. 9. Snapshots of medial axis construction for planar regions bounded by deformable planar periodic B-spline curves.

Fig. 10. Snapshots of Voronoi diagram construction for deformable planar disconnected B-spline curves.

bisector curve approximations (using conics) for each of these complex examples can be computed in real-time. Fig. 9 shows 
24 snapshots taken from the 800 construction results of medial axes for planar bounded regions.

By taking only alternating curve segments from a connected sequence of piecewise continuous curves in each example, 
we can generate a large number of disconnected freeform curves, each of which can be considered as a degenerate closed 
planar region of empty area. Fig. 8(b) reports a real-time performance for computing the correct topology of Voronoi dia-
gram for these disconnected planar freeform curves, and also a construction of Voronoi diagram, complete with the bisector 
curve’s approximations (using conics), within a given Hausdorff distance error bound of 10−5. Fig. 10 shows 24 snapshots 
taken from the 800 construction results of the Voronoi diagram.

Fig. 11 shows the results from testing the medial axis algorithm to four highly complex planar shapes. Because of the 
large input size, it is difficult to support a real-time performance for these test models. The table at the bottom of each 
example shows (i) the number of control points for a periodic cubic B-spline curve, (ii) the number of spirals, (iii) the 
computing time for determining the correct topology, and (iv) the total computing time for the medial axis construction 
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Fig. 11. Medial axis construction for highly complex examples.

Fig. 12. Change of topology in (a) the boundary curve approximation and (b) the medial axis. (For interpretation of the references to color in this figure, 
the reader is referred to the web version of this article.)

complete with the bisector approximation. Though the example of Fig. 11(c) has a smaller number of B-spline control points 
than the example of Fig. 11(b), the medial axis construction takes more computing time. Because of many sharp corners, the 
shape complexity increases with a larger number of spirals. Even in this fractal-like non-trivial test example, our spiral-based 
algorithm has produced a high-precision medial axis construction with the correct topology in a numerically stable way. In 
this specific fractal model, the input size can be changed by controlling the recursion level of the fractal generation. Using 
the fractal models of different size thus generated, we have observed the expected asymptotic performance of O (n log n) in 
computing time for the medial axis construction, where n is the number of spirals and the factor of O (log n) is due to the 
divide-and-conquer style approach of our algorithm and the binary searches in the hierarchy of various bounding volumes.

A direct construction algorithm for the Voronoi structure has advantages over the conventional methods relying on 
polygonal or biarc approximations. Even in the case of highly reliable previous algorithms (Aichholzer et al. 2007, 2009,
2010; Aigner, 2007), where the convergence to the correct topology is guaranteed, it is unknown a priori which precision 
could determine the correct topology. Fig. 12 shows two examples (frames 169 and 275) from the 800 test data discussed 



J. Lee et al. / Computer Aided Geometric Design 43 (2016) 131–142 141
above. A small region in the green box of Fig. 12(a) is expanded in the right subfigure, where the biarc approximation (in 
red) has a different topology from the self-intersecting boundary curve (in black). A careful examination is needed for the 
preservation of input topology in the biarc approximation. A more difficult case is shown in Fig. 12(b), where the topology of 
bifurcation in the medial axis is changed in the construction with a biarc approximation. A careful analysis on the separation 
of bifurcations is needed to determine the correct topology. A simple solution to this problem might be to use a spiral biarc 
approximation of sufficiently high precision. Nevertheless, it is not easy to decide the required high precision. In contrast 
to this limitation, our algorithm can determine the correct topology as the result of spiral segmentations until each spiral 
belongs either to a matching pair or to a matching triple.

7. Conclusion

We have presented an efficient and robust algorithm for computing the Voronoi diagram of planar freeform curves and 
the medial axis of planar regions bounded by freeform curves. Monotone spiral segmentation of the input freeform curves 
and the maximal disks computed at the spiral endpoints greatly simplified the Voronoi cell construction algorithm for 
each spiral. The efficiency and numerical stability of the proposed approach will be useful in many 2D shape processing 
applications that are based on the medial axis structure such as the recent work of Zhu et al. (2014). In the future work, we 
plan to extend the Voronoi cell construction of Hanniel and Elber (2009) for planes, spheres, and cylinders to the general 
Voronoi cell construction for arbitrary freeform surfaces.
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