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Cubic Hermite hexahedral finite element meshes have some well-known advantages over 
linear tetrahedral finite element meshes in biomechanical and anatomic modeling using 
isogeometric analysis. These include faster convergence rates as well as the ability to easily 
model rule-based anatomic features such as cardiac fiber directions. However, it is not 
possible to create closed complex objects with only regular nodes; these objects require 
the presence of extraordinary nodes (nodes with 3 or >= 5 adjacent elements in 2D) in 
the mesh. The presence of extraordinary nodes requires new constraints on the derivatives 
of adjacent elements to maintain continuity. We have developed a new method that uses 
an ensemble coordinate frame at the nodes and a local-to-global mapping to maintain 
continuity. In this paper, we make use of this mapping to create cubic Hermite models 
of the human ventricles and a four-chamber heart. We also extend the methods to the 
finite element equations to perform biomechanics simulations using these meshes. The 
new methods are validated using simple test models and applied to anatomically accurate 
ventricular meshes with valve annuli to simulate complete cardiac cycle simulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computational models of cardiac biomechanics have been used to study normal cardiac physiology (Kerckhoffs et al., 
2007) and pathological conditions such as heart failure (Kerckhoffs et al., 2010; Niederer et al., 2011). Advances in non-
invasive imaging technology have made it feasible to generate patient-specific ventricular models (Aguado-Sierra et al., 2011;
Krishnamurthy et al., 2013), but it remains difficult to create high-quality meshes that include anatomic features such as 
valve annuli automatically, owing to the irregular shape of the resulting cardiac geometry.

Cubic-Hermite finite element interpolation schemes have been popular in cardiac modeling because of their convergence 
properties in finite element simulations of ventricular biomechanics (Costa et al., 1996) and their ability to capture smooth 
geometries compactly. However, construction of cubic-Hermite geometric meshes has been limited to ventricular geometries 
below the valve plane due to difficulties in handling complex topologies of the atria and great veins (Fig. 2). Most previous 
cardiac models using high-order meshes have been restricted to geometries described by a single set of parametric coor-
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Fig. 1. Topologically complex four-chamber model and a ventricular model with valve annuli at the end-diastolic and end-systolic states of the cardiac cycle. 
A cut-section (top) and a PV-loop (bottom) are shown inset.

Fig. 2. Cubic-Hermite cardiac finite element meshes have previously been used for modeling ventricular geometry that do not include the valve annuli or 
the atria.

dinates that are topologically equivalent to a cylinder (Vetter and McCulloch, 1998). However, such meshes require special 
boundary conditions at the cardiac apex to enable multiple overlapping nodes or “sector” elements (Bradley et al., 1997) to 
close the mesh. The restriction of using a single set of parametric coordinates enables enforcing continuity across element 
edges easier, but introduces element distortions.

Gonzales et al. (2013) removed the restriction of having a single set of parametric coordinates in the mesh. The mesh is 
discretized into a number of sub-regions, each with its own set of parametric coordinates. However, this introduces nodes 
with an irregular number of neighboring elements, known as extraordinary nodes, at the interface between the sub-regions. 
Extraordinary nodes are routinely used in linear hexahedral meshes. However, in high-order meshes, enforcing smoothness 
(i.e., C0, G1, or C1 continuity) conditions along edges incident on extraordinary nodes becomes complicated. Gonzales et 
al. (2013) described new methods for constructing high-quality bicubic and tricubic Hermite finite element meshes of the 
human atria. Their meshes preserved smoothness between cubic Hermite elements by introducing an ensemble coordinate 
frame centered on the nodes and using a generalized local-to-global mapping to transform the derivatives. They used this 
mapping to construct static finite element meshes of the human atria that can be used to perform non-deforming electro-
physiology simulations. We make use of the same mapping in this paper to create finite-element meshes of a four-chamber 
heart and cardiac ventricles with valve annuli. In addition, we extend the mapping to displacements and coordinate frames, 
to perform deforming biomechanics simulations using these finite-element meshes.

Cardiac biomechanics simulations make use of the finite strain theory to model deformation of the myocardial tissue. This 
is because the tissue undergoes large deformations during the cardiac cycle. In addition, the tissue properties are non-linear 
and anisotropic; the cardiac muscle tissue is stiffer along the axial direction of the cells called the fiber direction. Hence, 
the constitutive models used for cardiac mechanics make use of hyperelastic, exponential stress-strain relationships with 
the parameters being different for the fiber and the two cross-fiber directions. In order to capture these large deformations 
accurately, the displacements of the nodes in the deformable mesh need to be consistently mapped across extraordinary 
nodes. We make use of the local-to-global mapping used for the geometry to map the global displacements to the local 
coordinate frame.
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The cardiac cells in the myocardium are oriented in specific directions across the cardiac wall. The orientation follows a 
helical pattern from the outside epicardial surface to the inside endocardial surface. In simple ventricular models, this helical 
orientation can be easily described using a single angle with respect to the circumferential direction of the ventricle. How-
ever, using a single fiber angle to describe the fiber direction introduces discontinuity in the direction vectors across edges 
that are incident on extraordinary nodes. In addition, the fiber angles themselves cannot be converted to the local element 
coordinates directly using the local-to-global map since the local element parametric directions are not consistent across 
different regions in meshes with extraordinary nodes. Hence, we convert the fiber angles to local orthogonal coordinate 
frames and then use the local-to-global map to convert these to consistent fiber directions across element boundaries. How-
ever, the use of coordinate frames instead of fiber angles also necessitates the use of a different method for interpolating 
coordinate frames within the element to capture the changes in the fiber direction smoothly. We make use of the smooth 
interpolation of coordinate frames in the log-Euclidean space. The coordinate frame is converted to the log-Euclidean space 
by taking its matrix logarithm, interpolated linearly, and converted back to Euclidean space using the matrix exponential.

In this paper, we extend the generalized local-to-global mapping to perform isogeometric biomechanics simulations with 
cubic-Hermite meshes that have extraordinary nodes. The main contributions of the paper include:

• Extending the local-to-global mapping to map displacements and fiber directions in the local elements.
• Methods to construct the element stiffness matrices in local element coordinates using the local-to-global mapping 

(using global perturbations) in meshes with extraordinary nodes.
• Assembling the element stiffness matrices to create a global stiffness matrix in ensemble coordinates.
• Evaluating the computational error and convergence of solution in simple meshes with extraordinary nodes.
• Application of the methods to perform biomechanics simulations in ventricular models with valve annuli and in four-

chamber cardiac models.

2. Related and previous work

Cubic-Hermite meshes have been popular in isogeometric finite element analysis, since the representation allows all 
DOFs to be concentrated at the element corners, without the need for element edge or body nodes. This simplifies the 
topology or the connectivity information of cubic-Hermite meshes when compared to cubic-Bézier patches, even though 
both representations are equivalent. In addition, all mathematical derivations that use cubic-Bézier patches are also valid 
for cubic-Hermite patches. Several researchers have derived the conditions for continuity of piecewise polynomial surface 
patches; we just list a few that were used to motivate the current work. The paper by DeRose (1990) and the review by Du 
and Schmitt (1990) derive the conditions for G1 continuity for cubic-Bézier patches in the presence of extraordinary nodes. 
Che et al. (2005), Wang and Zhang (2010) extend the discussion to include continuity of adjacent NURBS surfaces.

Isogeometric analysis using NURBS surfaces and basis functions were first developed by Hughes et al. (2005) for general 
finite element analysis. However, the method developed by Nielsen et al. (1991) for modeling cardiac geometry and me-
chanics can be considered isogeometric analysis since the same cubic-Hermite basis functions were used to interpolate the 
cardiac geometry and the finite element dependent variable. The methods developed by Nielsen et al. (1991) were restricted 
to meshes that have only regular nodes. This work extends the finite element analysis to meshes that have extraordinary 
nodes. We make use of the general framework developed by Gonzales et al. (2013) to construct cubic-Hermite meshes with 
extraordinary nodes and extend it to perform biomechanics simulations.

Cubic-Hermite elements have been shown to have better convergence properties compared to linear hexahedral or tetra-
hedral elements in cardiac electrophysiology simulations. Vincent et al. (2015) compared the convergence behavior of linear 
Lagrange, cubic-Hermite, and cubic Hermite-style serendipity interpolation methods for finite element simulations of cardiac 
electrophysiology in static meshes. They found that the high-order methods reach converged solutions with fewer degrees of 
freedom and longer element edge lengths than traditional linear elements. Recently, Kapl et al. (2015) reported that optimal 
convergence in isogeometric finite element analysis occurs for bilinear two-patch geometries and C1 splines of polynomial 
degree at least 3. Extending on this result, Collin et al. (2015) inferred that optimal convergence of C1 isogeometric spaces 
occur with analysis-suitable G1 geometry parametrizations. In our simulations, we expect the same convergence advantages 
of cubic-Hermite elements over linear hexahedral or tetrahedral elements in biomechanics simulations with deforming 
meshes.

Subdivision has been extensively used in computer graphics and animation to overcome the difficulty of enforcing con-
tinuity across adjacent surface patches. In addition, the continuity of subdivision surfaces around extraordinary nodes has 
been well characterized (Doo and Sabin, 1978; Catmull and Clark, 1978). However, the use of subdivision surfaces has been 
limited in finite element analysis. Gonzales et al. (2013) make use of the Li–Kobbelt interpolatory subdivision scheme (Li et 
al., 2005) as an intermediate step to calculate the local element derivatives. In addition, for estimating the internal deriva-
tives of cubic Hermite volumes, a volume subdivision scheme such as the one developed by Bajaj et al. (2002) is required. 
We briefly explain the methods used to estimate the cubic-Hermite derivatives in this paper.

There have been detailed histological studies (Streeter et al., 1969; LeGrice et al., 1995; Costa et al., 1999) in isolated 
canine specimens to measure the anisotropic structure of the myocardium. The myocardium consists of a mesh of myofibers 
embedded in laminar sheets separated by cleavage planes. Statistical analysis of fiber architecture variation in a population 
of human hearts has revealed that fiber orientations are well preserved between individuals (Lombaert et al., 2011). This 
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suggests that the fiber orientations in a human heart can be modeled using measurements from normal adult humans after 
accounting for variations in ventricle size and shape. The fiber angles in the epicardial (outside) surface of normal hearts are 
measured to be −60◦ to the circumferential direction, while they are measured to be 60◦ to the circumferential direction in 
the endocardial (inside) surface. The fiber angles across the ventricular wall usually vary linearly between these two angles.

To overcome the problems associated with interpolation of fiber angles in meshes with extraordinary nodes, we make use 
of a coordinate-frame interpolation. This is mathematically similar to interpolation of tensor fields. However, interpolating 
tensor fields in normal Euclidean space results in null or non-positive-definite interpolated tensors (Fillard et al., 2006) that 
are not representative of coordinate frames. Affine invariant Riemannian frameworks have been proposed which overcome 
these artifacts but are computationally expensive (Pennec et al., 2006). In this paper, we make use of tensor interpolation 
using a log-Euclidean framework. This method has the advantage of being simpler to implement using our existing cubic 
Hermite interpolation framework, while preserving the orthogonality of the interpolated coordinate frame (Arsigny et al., 
2005).

Newer imaging techniques such as diffusion-tensor magnetic resonance imaging (DT-MRI) can be used to image the fiber 
directions of the muscles in the ventricular walls directly. Comparing histological measurements of the orientation of muscle 
fibers and sheets with DT-MRI measurements have confirmed that the fiber and sheet-normal directions coincide with the 
primary (Hsu et al., 1998; Holmes et al., 2000; Scollan et al., 2000) and tertiary (Helm et al., 2005) eigenvectors of the 
diffusion tensors. Hence, our method of tensor interpolation in the log-Euclidean frame can also be used to interpolate the 
fiber-sheet directions in a model of the ventricle with a set of local orthogonal material coordinate axes calculated from 
measured diffusion tensors.

3. Review of cubic Hermite interpolation

In this section, we provide a summary of the geometric interpolation for extraordinary nodes developed by Gonzales et 
al. (2013). This section has been included in this paper for completeness. In Section 5, we make use of this interpolation 
method and extend it to perform biomechanics finite element analysis with deforming meshes.

Cubic-Hermite hexahedral finite element meshes are tri-variate brick volumes with 8 nodes, where each of the six 
faces consist of a cubic-Hermite surface patch. The element nodes have 8 element degree of freedom (DOF): the value, 3 
first derivatives, 3 second cross-derivatives, and 1 triple derivative. In rectangular Cartesian coordinates for geometry and 
biomechanics simulations, there are 3 coordinates for each DOF. Hence, for biomechanics problems, each element has 8 
nodes × 8 DOF × 3 Coordinates = 192 DOFs. In 3D cubic-Hermite isogeometric finite element analysis, the geometry and 
the dependent variables (nodal displacements in mechanics) are interpolated using the same trivariate basis functions � i , 
i = 1 . . . 64,

x =
64∑

i=1

xi�i(ξ1, ξ2, ξ3). (1)

The basis functions are obtained as the product of 3 univariate cubic-Hermite basis functions: one for each direction,

�i jk(ξ1, ξ2, ξ3) = �i(ξ1)� j(ξ2)�k(ξ3). (2)

These equations are used to interpolate the dependent variable at the parametric point (ξ1, ξ2, ξ3) in the world coordinate 
frame (x1, x2, x3).

In meshes with no extraordinary nodes, the continuity preserved at regular nodes (4 adjacent elements in 2D and 8 
adjacent elements in 3D) since nodal DOFs are shared. Bradley et al. (1997) showed that G1 continuity is preserved across 
adjacent elements as long as the nodal derivatives are shared by nodes of the adjacent elements. In addition, they introduced 
a scalar scale factor, Si , for each element node,(

dx

dξi

)
ne

=
(

ds

dξi

)
e

(
dx

ds

)
NG

, (3)

Si =
(

ds

dξi

)
, (4)

which when multiplied with the unit nodal derivative, preserved C1 continuity. If the scale factor is chosen as the length of 
the incident edges, then C1 continuity is enforced based on the arc-length parametrization. This makes physical sense for 
finite element analysis, since the continuity is independent of the parametrization used for interpolation.

In Equation (3), the subscript ne corresponds to the local element derivative at the element node while the subscript NG
stands for the global node number. In addition to the scalar scale factors for the first derivatives, the scalar scale factors 
for the mixed second derivatives and the third derivative can be computed as product of the corresponding first derivative 
scale factors using

Sij =
(

d2s

dξidξ j

)
= Si S j. (5)
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Fig. 3. An ensemble (global) coordinate frame centered on each node is used to maintain continuity of geometry and solution fields across adjacent 
elements. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 4. The cubic Hermite derivatives around extraordinary nodes are estimated by subdividing the mesh twice and using the resulting mesh to calculate 
the local element derivatives.

3.1. Cubic Hermite interpolation with extraordinary nodes

The same parametric direction cannot be used to interpolate within the elements on either side of an element edge 
incident on an extraordinary node. As a result, even maintaining C0 continuity is difficult since it is not possible to share the 
local element derivative directions using only a scalar scale factor at an extraordinary node. In order to maintain continuity, 
Gonzales et al. (2013) introduced a new coordinate frame centered on each node, called the ensemble coordinates, and 
constructed a generalized local-to-global map to transform the global ensemble derivatives to the local element derivatives.

The ensemble frame is shown in green in Fig. 3 and is denoted by s. The parametric directions from one of the elements 
surrounding the extraordinary node are used to construct the ensemble frame. The generalized local-to-global map is then 
used to convert the global ensemble derivatives to the local element derivatives using

(
∂x

∂ξi

)
ne

=
3∑

j=1

(
∂s j

∂ξi

)
e

(
∂x

∂s j

)
NG

, (6)

Se =

⎡
⎢⎢⎢⎢⎢⎣

∂s1
∂ξ1

∂s2
∂ξ1

∂s3
∂ξ1

∂s1
∂ξ1

∂s2
∂ξ1

∂s3
∂ξ1

∂s1
∂ξ1

∂s2
∂ξ1

∂s3
∂ξ1

⎤
⎥⎥⎥⎥⎥⎦

. (7)

The second and third-order mixed derivatives are selected from the element whose derivatives are chosen to coincide 
with the ensemble frame. The local-to-global transformation map for these higher-order derivatives are constructed from 
the first-order derivatives using the chain rule

(
∂2x

∂ξi∂ξ j

)
ne

=
3∑

k=1

3∑
l=1

(
∂sk

∂ξi

)
e

(
∂sl

∂ξ j

)
e

(
∂2x

∂sk∂sl

)
NG

,k �= l. (8)

In order to maintain continuity, the local element derivative along the shared edge of both adjacent elements needs to 
be the same. Enforcing this in practice while constructing complex finite element meshes is tedious. To make the process 
tractable, Gonzales et al. (2013) used an interpolatory subdivision scheme developed by Li et al. (2005) to subdivide the 
meshes twice (Fig. 4). The nodes from the twice-subdivided mesh are then used to estimate the local element derivatives. 
It is also possible to perform exact evaluation of the derivatives by computing the limit surface of the subdivision mesh. 
However, in practice, it is easier to estimate the derivatives from the twice-subdivided mesh to enforce C0 continuity. 
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Fig. 5. Interpolation of fiber angles in meshes with inconsistent parametric direction results in fiber direction discontinuity along the region boundaries. To 
prevent this, we interpolate the coordinate frames using log-Euclidean transformation resulting in smooth interpolation of fiber directions.

Since the subdivided nodes are shared between the elements that share element edges, C0 continuity is enforced along 
all element edges, including those incident on extraordinary nodes. In addition, G1 continuity could be enforced in the 
local region surrounding an extraordinary node if the subdivided nodes are coplanar. G1 continuity along element edges is 
enforced if the subdivided nodes on either side of the edge are collinear with the shared edge node. Please refer to the 
review by Du and Schmitt (1990) for the necessary and sufficient conditions to enforce G1 continuity with Bézier patches. 
The same conditions can be extended to cubic-Hermite patches with extraordinary nodes since cubic-Hermite representation 
is equivalent to the cubic-Bézier representation.

4. Interpolation of fiber directions

We make use of a coordinate-frame interpolation of fiber directions to ensure smooth interpolation of the fiber directions 
in the presence of extraordinary nodes. In modeling the fiber architecture of the atria, Gonzales et al. (2013) used a fixed 
fiber angle for each region that were based qualitatively on published diagrams of atrial fiber tracts, since measuring the 
fiber angles in the atria is difficult owing to their thin walls. Hence, an interpolation method was not needed for the atria, 
since the transmural variation of fiber directions in the atria was not modeled. However, in the cardiac ventricles, the fiber 
directions vary significantly in the transmural direction, which necessitates a method for interpolation. In this section, we 
describe a coordinate-frame interpolation method based on the log-Euclidean transformation (see Fig. 5).

The coordinate frame corresponding to the fiber and cross-fiber directions at each nodal location is represented using a 
3 × 3 orthogonal matrix, F whose columns represent the vectors along the three orthonormal coordinate directions. In order 
to interpolate the coordinate frame, we convert it to the log-Euclidean space by taking the matrix logarithm. However, for 
the matrix logarithm to be real, the matrix needs to be invertible and each Jordan block belonging to a negative eigenvalue 
occurs an even number of times. In order to satisfy this condition for any coordinate frame, we construct a synthetic 
symmetric matrix, T, with synthetic but unique and positive eigenvalues, using eigen composition as shown below,

T = F

⎡
⎣ d11 0 0

0 d22 0
0 0 d33

⎤
⎦FT . (9)

In Equation (9), the values of d11, d22, and d33 are chosen to be unique, positive, and in sorted order (d11 < d22 < d33, 
(5, 10, 20), for example). The matrix logarithm L of the matrix T,

L = log(T), (10)

is then used to interpolate the coordinate frames within an element. The matrix logarithm of a positive definite matrix is 
symmetric and hence, has only six independent components. We make use of the same basis function values as the geom-
etry to interpolate the components of L, similar to scalar quantities in Euclidean space. The fiber coordinate interpolation 
takes advantage of the local-to-global mapping to interpolate the six independent components of L. At any evaluation point 
inside the element, the coordinate frame can then be computed by computing the matrix exponential of the interpolated Le ,

Te = e(Le), (11)

and then computing the eigenvectors, vi (i = 1, 2, 3) of the resulting matrix. The eigenvalues of Te are then used to sort 
the eigenvectors to make sure that the order of vectors in the coordinate frame is preserved. Since the eigenvalues are only 
used for sorting the eigenvectors, there are no stability issues during interpolation as long as they are positive and unique.

5. Finite element analysis with extraordinary nodes

Performing mechanics finite element simulations on meshes with extraordinary nodes require three key modifications 
to the cubic-Hermite finite element formulation. The first modification deals with a local-to-global mapping of global pa-
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Fig. 6. To compute the element stiffness matrix, the global perturbation in the ensemble coordinate frame is transformed to the local element coordinates 
using the inverse of the local-to-global transformation map.

rameters and dependent variables. The second modification is to the perturbations used to calculate the element tangent 
stiffness matrix. The final modification is to use the local-to-global mapping to assemble the global stiffness matrix from 
the element stiffness matrices.

In Section 3.1, the generalized local-to-global mapping is used to map the local element derivatives to the ensemble 
derivatives. The finite element equations are solved with values in the ensemble frame as the dependent variables. It can 
be noted that the local-to-global mapping for all DOFs (first derivatives, second and third mixed derivatives) are linear. This 
suggests that the local-to-global mapping can be represented using a single matrix of size n × n, where n is the number 
of DOFs at each element node. Going further, the transformations for all 8 element nodes can be combined to a single 
transformation map that converts the local element DOF to the global ensemble DOF at the global node. This unification of 
the local-to-global map simplifies the equations for converting the values of the dependent variables in the ensemble frame 
to the local element coordinate frame using

[u]L = [�]e [u]G . (12)

In Equation (12) the local-to-global map is represented as �, and u corresponds to the element DOFs. This generalized 
local-to-global mapping directly maps the element DOF to the ensemble DOF uG at the corresponding global nodes. The 
local-to-global transformation map is invertible as long as the first derivatives in the local or the global ensemble frames 
are not degenerate.

5.1. Element stiffness matrix calculation

In our cubic-Hermite finite element formulation, the equilibrium geometry (nodal deformations) is computed using New-
ton iteration. The tangent stiffness matrix for the whole system at the current deformed configuration is computed and is 
then solved using Newton iteration. This is performed by first computing the local element tangent stiffness matrices and 
then assembling them to compute the global tangent stiffness matrix.

The element tangent stiffness matrix is calculated using finite difference by perturbing the current deformed degrees of 
freedom and recalculating the resulting residual forces. This perturbation needs to be performed with respect to the global 
ensemble frame in order to apply the same deformations to the local element nodes belonging to neighboring elements 
that share the global node. In a mesh with only regular nodes, perturbing the global degrees of freedom is equivalent to a 
constant multiple of the same perturbation in the local coordinate frame; it is scaled by the scalar scale factor (Section 3). In 
the presence of extraordinary nodes, the global perturbations have to be converted to local perturbations for each element 
adjacent to the extraordinary node. This is achieved by applying the inverse of the local-to-global transformation map to 
the perturbation using

[�]G = [�]−1
e [�]L . (13)

Fig. 6 shows an example of mapping the deformations of the first derivative DOF. The perturbation in the global ensemble 
frame shown in the middle is transformed to the local element frame as shown in the right using the inverse of the 
local-to-global transformation map. After the perturbations are transformed to the local element coordinate frame, the 
element stiffness matrix is computed as before using finite difference.

5.2. Global stiffness matrix assembly

The element stiffness matrices computed using the method explained in Section 5.1 are in the local element coordinate 
frame. However, the components of the global tangent stiffness matrix are in the ensemble frame for each global node. 
The final step required for including extraordinary nodes is to convert the element stiffness matrix values from the local 
coordinate frame to the global ensemble frame. Again, we make use of the general local-to-global mapping to convert the 
stiffness values to the global coordinate frame. We apply the transformation to the residual forces that are the result of the 
perturbations to convert them to the global coordinate frame, which are then used for assembly.
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Fig. 7. Two simple meshes consisting of 2 cubic-Hermite elements were constructed to evaluate the correctness of the local-to-global mapping. The local 
parametric directions were not consistent in the second mesh.

Fig. 8. The deformation in both meshes were similar to within the tolerance used for the simulation (0.001) ensuring that the solution is independent of 
the direction of the local parametrization. For interpretation of the colors in this figure, the reader is referred to the web version of this article.

Fig. 9. Two meshes of cuboid geometry; the first consisting of only regular nodes and the second consisting of 8 extraordinary nodes.

The assembly of the global stiffness matrix is straightforward after converting the element stiffness matrix components 
to the global ensemble frame since the residual forces are with respect to the common global ensemble coordinate frame. 
Finally, after assembling, the global system is solved using Newton method for the dependent variables (nodal deformations) 
that are also in the global coordinate frame.

6. Finite element analysis of simple meshes

Two tests were performed on simple meshes to analyze the correctness of the solution as well as to compute the errors 
due to the presence of extraordinary nodes.

To estimate the correctness of the local-to-global mapping in the presence of a change in the interpolating variable, two 
simple meshes consisting of 2 cubic-Hermite elements were constructed. Both meshes had the same geometric location of 
the nodes; however, the parametric directions were reversed in one element of the second mesh making the parametric di-
rections inconsistent (Fig. 7). The same boundary conditions were then applied to both meshes and the deformed geometry 
was calculated using the new finite element methods described in this paper. The two resulting deformed geometries were 
then compared and the deformations were found to be the same to within the tolerance used for the simulation (0.001). 
The spatial variation of the difference in the displacement solution between the regular and reversed mesh is shown in 
Fig. 8. In addition, both the meshes took the same number of iterations to converge to the solution. This shows that the 
global solution is independent of the local element parametrization.

To understand the errors in the solution in the presence of extraordinary nodes, two meshes of a simple cuboid geometry 
were constructed. The first mesh was constructed using 16 elements and 50 regular nodes, while the second mesh was 
constructed using 12 elements with 34 nodes of which 8 nodes were extraordinary (Fig. 9). The nodes of the meshes at 
one end were fixed and the nodes in the opposite end were pulled to deform the geometry. The top view of the deformed 
geometry is shown in Fig. 10.
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Fig. 10. Top-view of the deformation of the two cuboid meshes.

Fig. 11. Scatter plot of the nodal deformation with respect to the x-coordinate and the Scatter plot of the strains calculated at Gauss points with respect to 
the x-coordinate of the Gauss point.

To compare the solution obtained in both cases, a scatter plot showing the nodal displacements at their corresponding 
x-coordinate is shown in Fig. 11(a). In addition, a scatter plot of the calculated strain values at the Gauss points for both 
meshes is shown in Fig. 11(b). It can be seen that while the nodal displacements are very similar in both cases, the standard 
deviation in the strain values is higher in the case with extraordinary nodes. However, the values are still within the error 
tolerances in both cases (< 5%).

We compared the effect of the presence of extraordinary nodes on the convergence of results in the simple meshes. We 
compared the convergence of the regular mesh using both cubic-Hermite elements and linear hexahedral elements to the 
convergence of the cubic-Hermite mesh with extraordinary nodes. The convergence properties were measured by count-
ing the number of newton iterations the simulations took to obtain a solution with an error lower than the user-defined 
convergence value. It can be seen that the cubic-Hermite mesh converges the fastest, in spite the mesh having many more 
DOFs (1200). The presence of extraordinary nodes did not significantly affect the convergence, and the mesh with extraor-
dinary nodes consistently converged to the solution within a few extra iterations than the mesh with regular cubic-Hermite 
elements (see Fig. 12). On the other hand, the linear mesh was consistently slower to converge even with fewer DOFs (150). 
These results show that the convergence advantages of cubic-Hermite elements are retained for biomechanics simulations 
in the presence of extraordinary nodes.

7. Application to cardiac modeling

7.1. Complex cardiac models

Using the local-to-global mapping, an anatomically accurate, four-chamber finite element mesh of the heart was gen-
erated from segmented CT images (Fig. 1(a)). The model includes all the orifices and valve annuli that are present in a 
regular heart. It consists of 474 cubic-Hermite elements and 958 nodes. A bi-ventricular model with the four valve annuli 
was created using the same method (Fig. 1(b)). In addition, biomechanics simulations were then performed using this mesh. 
This mesh consists of 162 cubic-Hermite elements and 332 nodes. Both meshes were constructed in the software Blender 
using normal cardiac dimensions, similar to the methods described by Krishnamurthy et al. (2015). A plugin for Blender was 
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Fig. 12. The presence of extraordinary nodes did not significantly alter the convergence of results on the simple meshes. The mesh with the extraordinary 
nodes usually converged to the user-defined convergence value within one extra newton iteration when compared to the cubic-Hermite mesh.

Fig. 13. Fiber directions rendered at different locations in a ventricular model of the heart with valve annuli. The sprites are colored based on the angle 
with respect to the local parametric direction. For interpretation of the colors in this figure, the reader is referred to the web version of this article.

implemented to perform the subdivision and estimate the nodal derivatives. It can be seen that the use of cubic-Hermite 
elements along with extraordinary nodes allows for compact representation of complex cardiac models with fewer elements.

7.2. Fiber directions in cardiac models

The coordinate frame interpolation was used to model the fiber direction in the ventricular model with valve annuli. 
A rule-based approach was used to model the fibers; the outside epicardial surfaces were assigned −60◦ with respect to 
the circumferential direction and the inside endocardial surface were assigned +60◦ with respect to the circumferential 
direction. Fig. 13 shows the fiber directions in a human cardiac ventricle represented as sprites. The fiber directions follow 
a left-handed helical pattern from outside to inside. The use of coordinate frame interpolation results in smooth variation 
in the fiber direction throughout the myocardial tissue.

In Fig. 13, the sprites are colored with respect to the local parametric direction ξ1. However, along the edges that are 
incident on extraordinary nodes, there is no consistent local parametric direction on either side. Hence, this coloring does 
not appear to be consistent. However, it can be seen that the interpolated direction represented by the sprites transition 
smoothly across these edges that are incident upon extraordinary nodes.

7.3. Simulation of full cardiac cycle in a ventricular model

A complete cardiac cycle was simulated by coupling the bi-ventricular finite element mesh with a lumped-parameter 
closed-loop circulation model using the methods described in Krishnamurthy et al. (2013). The valve annuli were fixed from 
moving along the long axis (vertical direction) of the heart. In addition, certain nodes on the outer ring of the four valve 
annuli were constrained to prevent rigid body motion. After constraining the nodes, pressure boundary conditions corre-
sponding to the left and right ventricular pressures were applied to the inner surfaces of both ventricles. To simulate cardiac 
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Fig. 14. Pressure and volume time-course output from the full beat simulation of the bi-ventricular heart model with valve anulli. (c) Shows the simulated 
pressure-volume loops for the left and right ventricles.

contraction, active forces (tension) were produced internally in the elements and were used to solve for the equilibrium ge-
ometry. The equilibrium geometry at each time-step was solved using the finite element analysis methods described in this 
paper and the resulting nodal solution was output at each time-step.

The resting properties of the myocardium were modeled using the transversely-isotropic form of the constitutive model 
developed by Holzapfel and Ogden (2009). In this model, the anisotropy in the fiber and cross-fiber directions of the my-
ocardium is modeled using a separate exponential term with different exponents. The strain energy in this model is given 
by

ψ = a

2b
eb(I1−3) + a f

2b f

(
eb f (I4 f −1)2 − 1

)
. (14)

In Equation (14), I1 corresponds to the first invariant of the right Cauchy–Green strain tensor, I4 f corresponds to the 
components of the right Cauchy–Green strain tensor in the fiber direction. The parameter values reported by Krishnamurthy 
et al. (2013) were used for the simulations in this paper.

The active contraction model developed by Lumens et al. (2009) is used to model the muscle contraction. The pressure 
boundary conditions to be applied to the inner surfaces of the left and right ventricles were obtained using a lumped-
parameter circulation model (Arts et al., 2005). The parameters reported in Krishnamurthy et al. (2013) were again used 
for both these models. Several cardiac cycles were simulated until the volume changes in both ventricles reached steady 
state. This happened within 5 full beats in this simulation. Fig. 14(a–b) show the pressure and volume time courses for 
both ventricles. Fig. 14(c) shows the pressure-volume loops for the left and right ventricles. It can be seen that the volume 
ejected by both ventricles in each beat is the same. This shows that the simulation has reached steady state.

8. Conclusions

We have developed a method by which we can perform cardiac biomechanics simulations on cubic-Hermite meshes with 
extraordinary nodes. These meshes are capable of representing complex geometries with fewer elements. This reduces the 
computational time since computing the element stiffness matrix for each element is the most computationally intensive 
operation in higher-order finite element analysis. In addition, locally varying quantities such as the fiber direction have been 
incorporated into these meshes. Using our method, meshes with locally varying properties can be generated and hence, this 
method can be used to model complex materials such as the muscle tissue.

Compact cubic Hermite meshes are ideally suited for patient-specific cardiac modeling. Since these meshes have fewer 
degrees of freedom, they can be used to create template meshes from population averaged cardiac dimensions. These tem-
plate meshes can then be modified using image registration algorithms to create patient-specific cardiac meshes from 
images obtained using computed tomography (CT) or magnetic resonance (MR) automatically. Since creating an anatom-
ically accurate patient-specific mesh is the most tedious and time-consuming step of the process, using these meshes can 
significantly reduce the total time for patient-specific modeling.

The finite element method used in this paper only rely on C0 continuity of geometry and dependent variables between 
the elements for mechanics simulations. However, the methods used for constructing the cubic-Hermite finite element mesh 
and the local-to-global mapping are more general and can be used to enforce higher order G1 continuity by modifying the 
twice-subdivided mesh suitably. Enforcing high-order continuity might help reduce the total DOFs in the analysis and might 
improve convergence by requiring fewer iterations to reach a converged solution.

Using anatomically accurate heart models for biomechanics simulations will enable modeling of complex interactions 
that were not previously possible with ventricular models that do not include the valve plane. One example is to model 
mitral valve regurgitation by linking it to changes in the mitral valve annuli during the heart cycle. The four-chamber mesh 
can be used to model the effect of atrial geometry on the heart function. Anatomically accurate boundary conditions can 
be imposed on the cardiac geometry, resulting in the model replicating the motion of the cardiac walls and the valve plane 
accurately during the cardiac cycle.
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