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We propose an automatic method for fast reconstruction of indoor scenes from raw 
point scans, which is a fairly challenging problem due to the restricted accessibility
and the cluttered space for indoor environment. We first detect and remove points 
representing the ground, walls and ceiling from the input data and cluster the remaining 
points into different groups, referred to as sub-scenes. Our approach abstracts the 
sub-scenes with geometric primitives, and accordingly constructs the topology graphs 
with structural attributes based on the functional parts of objects (namely, anchors). 
To decompose sub-scenes into individual indoor objects, we devise an anchor-guided
subgraph matching algorithm which leverages template graphs to partition the graphs 
into subgraphs (i.e., individual objects), which is capable of handling arbitrarily oriented 
objects within scenes. Subsequently, we present a data-driven approach to model individual 
objects, which is particularly formulated as a model instance recognition problem. 
A Randomized Decision Forest (RDF) is introduced to achieve robust recognition on 
decomposed indoor objects with raw point data. We further exploit template fitting to 
generate the geometrically faithful model to the input indoor scene. We visually and 
quantitatively evaluate the performance of our framework on a variety of synthetic and 
raw scans, which comprehensively demonstrates the efficiency and robustness of our 
reconstruction method on raw scanned point clouds, even in the presence of noise and 
heavy occlusions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

3D scene processing for both indoor and outdoor environments has been an important research problem in computer 
vision and graphics communities. Meanwhile, recent advances in scanning technology greatly improve the acquisition of 
point clouds both in speed and accuracy, which also renders point cloud processing receive increasing attention recently. 
Despite the advances in acquisition technology, the captured point cloud often suffers from severe noise and outliers, making 
the reconstruction of indoor models with faithful geometry and topology from such data rather arduous. In addition, the 
significant difficulty in indoor scans is the presence of heavy occlusions as the interior environments are usually relatively 
narrow and cluttered, even when multiple scan stations are set. Consequently, to automatically and efficiently reconstruct 
indoor scenes is particularly challenging, especially for the cluttered indoor environments with defect-laden, raw point 
clouds.
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Recent works (Nan et al., 2012; Kim et al., 2012; Shao et al., 2012) take advantage of the learning-based technique to infer 
scene segmentation, and then detect and replace multiple instances of the object within the indoor scene using for instance 
partial matching so as to achieve scene reconstruction. These methods are able to obtain promising modeling results even in 
the presence of cluttered scenes thanks to the data-driven characteristics. However, they mostly assume the indoor objects 
are placed always with the upward direction in terms of the ground floor. Once the assumption is invalid, they may fail 
in segmentation and thus reconstruction. In addition, a certain level of interactions are required during reconstruction. 
Moreover, when the level of data imperfection becomes high, they would perform relatively poor on the indoor scenes, due 
to typical clutter, missing regions and noise. The goal of our work is to automatically reconstruct cluttered indoor scenes 
with arbitrarily oriented objects from raw point scans.

We propose an automatic method for fast modeling raw point data captured from cluttered indoor scenes. As observed, 
most man-made objects of indoor scenes are assembled by parts corresponding to primitive shapes. Accordingly, we fit the 
point data of sub-scenes with primitive shapes to obtain a concise representation. Moreover, we notice that a man-made ob-
ject generally contains at least one functional structure (namely, anchor), which topologically relates to the other structures 
(i.e., primitives) of the object. Therefore, it is reasonable to construct a topology graph, formed by connecting the anchor 
to the other primitives, to represent the sub-scene. Thus, we abstract sub-scenes with the topology graphs with attributes, 
which adequately convey the geometrical and structural information of the sub-scenes. To analyze the graphs, rather than 
the original point data, we render an efficient and effective way to decompose individual objects from sub-scenes.

A sub-scene usually consists of several indoor objects. Analogously, the attributed graph comprises several subgraphs. Ac-
cordingly, we formulate sub-scene decomposition as a graph matching problem. Collecting a database of man-made indoor 
shapes, we construct the topology graphs for them, referred to as graph templates. We use the graph templates to partition 
the topology graphs into subgraphs, each of which corresponds to an individual indoor object. By constructing a matching 
similarity function, we find the correspondences between graphs by solving a maximization problem. By reducing the com-
putation complexity during optimization, we minimize the number of similarity comparisons between graphs to sparsify 
the similarity matrix. Particularly, we only measure the similarity between graph nodes sharing the same primitive type. 
Moreover, we establish candidate graph matches only starting from anchor nodes, and then restrict the comparisons only 
between edges induced from the corresponding anchor nodes. In return, the number of similarity comparisons is signifi-
cantly decreased, and our graph matching can be accomplished efficiently. As a result, the individual objects are decomposed 
from the sub-scene, while the category of each object is determined as well.

To reconstruct individual indoor objects, we present a data-driven modeling method based on the shape database. Specif-
ically, we formulate object modeling as a model instance recognition problem. To this end, a Randomized Decision Forest 
(RDF) is introduced to solve this recognition problem. We define a set of shape features for learning of the RDF classi-
fier. The features are discriminative and insensitive to noise, outliers and data sparsity. We then exploit template fitting to 
compute the transformations from database models to scanned objects, which are applied to achieve geometrically faithful 
reconstruction from the input indoor scene.

Overall, our contributions are as follows:

1. We propose a functional part-guided modeling method for cluttered indoor scenes with raw scans. It proceeds auto-
matically and results in high fidelity to input scenes.

2. We design an anchor-guided graph matching algorithm for scene decomposition, which is capable of handling scenes 
with objects arbitrarily oriented.

3. We devise a data-driven approach for object modeling based on randomized decision forest, which is robust to data 
imperfections.

1.1. Related work

There is an extensive amount of literature on scene modeling, ranging from image-based (Saxena et al., 2009; Xiao et al., 
2010; Quattoni and Torralba, 2009), RGBD-based (Izadi et al., 2011; Bo et al., 2013) to 3D point-based approaches (Frome et 
al., 2004; Rusu et al., 2008; Schnabel et al., 2008; Nan et al., 2010; Shen et al., 2011; Koppula et al., 2011; Kim et al., 2012). 
Here, we mainly focus on the most work to ours, particularly for those regarding scene modeling, scene reconstruction and 
object matching.

Scene modeling. The procedural modeling of large-scale scenes has gained much attention in recent years (Parish and Müller, 
2001; Wonka et al., 2003; Müller et al., 2006; Musialski et al., 2013). With the significant advances in 3D scanning recently, 
increasing research work has been focusing on scene reconstruction directly from 3D scan data (Shao et al., 2012; Nan et 
al., 2012; Lin et al., 2013; Arikan et al., 2013; Mattausch et al., 2014). Nan et al. (2012) used the repetition characteristic to 
model urban facades. It requires a moderate amount of user interactions to reveal the architectural structures as repetitive 
patterns. Kim et al. (2012) utilized object repeatability to reconstruct indoor scenes with basic primitives. Outdoor scenes, 
e.g. building facades, usually exhibit symmetry and repetitions, while indoor scenes are generally cluttered and objects are 
arranged randomly. We concentrate on cluttered indoor scenes without any assumption of repeatability and regularity.

Indoor scene reconstruction. Indoor scene reconstruction has also attracted plenty of research interest recently (Du et al., 2011;
Izadi et al., 2011; Ren et al., 2012; Henry et al., 2014). From a scene database, Chen et al. (2014) learned the contextual 
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Fig. 1. Overview of our modeling method. It proceeds as sub-scene clustering, decomposition and learning-based object modeling.

information to perform RGB-D data reconstruction. Oesau et al. (2014) proposed an automatic reconstruction of permanent 
structures of indoor scenes. This reconstruction work mainly focuses on the primary structures, such as walls, floors and 
ceilings, while our method copes with the relatively complicated indoor objects. Shao et al. (2012) presented an interactive 
semantic modeling approach for indoor scenes. Nan et al. (2012) introduced a search-classify scheme for indoor scene 
modeling, which assumes that all objects are placed upward on the ground floor. In contrast, our method proceeds without 
any interactions. Moreover, ours is pose-invariant and independent on the orientations of indoor objects.

Object matching. As the topology of 3D model is an important feature of the shape, there exist some matching approaches 
using topology graphs (Hilaga et al., 2001; Tal and Zuckerberger, 2007; Schnabel et al., 2008; Spina et al., 2014). Tal and 
Zuckerberger (2007) decomposed each object into its “meaningful” components at the deep concavities of the object, and 
constructed the connectivity graph based on the components. These methods are working on individual models represented 
with triangular meshes, which are usually noise-free compared with raw point scans. Moreover, compared to their models, 
our inputs, i.e., cluttered scenes, are more complex. Schnabel et al. (2008) proposed a shape recognition algorithm based 
on graph matching over building facades with 3D laser scans. It could be fairly time-consuming when the number of the 
objects within the facade is big. Moreover, the matching would fail if the actual structure graph does not exactly match one 
of pre-defined configurations. In contrast, our topology graph is guided by the functional parts of objects, which significantly 
reduces the graph matching complexity. Moreover, we are able to handle the graphs with outliers as demonstrated in Fig. 10.

2. Overview

The input to our method is the raw scan of indoor scene, represented as unorganized point clouds. Generally, man-made 
indoor object can be decomposed into parts, which can be approximately represented by geometric primitives, such as 
plane, cylinder, etc. Accordingly, we propose a novel graph-based framework for indoor scene understanding and modeling. 
Given the raw point data of an indoor scene, our goal is to automatically pose 3D models accordingly to create a faithful 
scene reconstruction. Fig. 1 presents the overview of our proposed algorithm, which essentially consists of three main stages.

Sub-scene clustering. In Section 3, we extract a set of point groups as sub-scenes from the whole indoor scene, which is 
formulated as a cluster-based partition problem. We first detect and discard points representing the ground, walls and 
ceiling from the input data, followed by clustering the remaining point cloud into different groups based on region growing 
technique. Sub-scenes are then clustered from the input scene.

Sub-scene decomposition. For each sub-scene, we decompose it into a few semantic entities (i.e., individual objects) in Sec-
tion 4. Given the point data of a sub-scene, we fit the points with geometric primitives to obtain a shape abstraction of the 
sub-scene. With these primitives, we treat the functional parts of objects as the anchors, and thereby construct the topology 
graph of the sub-scene with attributes.

Subsequently, we propose an effective algorithm to decompose sub-scenes into individual objects, which is formulated 
as a subgraph matching problem. Based on a database of models, we construct the corresponding topology graphs for them, 
namely, graph templates. On this basis, we design an anchor-based graph matching algorithm to partition the topology graph 
into subgraphs, each of which corresponds to an indoor object. As a result, all individual indoor objects are decomposed 
and classified from the sub-scene.

Scene modeling. We present a data-driven modeling algorithm for individual indoor objects in Section 5. Particularly, we 
formulate object modeling as a model instance recognition problem. It aims to retrieve the most similar object from the 
shape database to each individual object. We then exploit the template fitting technique to compute the transformations 
from database models to the scanned objects, and thus produce geometrically faithful reconstruction of the input indoor 
scene.
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3. Sub-scene clustering

In this section, we present a clustering approach to partition the indoor scene into point groups, i.e., sub-scenes. The 
points within each group are spatially close to each other, while each group is relatively far from the others.

Outliers removal. In our context, outliers refer to as the points standing for the walls, ground and ceiling. The outlier points 
are first discarded from the input point cloud, since they would be influential on the following object detection. To this end, 
we take advantage of Hough Transform to detect the planar patches from the input data. As observed, the walls, ground or 
ceiling usually form relatively large planar regions. Accordingly, the detected patches with relatively large areas would be 
regarded as outliers and thus removed. As a result, only the points of indoor objects are retained, which are of our interest.

Sub-scene clustering. The goal of this stage is to partition the scene into sub-scenes. We define a sub-scene as a combination 
of objects which are spatially close to each other, and hence a sub-scene may consist of one or more than one object. 
For each sub-scene, the associated points are geometrically close, while it is spatially away from the other sub-scenes. 
Accordingly, we design a clustering method based on the spatial distance criterium. Given a set of points P drawn from a 
union of k sub-scenes S1, S2, . . . , Sk , respectively, we are to partition all points into their corresponding sub-scenes, i.e.,

P = P1 ∪ P2 ∪ . . . ∪ Pk, s.t. ∀i, j, ‖Pi − P j‖ > ε (1)

where Pi is a set of points from Si , ε is a given distance threshold, and ‖Pi − P j‖ stands for the minimal distance between 
the pairs of points from Pi and P j , respectively.

Here, we exploit the region growing scheme to solve the clustering problem. In particular, randomly choosing an un-
clustered point as a seed, we add it into the current region and search the closest point within its nearest neighborhood, 
followed by calculating the geometric distance between them. If the distance is smaller than ε , we add the neighboring 
point into the current region and update it as the new seed. The above growing procedure is repeated iteratively until no 
more point can be added into the current region, which is then regarded as a cluster. Therefore, all points in this clus-
ter form one sub-scene. In such a way, we are able to segment the whole point set P into P1, P2, . . . , Pk . Therefore, the 
corresponding sub-scenes, S1, S2, . . . , Sk are obtained.

4. Subgraph matching based sub-scene decomposition

In this section, we present a decomposition algorithm to extract and classify individual objects from each sub-scene, 
which is converted as a subgraph matching problem. In particular, we fit the sub-scene point data with primitives. Note that 
our method can be easily extended to add more primitive shapes like sphere, cone and etc. On this basis, we construct the 
topology graph of the sub-scene guided by the functional parts of objects, referred to as anchors. Given a shape repository, 
we decompose the graph into subgraphs based on our proposed anchor-guided graph matching algorithm. As a consequence, 
all individual objects corresponding to subgraphs can be obtained within the sub-scene.

4.1. Primitive shape abstraction

It is observed that the objects of indoor scenes are generally man-made and composed of structural parts, which can 
be approximately represented by primitive shapes, such as planes and cylinders. Accordingly, to speed up processing, we 
take advantage of primitive shapes to abstract the geometry of indoor objects. For instance, a coffee table can be abstracted 
with a horizontal plane (corresponding to the top face) and four vertical cylinders (i.e., four legs). In particular, we only 
consider two types of primitives in our context, that is, plane and cylinder, which are sufficient to abstract the indoor 
objects according to our various experiments.

On the basis of RANSAC, we employ a “fitting-and-removing” strategy to generate primitive shapes from the point cloud 
of each sub-scene. All the associated points within a primitive shape are extracted as the support of the chosen primitive 
shape candidate. The support is removed from the sub-scene point data and the fitting operation restarts over the remaining 
points. The “fitting-and-removing” procedure is repeated iteratively until the number of points of the support is less than a 
specified threshold. As a result, all primary primitives can be generated.

4.2. Anchor-guided topology graph construction

Graph construction. After fitting primitives over the sub-scene, we are to construct the corresponding topology graph to the 
sub-scene. A straightforward strategy is to connect every couple of adjacent primitives to form a topology graph. Apparently, 
there are a large number of combinations accordingly and the size of the topology graph could be huge. As observed, there 
always exists a functional plane for man-made object, which is generally with a relatively big area. Moreover, the other 
parts usually have topological relations with the functional plane. Based on this observation, we propose a novel method 
to construct the topology graph of a sub-scene guided by the functional planes of indoor objects, referred to as anchors. In 
particular, all graph edges are induced from anchors to their adjacent primitives.

Given a sub-scene S abstracted by a set of primitives, we represent the topology of the sub-scene with a property graph 
G = (V , E, AV , AE). V and E denote the graph node set and the edge set; AV and AE are the attributes of nodes and 
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Fig. 2. Topology graph construction on a sub-scene. The point cloud is given (left), which is fitted with planes and cylinders (mid-left). We use these 
primitive shapes to construct a topology graph (right) to represent the scene.

Fig. 3. Edge attributes of a chair. (a) Chair primitives and the topology graph; (b) Edge attribute: edge orientation. By constructing the LCS on the anchor 
plane, the corresponding quadrants of all nodes are determined in terms of the LCS and thus the edge orientation attribute for each edge is obtained. 
(c) Edge attribute: primitive distribution. By projecting the nodes onto the anchor plane, two adjacent angles for each projected edge are calculated, which, 
together with the number of nodes within the same concentric circle, compose the primitive distribution attribute; (d) Edge attributes for all edges within 
the graph.

edges, respectively. In particular, the graph nodes correspond to the fitted primitives. For each primitive plane, we project 
its associated point data onto the plane to obtain the convex hull over the projection. If the area of the convex hull is 
bigger than a specified value s, we would consider it as an anchor. Accordingly, a number of anchors are detected. For each 
anchor, we search its adjacent primitives by checking the distance from their geometric centers to the anchor center. If the 
distances are within the given range d, the corresponding nodes to those primitives are linked to the anchor so that graph 
edges are generated. By this means, the topology graph of the sub-scene is constructed, that is, V and E are obtained. Fig. 2
illustrates the topology graph construction of a sub-scene with one table and two chairs.

Attribute definition. Next, we define the attributes for graph nodes V and edges E , denoted by AV , AE , respectively. The 
node attributes in our context compose anchor flag, primitive type, primitive size, while the edge attributes consist of edge 
orientation and primitive distribution. For an arbitrary graph node, Primitive type gives its surface type, that is, 0 for plane 
and 1 for cylinder. Primitive size stands for the area if it is planar, or the height for the cylindrical node. Anchor flag indicates 
whether it is an anchor or not.

For each graph edge, it is induced from an anchor node. As the anchor is always planar, we construct a local coordinate 
system (LCS) on it, where the origin is the center of the bounding rectangle of the anchor; the Z -axis is the normal of the 
anchor plane, and the X-, Y -axis are arbitrarily chosen from two orthogonal axes on the anchor plane. With this LCS, all the 
connected nodes to the anchor node have their respective quadrants, which are used to represent the orientation attributes 
of edges. In particular, the edge orientation attribute is represented with a triple-tuple, the elements of which correspond 
to the X , Y and Z signs of the non-anchor node in the LCS. From the definition, the edge orientation attribute exhibits the 
topological relations of the connected nodes to the anchor node, as shown in Fig. 3.

The primitive distribution attribute indicates how the associated structures distribute in terms of the anchor. Specifically, 
we project all connected node centers onto the X–O –Y plane of the LCS. Meanwhile, we uniformly generate a series of 
concentric circles centered at the origin of the LCS. Given a concentric annulus, let Prj = {prii}n

i=1 be the projection set of 
nodes connected with the anchor, in which all elements have been sorted clockwise on the anchor plane, as shown in Fig. 3. 
For each node projection prii , we calculate two associated angles formed by prii−1–O –prii and prii –O –prii+1. Accordingly, 
the cardinality of projection set, n, together with those two angles, compose the primitive distribution attribute, which is 
assigned to the corresponding graph edge formed by the anchor node and the original node of prii . We can see that the 
primitive distribution attribute conveys the structural constitution information as well as the topological relations among the 
structures of the object. Fig. 3 illustrates how to define the edge attributes on a chair.

4.3. Decomposition via subgraph matching

Once the topology graph of each sub-scene is constructed, we exploit a subgraph matching method to decompose the 
sub-scene into individual indoor objects. Particularly, we collect hundreds of 3D models of indoor objects within our model 
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repository, such as chairs, desks, sofas, coffee tables and so forth. The topology graphs are constructed for all repository 
models, which are referred to as graph templates. Given the topology graph of a sub-scene, we take advantage of the graph 
templates to match the topology graph so as to partition it into subgraphs, each of which corresponds to one of graph 
templates. As a consequence, individual indoor objects are decomposed from the sub-scene.

Graph matching. The goal of graph matching is to seek the optimal correspondences between two graphs. Specifically, let 
G = (V , E, AV , AE ) be the topology graph of a sub-scene, Gt = (Vt , Et , AVt , AEt ) a graph template from one of the repos-
itory models. V and E are the graph node set and the edge set; AV and AE denote the attributes of nodes and edges, 
respectively. There are |V |, |Vt | nodes in G , Gt , i.e., V = {1, 2, . . . , |V |}, Vt = {1, 2, . . . , |Vt |}. For each node i ∈ V of G , let 
a(k)

i ∈ AV (k = 1, 2, . . .nv ) be its attributes, where nv is the number of node attributes. For each edge (i, j) ∈ E , let a(k)
i j ∈ AE

(k = 1, 2, . . .ne) be its attributes, where ne is the number of edge attributes. The matching correspondences between G and 
Gt can be represented by a binary affinity matrix X ∈ {0, 1}|V |×|Vt | . If the node i ∈ V matches the node it ∈ Vt , then the cor-
responding entry of the matrix is 1 (i.e., Xi,it = 1); 0 otherwise (Xi,it = 0). By converting the matrix into a vectorized replica, 
i.e. x ∈ {0, 1}|V | |Vt |×1, the graph matching between G and Gt can be formulated to find the optimal correspondences x∗:

x∗ = arg max
x

S(x|G, Gt), s.t. ∀i ∈ V ,
∑

it∈Vt

xi,it ≤ 1,∀it ∈ Vt,
∑
i∈V

xi,it ≤ 1 (2)

where S(x|G, Gt) is a function measuring the matching similarity between G and Gt under the correspondences x, which 
is discussed in detail below.

We use a quadratic assignment formulation (Leordeanu and Hebert, 2009) to define the matching similarity function, 
which assumes the similarity function to measure the mutual similarity of graph attributes. According to the formulation, 
the first-order similarity function measures the node similarity from different graphs, while the second-order similarity 
function measures the edge similarity from different graphs. Therefore, we are able to encode these two types of functions 
into a symmetric similarity matrix M|V ||Vt |×|V ||Vt | , and thus define the matching similarity function S(x|G, Gt) as:

S(x|G, Gt) = xT Mx,

⎧⎨
⎩

Miit ,iit = �v(diit ,wv), i ∈ V , it ∈ Vt

Miit , j jt =
{

�e(diit , j jt ,we), (i, j) ∈ E, (it, jt) ∈ Et

0, otherwise,

(3)

where �v(diit , wv) is the first-order similarity function measuring the unary similarity for two nodes i ∈ V and it ∈ Vt , 
which is set on the diagonal of M; �e(diit , j jt , we) is the second-order similarity function measuring the pairwise similarity 
for two edges (i, j) ∈ E and (it , jt) ∈ Et , which is on the non-diagonal of M.

We define diit = {d(k)iit }nv

k=1 as the Euclidean distance of node attributes, i.e., d(k)
iit

= ‖a(k)
i − a(k)

it
‖. Similarly, diit , j jt =

{d(k)
iit , j jt

}ne

k=1 is the Euclidean distance of edge attributes, that is, d(k)
iit , j jt

= ‖a(k)
i j − a(k)

it jt
‖. wv and we are the weights for each 

node and edge attributes, respectively. Specifically, the node and the edge similarity functions are expressed as:⎧⎨
⎩

�v(diit ,wv) = max
(

0,
(

1 − d(1)
iit

)(
w v

0 − ∑nv
k=1 w v

k d(k)
iit

))
�e(diit , j jt ,we) = max

(
0, we

0 − ∑ne
k=1 we

kd(k)
iit , j jt

) (4)

We strictly enforce the similarity functions to be positive so that all elements of M are positive, which facilitates solving the 
optimization problem. Apparently, we have nv = 3, ne = 6 in our context. In terms of the weights, we empirically set w v

0 = 1, 
w v

1 = 1
3 , w v

2 = 1
3 , w v

3 = 0.26, we
0 = 1, we

1 = we
2 = we

3 = 1
6 , we

4 = 0.15 and we
5 = we

6 = 1
3π based on various experiments, 

which yield satisfactory results for all our examples.
The formulation of Equation (3) under the maximization Equation (2) is an NP complete problem. Therefore, we take 

some measures to try to reduce complexity, that is, sparsifying the similarity matrix (i.e., reducing the number of similarity 
values considered in the graph matching). Specifically, we only measure the similarity between nodes sharing the same 
primitive type. Moreover, we establish candidate matches only starting from anchor nodes and then restrict the compar-
isons only from the edges induced from the corresponding anchor nodes. Consequently, the number of similarity values is 
significantly decreased and our graph matching can be efficiently achieved. Various graph matching techniques can be used 
to solve the maximization problem in Equation (2), and the TRW-S algorithm (Kolmogorov, 2006) is exploited in our work.

Sub-scene decomposition. Based on the graph matching technique above, we are able to formulate our sub-scene decomposi-
tion problem. Given the graph template set G = {Gi

t}nt

i=1 (nt is the number of graph templates), the graph G of a sub-scene 
S can be partitioned by:

G =
⋃

G(G∗
t ,x∗), (G∗

t ,x∗) = arg max
Gi

t∈G,x
S(x|G, Gi

t) (5)

where G(G∗
t , x∗) represents the subgraph extracted from G under the correspondences x∗ to G∗

t . In particular, we exploit 
the “matching-and-removing” strategy to perform graph partition. Once we find the best template match G∗

t under the 
correspondences x∗ , the corresponding subgraph can be found and removed from G . For the remaining graph, we perform 
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Fig. 4. Sub-scene decomposition. By constructing the topology graph (left), we seek the correspondences between the graph and template graphs. Once 
one subgraph is matched, it is removed from the topology graph (middle). As a result, the sub-scene is decomposed successfully and thus all individual 
objects are obtained, represented with different colors (right). (For interpretation of the colors in this figure, the reader is referred to the web version of 
this article.)

Fig. 5. Illustration of anchor-based graph matching. Taking a template graph, we match it with the topology graph obtained from Fig. 4. The topology graph 
includes several anchor nodes. “subgraph1” and “subgraph2” stand for the matching similarity values from two subgraphs with different anchor nodes to 
the same template graph. In “subgraph1”, the matching similarity value is 0.35, while 0.90 in “subgraph2”. Hence, the subgraph in “subgraph2” is considered 
matched and the corresponding chair is decomposed.

the matching procedure above iteratively until G is completely partitioned. Therefore, all subgraphs of G are obtained, each 
of which corresponds to an individual object. By this means, we extract all individual objects within the indoor scene. More 
importantly, the category of each object is determined simultaneously.

Fig. 4 gives an example of sub-scene decomposition using our method. The sub-scene contains one table with two 
chairs. By graph matching, the topology graph is partitioned iteratively into three subgraphs, each of which corresponds to 
one object. Fig. 5 illustrates the matching process on a subgraph from Fig. 4.

5. Learning-based scene modeling

As presented above, each individual object has been classified from the scene in Section 4. In this section, we present 
a data-driven modeling algorithm for individual indoor objects based on the shape database. We pose this model matching 
problem as a model instance recognition problem, which is solved by using a Randomized Decision Forest (RDF) classifier.

5.1. Learning based object recognition

Feature descriptors. To perform learning-based object recognition, we first need to define a set of features which can discrim-
inatively describe objects with regard to scanned point data within the scene. There exist some classical local descriptors 
like spin images, curvature and SIFT, which are, however, not applicable for our context as the scanned point data are fairly 
noisy. We characterize our feature descriptors as: global, generic, discriminative for man-made indoor objects and efficient 
to compute. Specifically, we argue that the functional parts of indoor objects (i.e., the anchors) convey the most important 
topological and structural information of the objects. As observed, man-made objects consist of a natural segmentation 
along the normal direction of the anchor planes, and moreover the structures above the anchor planes are of significant dif-
ference from the counterparts under the anchors. In addition, the front view and left view of objects always exhibit distinct 
shapes. Based on these observations, we define our feature descriptors for indoor objects below, which are insensitive to 
noise, incompletion and sparsity.

Given an indoor object, we construct the Local Coordinate System (LCS) on the anchor plane of the object. As the topology 
graph of the object has the best match to one graph template, we thereby migrate the LCS of the graph template on its 
anchor plane to the object. With the LCS, the bounding box is computed for the point data of the object. We subsequently 
slice the bounding box into L slabs along its X-axis uniformly, as show in Fig. 6. By counting the number of points xi in 
each slab, the first feature is generated as a vector of X f = (

x0
N , x1

N , . . . , xL−1
N ) (N is the total number of the scanned points 

of the object). Similarly, we are able to obtain the feature vector along the Y -axis, i.e., Y f = (
y0
N , y1

N , . . . , yL−1
N ).

The heights of the functional planes are usually distinct for different types of man-made objects, and even they are 
different for the same type of objects. Moreover, considering the practical scanning conditions, the scanned point data could 
be incomplete and some regions are missing. If the feature vector along Z -axis were calculated using the same means as 
the X-, Y -axis, the slab positions of anchor parts vary frequently. As known, the number of points on the anchor slab is 
always greater than other parts, as shown in Fig. 6, and hence the position variation of the anchor slab would lead to the 
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Fig. 6. Illustration of X , Z -axis feature descriptor definitions on chair, sofa, table and cabinet.

feature vector unreliable. To address this issue, we deliberately set the position of the anchor slab fixed in the feature vector, 
that is, in the middle of the vector. In particular, we slice the bounding box into 2M + 1 slabs by enforcing the anchor part 
to lay in the M-th slab (see Fig. 6). Accordingly, the third feature vector is formulated as Z f = (

z0
N , z1

N , . . . , z2M
N ). Finally, the 

entire feature descriptors are obtained with the combination of three feature vectors.

Learning-based recognition. Due to occlusions, the scanned point data may contain considerable missing regions within the 
indoor scenes. Consequently, some parts could be missing. Therefore, we take advantage of Randomized Decision Forest 
(RDF) as our classifier to find the most similar models form the database to indoor objects. There are two advantages to use 
RDF (Nan et al., 2012): 1) it is an efficient classifier for multi-class classification and has proven to be available for a great 
deal tasks like classification in images; 2) it is also an effective method for handling missing data and maintains accuracy 
when a large proportion of the data are missing.

A RDF is an ensemble learning method for classification which works by constructing T decision trees at the training 
stage. A decision tree is a basic classifier in which each internal node composes a feature f and an attribute threshold ε . 
Given a set of points P , we can obtain the complete feature vector. By initiating from the root, the decision trees can classify 
P by comparing each feature f within our feature vector to the attribute ε from the root to the leaf node. Each leaf node 
of the tree t is labeled with a learned distribution Pt (c|S, P ) over classes c. Therefore, RDF achieves object recognition by 
averaging all trees in the forest, that is:

P (c|P ) = 1

T

T∑
t=1

Pt(c|P ) (6)

A tree can be learned by choosing a series of features and the corresponding attributes that can split the given training data 
into subsets with same properties. In our implementation, the training set consists of nearly 500 different labeled objects, 
and we use both synthetic and scanned objects for our training. By testing, the RDF classifier can yield the best match 
model from the database to the indoor object.

5.2. Object modeling via template fitting

By performing object recognition, we have determined which model in the database is most similar to the scanned 
model. However, the transformation between two models is still unknown. Therefore, we need to optimize the transfor-
mation from the database model to the scanned one, including scale, translation and rotation, so that the largest overlap 
between two models can be achieved. Specifically, let P , M be the scanned points of the object and the matched model 
from the database, respectively, and then the optimized transformation {S�, R�, T�} can be obtained by maximizing the 
following objective function:

{S�,R�,T�} = arg
S,R,T

min
∑
pi∈P

‖pi − S(R ·M+ T)‖2 , (7)

where S, R, T denote the scale, rotation and translation of the database model, respectively. ‖pi − S(R ·M + T)‖2 measures 
the Euclidean distance from point pi to model M under the transformation {S, R, T}. By aligning the anchor planes of the 
object and the database model, we can obtain a good initial registration, which facilitates the following optimization. We 
compute the distance by projecting pi onto the transformed model along its normal, and minimize the distances between 
the scanned points to the database model in an ICP manner. Finally, we apply the respective transformations to all retrieved 
database models so that all corresponding 3D models are accurately placed into the indoor scene, resulting in a faithful 
reconstruction of the input scene.

6. Results and discussions

In this section, we evaluate our method on a large amount of scanned indoor scenes with various complexity and styles. 
Most of raw input point clouds used in our paper are scanned by our laser scanner, and the others are taken directly 
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Fig. 7. Modeling of indoor objects with random poses. (a) The input point data of an indoor scene. (b) The topology graph of the entire scene; (c) Sub-scene 
decomposition and object classification; (d) The reconstructed models of the scenes and (e) The fusion of the reconstructed scene and the input point 
cloud. From (e), our reconstruction result has good geometric fidelity to the input scene.

Fig. 8. Modeling of an indoor scene with missing data. (a) The input point cloud of an indoor scene, where partial data on desk legs are missing; (b) The 
topology graph; (c) The decomposed sub-scenes via graph matching; (d) The reconstructed models and (e) The fusion of the reconstructed scene and the 
input point cloud.

from Mattausch et al. (2014) and Nan et al. (2012). As seen, these raw scans are always noise and incomplete due to 
occlusions, which are directly processed and automatically modeled by our method.

6.1. Raw point scans of indoor scenes

Pose invariant. Fig. 7 shows the modeling result of an indoor scene, in which four chairs are randomly distributed and one 
of them even falls down. As discussed, our modeling method does not assume that all indoor objects are arranged along 
upward orientation as Nan et al. (2012). One of our key advantages is able to correctly identify objects with different poses. 
Our graph is to represent the topology information of objects, which is pose-invariant as shown in Fig. 7(b). The graph 
edge attributes are defined relative to the anchors, instead of the absolute coordinate system. Moreover, the graph matching 
algorithm is completely independent on the coordinate system. These make our object decomposition irrelevant to the 
definition of the coordinate system. Therefore, all chairs arbitrarily oriented are still decomposed and detected correctly in 
Fig. 7(c). On this basis, our classifier is able to find the most similar models for the detected objects from the database, 
and the reconstruction result is shown in Fig. 7(d). Fig. 7(e) shows the associated points together with the modeling result, 
which suggests our reconstructed models have good geometric fidelity to the original real scene.

Missing data. Fig. 8 presents the reconstruction result of the indoor scene with missing data. Due to occlusions, three legs 
of the table are missing and the seat of the chair is partially scanned (see the highlighted circles in Fig. 8(a)). For the 
completely missing parts, the corresponding primitives consequently cannot be fitted. For the partial anchor, the primitive 
can still be obtained. On this basis, the topology graph is constructed in Fig. 8(b). Thanks to the anchor-guided strategy, our 
graph matching algorithm tolerates the missing nodes in the object graph. In such a case, we match the template graph 
to none, which is added virtually in the object graph. Note that we also restrict that at least two nodes should be really 
existing in the object graph. The setting of none significantly reduces incorrect matching in practice. Therefore, the chair 
and the table are able to be segmented and detected correctly, as shown in Fig. 8(c). Furthermore, the reconstruction results 
are given in Fig. 8(d) and (e).

Complex cluttered scene. Fig. 9 shows the reconstruction result from a complex cluttered scene. The scene consists of more 
than 15 indoor objects, including tables, chairs, cabinets and so on. From Fig. 9(a), the objects are arranged disorderly and 
the types of objects are abundant. Moreover, the scanned point data contain a certain level of noise and severe incompletion. 
The whole scene is segmented into a few sub-scenes. Taking one sub-scene as an example in Fig. 9(b), the primitives are 
fitted accordingly. Note that every object in the sub-scene is incomplete and thus the constituent primitives of every object 
are fractional. Our matching algorithm is still able to decompose the topology graph into several subgraphs accurately, each 
of which corresponds to the individual object correctly, as shown in Fig. 9(c). The modeling result of the sub-scene is given 
in Fig. 9(d). Finally, the entire scene is shown in Fig. 9(e) together with the original point data. From the fusion result, our 
modeling method is capable of producing satisfactory results on the cluttered scenes from defect-laden, raw point data.

Scene with object outliers. Our database comprises desks, chairs, coffee tables, sofas and cabinets. We refer to objects with 
categories out of our database as outliers. Fig. 10 presents the modeling result of an indoor scene with outliers. There are 
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Fig. 9. Cluttered scene modeling. (a) The raw scan of an indoor scene with more than 15 objects. The scene is clustered into several sub-scenes and one 
of them is shown in (b). By graph matching, all individual objects are partitioned successfully in (c). (d) and (e) show the reconstructed models, and the 
fusion view of the modeled scene and the input raw scan, respectively.

Fig. 10. Modeling of an indoor scene with object outliers. The topology graph still contains the nodes from those outliers in (b). Using our graph matching 
approach, only those subgraphs which have correspondences to the graph templates can be considered matched. Therefore, the nodes and edges from 
outliers would be isolated from the objects of interest, as shown in (c), (d) and (e).

Table 1
Timings of indoor scene modeling by our method (in s).

Figures Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 14(1) Fig. 14(2) Fig. 14(3) Fig. 14(4)

Points 256,085 448,019 4,483,959 398,918 167,768 3,477,692 4,361,347 1,798,282 3,418,389
Time 35.26 67.83 356.58 59.94 27.85 314.52 395.85 124.25 336.24

a stack of books, a computer screen and a keyboard on the top of the desk (see Fig. 10(a)), which are regarded as outliers 
accordingly. Two primitives are fitted on those outliers, i.e., the book cover and the screen surface, and the corresponding 
topology graph is constructed in Fig. 10(b). As there are no graph templates on books and screens, our graph matching is 
able to detect those outliers correctly, and decomposes the corresponding subgraphs to the desk and the chair accurately, 
as shown in Fig. 10(c). The whole modeling results are given in Fig. 10(d) and (e). Certainly, to expand our shape database 
with more object categories would definitely enable us to reconstruct those object outliers successfully.

6.2. Comparison

We compare our modeling method with the search-and-classify approach from Nan et al. (2012) on an indoor scene. 
Two chairs stand on the ground with the upward orientation, while one falls down and two are placed in the slantwise 
direction. In Nan et al. (2012), the classification features as well as template fitting are performed on the assumption 
that objects are always with the upward direction with respect to the ground floor. Once the assumption is violated, both 
classification (e.g., the middle chair is misidentified as a table) and fitting (e.g., the right two chairs are aligned with ground) 
fail. Comparatively, our topology graph and recognition features are both defined on the basis of the functional parts (i.e., 
the anchors) of objects, which are independent on the placement orientation of objects and thus pose-invariant. Therefore, 
our modeling approach is able to handle indoor scenes with objects arbitrarily oriented.

6.3. Quantitative evaluation

The results shown in Figs. 11–13 have visually demonstrated the superiority of our algorithm in terms of pose invariance, 
data missing, scene complexity and outliers robustness. We provide some quantitative results in Table 1, and further explore 
the robustness of our feature definition in Fig. 13 and of our scene reconstruction in Fig. 12 on noise, outliers and sampling. 
Note that the added noise is provided by a zero-mean Gaussian function proportional to the diagonal length of the bounding 
box of the input data and the synthetic outliers are generated randomly in the bounding box.

Feature definition robustness. To evaluate the robustness of our feature definition to sampling, noise and incompletion, we 
generate some synthetic data by adding Gaussian noise and outliers onto the raw point scan of a chair. We plot the his-
tograms of the feature descriptor along z-axis in terms of the sampling ratio, noise level and missing ratio in Fig. 12. By 
down-sampling the point data to 30%, the feature descriptor distributions are almost the same. After reducing the points to 
one tenth, the distribution difference is still inconsiderable. In terms of noise, even though 40% noise is added, the feature 
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Fig. 11. Comparison to Nan et al. (2012) on modeling the scene with objects randomly arranged. (a) The input raw scan of an indoor scene. The modeling 
results are from (b) Nan et al. (2012) and (c) Ours. Nan et al.’s (2012) method is built upon the assumption that objects are always with the upward 
direction with respect to the ground floor, while ours can handle arbitrarily oriented scenes based on our functional-part guided analysis techniques, which 
are pose-invariant, as demonstrated in (d).

Fig. 12. Robustness of feature descriptors on sampling, noise and incompletion. The histograms of the feature descriptor along z-axis are plotted in terms 
of the sampling ratio, noise level and missing data ratio. The feature descriptor changes slightly even though the data have been down-sampled to 10%. We 
can see our feature descriptor definition is robust to data imperfection.

Fig. 13. Scene reconstruction robustness in terms of noise, outliers and sampling sparsity. From those tendencies, we note that our modeling method is 
insensitive to reasonably high levels of noise, outliers and sparsity. When the level of defection reaches extremely high, the modeling precisions could drop 
significantly.

descriptor stays stable. After increasing the level of noise up to 80%, there appears some deviation on the distribution. Re-
garding the missing data, when the missing ratio increases to 40%, the change on the feature descriptor distribution is not 
significant. Overall, our feature descriptor definition is quite robust to data sampling, noise and incompletion.

Scene reconstruction robustness. To further assess the performance of our modeling method, we investigate our modeling 
precisions with respect to data noise, outliers and sampling sparsity in Fig. 13. We create some synthetic data by manually 
designing a model of a table surrounded with several chairs in Trimble Sketchup and performing virtual scanning on it to 
generate point data. We can change the related setting of virtual scanning to acquire different density-level. Since we can 
easily distinguish between the original points from the scene and the added noise and outliers, such synthesized point 
data can be regarded as our ground truth. On this basis, we measure the corresponding modeling precisions to those three 
factors. From the figures, our modeling method is capable of handling high levels of noise, outliers and sparsity, and exhibits 
comparatively high robustness to defect-laden, raw point clouds as illustrated in Fig. 13. We experiment our method on a 
gallery of indoor scenes in Fig. 14.

Parameters. There are three main parameters in our method: 1) the distance threshold ε between sub-scenes; 2) the area 
threshold s to determine anchors in Section 4.2; 3) the range d within which nodes are connected in Section 4.2. The choice 
of ε depends on the crowding-distance in the indoor scenes. If the scene is severely cluttered, choosing a lower value of ε
would be better; otherwise, two or more sub-scenes would be merged into one sub-scene, which has no influence on our 
results but could increase the computational time. We set empirically ε = 0.3 for all experiments. The area threshold s is 
utilized to determine the anchors, and we conservatively set s to a relatively low value to avoid missing anchors. Specifically, 
we set s = 0.05 and d = 1.0.
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Fig. 14. Four reconstruction results from our modeling method. The input scans of point cloud on the left, sub-scenes show on the middle and reconstruction 
results are on the right.

Fig. 15. Almost all of the points on the anchor plane are missing. Consequently, the anchor plane is not extracted and the corresponding chair fails to be 
reconstructed.

Performance. We have implemented our algorithm in C++ and all experiments are performed on a PC with a 2.4 GHz CPU 
and 6.0 GB of RAM. Our implementation does not take advantage of the very parallelizable nature of some of the stages (e.g., 
sub-scene decomposition and object recognition), and apparently doing so would increase the efficiency significantly. We 
observe that the sub-scene clustering and object modeling stages are fast, while the sub-scene decomposition is relatively 
slow, especially for extremely cluttered scenes. However, the decomposition stage is not that time-consuming, as the number 
of graph templates is not huge even though the scale of database models could be large. Overall, the time performance is 
still comparatively efficient and suitable for real-time system. The experimental timings are given in Table 1.

Limitation. While our modeling algorithm performs quite well on a variety of real indoor scenes, it is not without limitations. 
As presented, we consider as the anchors the planar primitives with relative big areas. As shown in Fig. 15, considering a 
chair with a large portion of data missing on the seat, the anchor plane may not be able to be detected and consequently 
the chair could not be reconstructed. Therefore, more robust strategy on anchor detection is required in the future work.

7. Conclusions

We have presented a framework to efficiently decompose and reconstruct indoor scenes directly over raw scanned point 
clouds. The approach proceeds automatically without user interactions, and thus it is quite appropriate to real-time large-
scale scanning, modeling and understanding applications. By introducing the anchor-guided strategy, our modeling method 
is capable of dealing with randomly arranged objects within complex, cluttered indoor scenes, instead of assuming all ob-
jects are always oriented with the upward direction. Based on the topology graphs of objects, our graph matching method 
is able to effectively decompose complex, cluttered scenes and detect individual indoor objects successfully. Furthermore, 
it is robust to noise and outliers by abstracting scenes with primitives. With discriminative feature descriptors defined, our 
recognition algorithm is able to tolerate a reasonably high level of data noise, outliers and sparsity. A variety of experiments 
on raw scans have demonstrated that our reconstruction method can generally produce geometrically faithful results from 
indoor scenes, even in the presence of severe data imperfection.

As discussed, we consider as the anchors the functional parts of indoor objects and our modeling method proceeds with 
the anchors guided. In case the anchors are missing from primitive fitting, we may not be able to detect the associated 
objects and consequently the reconstructed scenes are incomplete. Therefore, to seek more robust way to detect anchors 
needs to be studied in the future work.
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