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Given a piece-wise linear function defined on a type I uniform triangulation we construct 
a new partition and define a smooth cubic spline that approximates the linear surface and 
preserves its shape. The key piece is a new macro-element that has the ability to combine 
six independent gradients coming together at an interior vertex in a smooth yet shape-
preserving fashion. The shape of the resulting spline surface follows local changes in the 
shape of the piece-wise linear interpolant without overshooting. We prove that convexity, 
positivity and monotonicity of the spline depend on the local data only. Computational 
scheme for Bernstein–Bezier spline coefficients is local and fast. Numerical examples 
highlight unique shape-preserving properties of the spline.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The concept of shape-preservation rises naturally in data fitting problems. Most often we wish that approximating curves 
and surfaces preserve positivity, monotonicity and convexity of the data. Various methods have been proposed for construct-
ing shape-preserving spline surfaces. For example, the problem of interpolating scattered positive data is solved by positive 
splines minimizing a thin-plate energy functional in Utreras (1985). Iterative algorithms are proposed to exploit a variational 
approach with positivity constraints in Kouibia and Pasadas (2003) and Lai and Meile (2015). Local gradient adjusting meth-
ods for non-negative interpolation of scattered data in C1 macro-element spaces, Powell–Sabin and Clough–Tocher splits, 
are presented in Schumaker and Speleers (2010). In Carlson and Fritsch (1985) authors develop an algorithm for monotone 
C1 piecewise bicubic interpolation on a rectangular mesh. This work is continued in Carlson and Fritsch (1989) by present-
ing a simplified algorithm producing visually pleasing monotone interpolant. Box splines are studied in Chui et al. (1989), 
where the estimates for grid-size are obtained to guarantee convexity, monotonicity and positivity of solutions. A degree 
adaptive method for shape-preserving interpolation over a rectangular grid is presented in Costantini and Fontanella (1990). 
In Costantini and Manni (1991) the method for construction of differentiable interpolating surfaces over rectangular grids 
produces co-monotone results. In Schmidt and Hess (1993) interpolation of data sets given on rectangular grids is per-
formed by rational bicubic C2 splines preserving S-convex, monotone, or positive data. Cubic splines on quadrangulated 
rectangular grids have been successfully used to define monotone surfaces by requiring linearity of certain cross-boundary 
derivatives in Schumaker and Han (1997). An extension of Clough–Tocher macro-element allows for a construction of inter-
polating polynomial splines with surface tension controlled by adaptive polynomial degrees, (Costantini and Manni, 1999). 
An algorithm for convexity-preserving interpolation of scattered data based on choosing nodal gradients in feasible regions 
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is presented in Leung and Renka (1999). Cubic L1 smoothing spline on tensor-product grids in Gilsinn and Lavery (2002)
demonstrate promising shape-preserving behavior. An energy functional alternative to the one used in Gilsinn and Lavery
(2002) is tested in Witzgall et al. (2006) over Clough–Tocher splits of general irregular triangulations. The ideas of �1 mini-
mization in Lavery (2001) are adapted for general scattered data triangulations and, compared to thin-plate minimal energy 
and penalized least squares solutions, experiments demonstrate superior shape-preserving properties of the L1 splines in 
Lai and Wenston (2004). Iterative knot insertion algorithm generating a sequence of shape-preserving approximants is given 
in Kuijt and Damme (2001). In Schumaker and Speleers (2011) a search for a convex spline solution is formulated as a 
quadratic programming problem where convexity is enforced by including appropriate side conditions on the coefficients 
of the spline. Rational bi-quadratic splines preserving the shape of 3D positive and convex data are used in Hussain et al.
(2011).

Often, researches make global assumptions about the shape of given data, i.e. monotonicity, positivity or convexity, 
and design algorithms for constructing surfaces preserving the particular feature globally. Many methods are based on a 
variational approach (Utreras, 1985; Kouibia and Pasadas, 2003; Lai and Meile, 2015; Gilsinn and Lavery, 2002; Lai and 
Wenston, 2004; Witzgall et al., 2006; Schumaker and Speleers, 2011) resulting either in a large system of equations or an 
iterative algorithm.

Constructions based on local information and leading to computationally attractive local schemes have been successfully 
employed as well, see for example (Schumaker and Speleers, 2010; Costantini and Manni, 1991, 1999; Manni, 2001). Macro-
element spaces have been extensively used in development of shape-preservation methods, see for example (Willemans and 
Dierckx, 1994, 1995; Schmidt, 1999; Li, 1999; Lai, 2000; Carnicer et al., 2009).

In this paper we develop a local approach to shape-preservation. In fact, the goal of the construction is to follow local 
changes in data, and shape-preservation allows us to do so without overshooting.

Let � be a triangulation of the domain � with function values given at the vertices of �. There are some connected 
subsets of � on which the data are positive, and others, where the data are monotone and/or convex. What we claim and 
prove is that, if on a subset D of � the given vertex data is monotone (convex or positive), then for every 0 < λ < 1/6 there 
exists a set Dλ ⊂ D on which the constructed spline Sλ is monotone (convex or positive), and limλ→0 Dλ = D .

A C1 cubic spline is a popular choice for many interpolation/approximation problems. Polynomials of relatively low 
degree are well understood, and many spline tools, such as some macro-elements, for example, are specifically designed for 
C1 cubic splines. Spline theory suggests that some of the C1 conditions across the edges of a type I uniform triangulation 
are too restrictive, and one will have a problem controlling a cubic spline constructed over � due to these restrictions. 
A single coefficient may affect the spline over the rest of the triangles. There are various macro-element spaces that remedy 
this problem: after a refinement each coefficient has a finite number of triangles “around” it to control. What we suggest 
is not, strictly speaking, a refinement of the given �, since it does not preserve its edges, nor does it preserve all of its 
vertices. It is a refinement of � in a sense that the new triangulation �̃ consists of many more triangles than �, and the 
geometry and arrangements of these triangles are intimately connected with the original geometry of �. A parameter λ
controls the size of triangles, and there is more than one �̃ that works (take any 0 < λ < 1/6). This parameter affects the 
final look of the spline surface, however the surface is shape-preserving for any value of the parameter in the given range.

The constructed spline satisfies many attractive properties and has a few limitations. First of all, a triangulation � is not 
a triangulation of a scattered data set, it is a type I triangulation. Second, the constructed spline interpolates values of a 
piece-wise linear function, L, at locations other than vertices, while traditionally we seek splines interpolating data at the 
vertices of �. Finally, as an approximation to a piece-wise linear interpolant, the spline produced by the proposed method 
has regions of flatness, and this feature may limit practical applications of the construction. To minimize regions of flatness 
larger values of λ must be used. In fact, preliminary testing demonstrates that the case λ = 1/6 has similar shape-preserving 
properties. Since �̃ in this case is significantly different, details of this construction and corresponding proofs will have to 
be reported else-where. Otherwise (if larger λ’s are not satisfactory), it is not too difficult to see that ideas presented here 
can be used in combination with other spline constructions, extended to parametric surfaces, used on parts of domains, etc.

In Section 2 we present detailed construction of �̃. In Section 3 we describe how the coefficients of the spline are 
computed. We study linearity, positivity, monotonicity, convexity of the spline in Section 4, using results in Lai and Schu-
maker (2007) to connect the behavior of a BB-polynomial to its coefficients. In Section 5, we discuss numerical experiments 
performed with shape-preserving splines, and follow up with conclusions in Section 6.

2. Repartitioning a type I uniform triangulation

Let � be a type I uniform triangulation of a planar convex domain � with the vertices forming a set V , and let �̃ denote 
the new triangulation. Divide triangles of � into two groups, as marked by 1 and 2 in Fig. 1, left (there are two choices 
for grouping, the key is to alternate triangles from different groups). Fix 0 < λ < 1/6 and associate a weight w = λ with 
triangles marked by 1, and a weight w = 2λ with triangles marked by 2. In every triangle τ (i) ∈ � with vertices v1, v2, v3
define three points

w(i)
1 = (1 − 2w)v1 + w v2 + w v3,

w(i) = w v1 + (1 − 2w)v2 + w v3,
2
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Fig. 1. A given type I uniform triangulation �, and steps in defining a suitable repartition �̃.

Fig. 2. Creating quadrangles along interior edges.

Fig. 3. Left: An interior vertex shared by six triangles leads to the construction of a twelve-triangle macro-element. Right: The twelve-triangle macro-element 
is made of four CT macro-elements.

w(i)
3 = w v1 + w v2 + (1 − 2w)v3, (1)

and let W denote the set of all such points in �.
Note that (1 − 2w, w, w) are the barycentric coordinates of w(i)

1 with respect to τ (i) . Since they are strictly positive, the 
point w(i)

1 is strictly inside the triangle τ (i) (similar conclusion holds for the other two points in (1)). The fact that w(i)
1

and w(i)
2 have identical 3rd barycentric coordinate makes a line segment connecting these two points parallel to the edge 

opposite to v3.
Connect the three points in (1) to form a triangle τ̃ (i) ⊂ τ (i) (see Fig. 1, center). The edges of the newly formed triangles 

are pair-wise parallel to the edges of the original triangles.
For two neighboring triangles τ (i) and τ ( j) sharing an edge e(i, j) in � (see Fig. 2) there are two newly created edges e(i)

and e( j) parallel to e(i, j) . Connect the four vertices of the two edges to create a quadrangle q̃(i, j) and its diagonals. Fig. 1, 
right, demonstrates �̃ after the addition of all quadrangles.

Let v0 be an interior vertex of the original triangulation �. Let τ (i) = 〈vi, vi+1, v0〉, i = 1, ..., 6 (identifying v7 and 
v1) be the six triangles sharing v0 indexed counterclockwise starting with a type 2 triangle, see Fig. 3, left. That is, a 
parameter w used in computation of w(1)

j , j = 1, 2, 3 on τ (1) is equal to 2λ. Consider the polygon formed by the six points 

w(i)
3 = w vi + w vi+1 + (1 − 2w)v0, i = 1, ..., 6, with w = 2λ for odd i’s, and w = λ for even i’s (see Fig. 3, left). The vertices 

w(i)
3 are ordered counter-clockwise, and it is not to difficult to see that w2k

3 = (w2k−1
3 + w2k+1

3 )/2, k = 1, 2, 3. That is the 
points w2k−1

3 , w2k
3 , w2k+1

3 are collinear for each k = 1, 2, 3, and w2k
3 is the midpoint of the line segment 〈w2k−1

3 , w2k+1
3 〉. 

The six vertex polygon is thus reduced to a triangle with vertices w(i)
3 , i = 1, 3, 5.

To simplify the notation we denote w(i)
3 ’s by ui ’s (see Fig. 3, right). Define t1 = 〈u6, u1, u2〉, t2 = 〈u2, u3, u4〉, t3 =

〈u4, u5, u6〉 and t4 = 〈u2, u4, u6〉. Furthermore, split each of these triangles into three using a barycenter. The barycenter 
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Fig. 4. Last steps is defining �̃.

Fig. 5. Angles in a quadrangle.

of t4 is in fact v0 (Fig. 3, right). Denote the barycenters of ti ’s by oi ’s, i = 1, 2, 3. Let us call this set of twelve triangles a 
12T macro-element. Fig. 4, left, demonstrates how completion of this step affects construction of �̃.

Finally, notice a gap along the right hand side boundary of �̃ in Fig. 4, left. Fill the gaps along the boundary of �̃ by 
Clough–Tocher macro-triangles (Fig. 4, right). The boundary of �̃ ends up parallel to the boundary of �. In fact, define 
�̃ = ∪t∈�̃t , and note

lim
λ→0

W = V ,

lim
λ→0

�̃ = �,

lim
λ→0

�̃ = �.

It will be seen later that for the spline S approximating the piece-wise linear function L

lim
λ→0

S = L.

Before we proceed with computation of spline coefficients let us comment on the angles in �̃. Note that the four 
macro-triangles of a 12T macro-element are similar to the triangles in the original triangulation. It is well known that the 
angles in the split triangles are bounded below, that is the smallest angle in 12T is greater than or equal to a multiple of 
the smallest angle in � (see for example Lemma 4.17 in Lai and Schumaker, 2007). The angles in quadrangles however may 
be of concern, since they depend on the angles of � as well as the value of the parameter λ.

Refer to Fig. 5. Suppose the angles in τ (i) = 〈v1, v2, v3〉 have measures α, β and γ at the vertices v1, v2 and v3 respec-
tively. Let qk , k = 1, ..., 4 denote the vertices of the quadrangle, in counterclock order, formed along the edge v̂2, v3 with 
q1, q2 ∈ τ (i) and q3, q4 ∈ τ ( j) . It is easy to recognize that the measure of � q1, q2, q3 is γ , and the measure of � q4, q1, q2
is β . The interior angles of q̃(i, j) at the vertices q3 and q4 are π − γ and π − β respectively. Let φ denote the measure of 
� q1, q2, q4, and φ′ denote the measure of � q2, q1, q3. Note that the rest of the angles in q̃(i, j) can be expressed in terms of 
α, β, γ , φ and φ′ . It not too difficult to check that, if the weight w = λ on τ (i) and it is 2λ on τ ( j) , then

cotφ = 1 − 3λ

3λ
cotγ + 1 − 6λ

3λ
cotβ,

cotφ′ = 1 − 3λ

3λ
cot β + 1 − 6λ

3λ
cotγ . (2)

We see that φ and φ′ decrease as the parameter λ decreases to zero, and the formulas above allow us to choose λ to keep 
these angles controlled by the angles of the initial triangulation �.
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3. Computing spline coefficients on �̃

We can formally divide computation of the spline coefficients into three steps according to the three groups of triangu-
lated elements discussed in Section 2.

(i) Define the spline on stand-alone triangles.
(ii) Define the spline on quadrangles.

(iii) Define the spline on 12T macro-elements (Clough–Tocher macro-elements along the boundary are treated similarly to 
some of the sub-triangles in 12T macro-elements).

3.1. Spline coefficients on a triangle

Let zk denote the given function value at vk ∈ V . A linear function defined on τ (i) = 〈v1, v2, v3〉 ∈ � interpolating 
z1, z2, z3 can be written as

L(x, y) = z1b1(x, y) + z2b2(x, y) + z3b3(x, y),

where bk(x, y), k = 1, 2, 3 are the barycentric coordinates of a point (x, y) with respect to τ (i) . Evaluate L(x, y) at the 
locations w(i)

j , j = 1, 2, 3 defined by (1)

z(i)
1 := (1 − 2w)z1 + wz2 + wz3,

z(i)
2 := wz1 + (1 − 2w)z2 + wz3,

z(i)
3 := wz1 + wz2 + (1 − 2w)z3. (3)

The gradient of L(x, y) is constant on τ (i) and is equal to

∇L =
3∑

k=1

zk∇bk = 1

2A

(
z1(y2 − y3) + z2(y3 − y1) + z3(y1 − y2)

z1(x3 − x2) + z2(x1 − x3) + z3(x2 − x1)

)
, (4)

with A denoting the area of τ (i) (in a type I uniform triangulation areas of all triangles are equal). Finally, let us note that 
directional derivatives of L(x, y) along the edges of τ (i) are

D vk−v j L(x, y) = zk − z j,1 ≤ k, j ≤ 3,k �= j.

For our first step, on every triangle τ̃ (i) ⊂ τ (i) the spline S(v) is linear and interpolates z(i)
j (3) at the vertices w(i)

j , 
j = 1, 2, 3 respectively. The Bernstein–Bezier coefficients of this linear piece are

c(i)
jk�

= jz(i)
1 + kz(i)

2 + �z(i)
3 ,0 ≤ j,k, � ≤ 1, j + k + � = 1.

The coefficients of this linear polynomial rewritten as a cubic are

C (i)
jk�

= 1

3
( jz(i)

1 + kz(i)
2 + �z(i)

3 ),0 ≤ j,k, � ≤ 3, j + k + � = 3. (5)

3.2. Spline coefficients on a quadrangle

Let q̃(i, j) denote a quadrangle in �̃ associated with an edge e(i, j) common to the triangles τ (i) = 〈v1, v2, v3〉 and τ ( j) =
〈v2, v4, v3〉 of � (Fig. 2). Without loss of generality assume that τ (i) is from group 1, and τ ( j) is from group 2. Suppose the 
vertices of q̃(i, j) are w(i)

3 , w(i)
2 , w( j)

1 , w( j)
3 and they are ordered counterclockwise. To simplify the notation we’ll denote them 

by qi , i = 1, ..., 4. Suppose the edge e(i, j) intersects the line segments 〈q1, q4〉 and 〈q2, q3〉, at m1, m2 respectively. Define 
the cubic spline S(v) on q̃(i, j) to satisfy

(i) S(v) interpolates L(v) and its first order derivatives at the vertices of q̃(i, j) ,
(ii) S(v) connects smoothly with the spline defined on τ̃ (i) and τ̃ ( j) ,

(iii) S(v) interpolates the derivative of L(v) at m1, m2 in the direction e(i, j) = v3 − v2,
(iv) S(v) is C1 across the interior edges of q̃(i, j) .

Conditions specified above define a unique cubic spline over a quadrilateral macro-element (see Chapter 6.5 in Lai and 
Schumaker, 2007 for fundamentals on quadrilateral macro-elements).

Define μ = 1−6λ
2−9λ

. Then d, the intersection of the diagonals of q̃(i, j) , is

d = μq1 + (1 − μ)q3 = μq2 + (1 − μ)q4. (6)
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Fig. 6. Domain points over a quadrangle with associated C0 spline coefficients.

Order the C0 cubic spline coefficients over q̃(i, j) as in Fig. 6. Due to linearity of the spline on τ̃ (i) and continuity of the 
spline across the edge 〈q1, q2〉 we have

c1 = z(i)
3 , c4 = z(i)

2 ,

c2 = 2c1 + c4

3
,

c3 = c1 + 2c4

3
. (7)

Due to interpolation of gradients at q1 and q2, and smoothness of the spline in the interior of q̃(i, j) (using (6))

c12 = c1 + λ(z2 − z1),

c13 = μc2 + (1 − μ)c12,

c5 = c4 + λ(z3 − z1),

c15 = μc3 + (1 − μ)c5. (8)

Due to linearity of the spline on τ̃ (i) and C1 conditions across the edge 〈q1, q2〉 we have

c14 = c13 + c15

2
. (9)

Similarly

c7 = z( j)
1 , c10 = z( j)

3 ,

c8 = 2c7 + c10

3
,

c9 = c7 + 2c10

3
,

c6 = c7 + λ(z2 − z4),

c11 = c10 + λ(z3 − z4),

c17 = μc6 + (1 − μ)c8,

c19 = μc11 + (1 − μ)c9,

c18 = c17 + c19

2
. (10)

To satisfy conditions (iii), we note that m1 = 2q1+q4
3 and m2 = 2q2+q3

3 . Since D v3−v2 L = z3 − z2 we set

D v3−v2 S(m1) = D v3−v2 S(m2) = z3 − z2.
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Use Lemma 2.11 from Lai and Schumaker (2007) to see that

D v3−v2 S(m1) = 3(a1c10 + a2c11 + a3c19)�
2
1

+ 3(a1c11 + a2c12 + a3c20)2�1�2

+ 3(a1c12 + a2c1 + a3c13)�
2
2, (11)

where (�1, �2, �3) = (1/3, 2/3, 0) are the barycentric coordinates of m1 and (a1, a2, a3) are the directional coordinates of 
v3 − v2 with respect to 〈q4, q1, d〉. We find that

(a1,a2,a3) =
(

1

1 − 6λ
,

1

1 − 3λ
,− 2 − 9λ

(1 − 3λ)(1 − 6λ)

)
,

and solve (11) for c20 to find

c20 = −3

4
μ(1 − 3λ)(z3 − z2) + (1 − μ)λ(z3 − z4)

+ μλ(z2 − z1) + 1 − μ

12
(13c10 − c7) + μ

3
(4c1 − c4). (12)

Similarly, since (2/3, 1/3, 0) are the barycentric coordinates of m2 in 〈q2, q3, d〉 and

(a1,a2,a3) =
(

− 1

1 − 3λ
,− 1

1 − 6λ
,

2 − 9λ

(1 − 3λ)(1 − 6λ)

)
,

are the directional coordinates of v3 − v2 with respect to 〈q2, q3, d〉, we find that

c16 = 3

4
μ(1 − 3λ)(z3 − z2) + μλ(z3 − z1)

+ (1 − μ)λ(z2 − z4) + 1 − μ

12
(13c7 − c10) + μ

3
(4c4 − c1). (13)

To complete the computation of the coefficients for q̃(i, j) we set C1 conditions across the interior edges of q̃(i, j) . Using 
equation (6)

c21 = μc14 + (1 − μ)c20,

c22 = μc14 + (1 − μ)c16,

c23 = μc16 + (1 − μ)c18,

c24 = μc20 + (1 − μ)c18,

c25 = μc21 + (1 − μ)c23. (14)

3.3. Spline coefficients on a 12T macro-element

Coefficients of the spline on a 12T macro-element are computed by following the guidelines below.

(i) Interpolate the values and the gradients of L(v) at each ui , i = 1, ..., 6;
(ii) Interpolate directional derivative of L(v) across the edges 〈ui, ui+1〉, i = 1, ..., 6 in the directions v0 − vi+1;

(iii) Use smoothness conditions to complete 2-sided Clough–Tocher macro-element constructions for the macro-triangles 
t1, t2, t3;

(iv) Create a traditional Clough–Tocher macro-element spline on t4 connecting the spline on t4 to the pieces on t1, t2 and 
t3 with C1 continuity.

The (1, 1, 0)-macro element spaces were introduced in Rayevskaya and Schumaker (2005). This construction defines the 
spline on ti , i = 1, 2, 3. For example, below we show how the conditions above are used on t2. Organize the coefficients of 
the spline c(2)

j , j = 1, ..., 19 on the triangle t2 as shown in Fig. 7. Then

c(2)
1 = z(2)

3 = λz2 + λz3 + (1 − 2λ)z0,

c(2)
2 = z(3)

3 = 2λz3 + 2λz4 + (1 − 4λ)z0,

c(2)
3 = z(4)

3 = λz4 + λz5 + (1 − 2λ)z0,

c(2) = z(2) + (u3 − u2)∇L(u2)/3 = 2λz3 + (1 − 2λ)z0,
4 3
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Fig. 7. C0 domain points and the associated spline coefficients on a CT macro-element.

c(2)
6 = z(2)

3 + (u4 − u2)∇L(u2)/3 = λz3 + (1 − λ)z0,

c(2)
5 = (c(2)

1 + c(2)
4 + c(2)

6 )/3,

c(2)
7 = z(3)

3 + (u4 − u3)∇L(u3)/3 = 2λz4 + λz3 + (1 − 3λ)z0,

c(2)
9 = z(3)

3 + (u2 − u3)∇L(u3)/3 = 2λz3 + λz4 + (1 − 3λ)z0,

c(2)
8 = (c(2)

2 + c(2)
7 + c(2)

9 )/3,

c(2)
10 = z(4)

3 + (u2 − u4)∇L(u4)/3 = λz4 + (1 − λ)z0,

c(2)
12 = z(4)

3 + (u3 − u4)∇L(u4)/3 = 2λz4 + (1 − 2λ)z0,

c(2)
11 = (c(2)

3 + c(2)
10 + c(2)

12 )/3. (15)

The condition (ii) is applied to the edges 〈u2, u3〉 and 〈u3, u4〉, allowing us to compute the coefficients c(2)
13 and c(2)

14 . Let m1

be the point of intersection of 〈v0, v3〉 with 〈u2, u3〉. Let (ai)
3
i=1 denote the directional coordinates of v0 − v3 with respect 

to 〈u2, u3, o2〉. It turns out that

(a1,a2,a3) =
(

− 1

3λ
,− 2

3λ
,

1

λ

)
,

and the barycentric coordinates of m1 with respect to 〈u2, u3, o2〉 are (2/3, 1/3, 0). Adjusting formula (11) we get

3D v0−v3 S(m1) = 4(a1c(2)
1 + a2c(2)

4 + a3c(2)
5 )

+ 4(a1c(2)
4 + a2c(2)

9 + a3c(2)
13 )

+ (a1c(2)
9 + a2c(2)

2 + a3c(2)
8 ).

Noting that D v0−v3 L(m1) = z0 − z3 we solve the above equation for c(2)
13

c(2)
13 = λ

3
(5z3 + 2z4 − 7z0) + z0. (16)

Similarly we find

c(2)
14 = λ

3
(2z3 + 5z4 − 7z0) + z0. (17)

We have no derivative information to interpolate across the edge 〈u4, u2〉. Instead we use the approach in Rayevskaya and 
Schumaker (2005). That is, we require additional smoothness (C3) of the spline at the barycenter o2 across the edge 〈o2, u3〉. 
Together with the standard C1 conditions across the interior edges of 〈u2, u3, u4〉 at o2 we obtain

c(2)
15 = λ

3
(2z3 + 2z4 − 4z0) + z0, (18)

and
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c(2)
16 = (c(2)

13 + c(2)
15 + c(2)

5 )/3,

c(2)
17 = (c(2)

13 + c(2)
14 + c(2)

8 )/3,

c(2)
18 = (c(2)

14 + c(2)
15 + c(2)

11 )/3,

c(2)
19 = (c(2)

16 + c(2)
17 + c(2)

18 )/3. (19)

After determining the coefficients on t2 and t3 in an analogous way, we proceed with the coefficients of the spline on t4. 
Starting with the obvious and using coefficient indexing similar to the order in Fig. 7

c(4)
1 = z(2)

3 = λz2 + λz3 + (1 − 2λ)z0,

c(4)
2 = z(4)

3 = λz4 + λz5 + (1 − 2λ)z0,

c(4)
3 = z(6)

3 = λz6 + λz1 + (1 − 2λ)z0,

c(4)
4 = z(2)

3 + (u4 − u2)∇L(u2)/3 = λz3 + (1 − λ)z0,

c(4)
6 = z(2)

3 + (u6 − u2)∇L(u2)/3 = λz2 + (1 − λ)z0,

c(4)
7 = z(4)

3 + (u6 − u4)∇L(u4)/3 = λz5 + (1 − λ)z0,

c(4)
9 = z(4)

3 + (u2 − u4)∇L(u4)/3 = λz4 + (1 − λ)z0,

c(4)
10 = z(6)

3 + (u2 − u6)∇L(u6)/3 = λz1 + (1 − λ)z0,

c(4)
12 = z(6)

3 + (u4 − u6)∇L(u6)/3 = λz6 + (1 − λ)z0,

c(4)
5 = (c(4)

1 + c(4)
4 + c(4)

6 )/3,

c(4)
8 = (c(4)

2 + c(4)
7 + c(4)

9 )/3,

c(4)
11 = (c(4)

3 + c(4)
10 + c(4)

12 )/3. (20)

For the coefficient c(4)
13 note that the barycentric coordinates of v0 with respect to 〈u2, o2, u4〉 are (1, −1, 1). Using C1

conditions across the edge 〈u2, u4〉 we find

c(4)
13 = c(2)

6 − c(2)
15 + c(2)

10 = λ

3
(z3 + z4 − 2z0) + z0. (21)

Similarly

c(4)
14 = λ

3
(z5 + z6 − 2z0) + z0, (22)

and

c(4)
15 = λ

3
(z1 + z2 − 2z0) + z0. (23)

The rest of the coefficients are found using formulas similar to (19).
For Clough–Tocher macro-elements along the boundary we use the two-sided approach, similar to how the triangles 

ti , i = 1, 2, 3 are treated when constructing the spline over a 12T macro-element. The values and gradients of L(x, y)

are interpolated at the vertices of the Clough–Tocher macro-elements as well as directional derivatives across the edges 
neighboring quadrangles. The rest of the coefficients are determined by requiring extra smoothness at the barycenter.

4. Shape of the spline surface

4.1. Convexity

We begin this section by studying the behavior of the spline on a quadrangle. As in Section 3, let τ (i) = 〈v1, v2, v3〉 and 
τ ( j) = 〈v2, v4, v3〉 be neighboring triangles in �, and let q̃(i, j) be a quadrangle with two edges parallel to e(i, j) = 〈v2, v3〉, 
the edge in � common to τ (i) and τ ( j) .

Proposition 1. The spline S is linear on q̃(i, j) in the direction parallel to e(i, j).
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Proof. On the triangle 〈q1, q2, d〉 any line parallel to e(i, j) can be defined as a set of points with the barycentric coordinate 
b3 = K for some 0 ≤ K ≤ 1. Then BB-polynomial on this triangle restricted to this line can be described as

S|〈q1,q2,d〉(b1,b2, K ) = c1b3
1 + 3c2b2

1b2 + 3c3b1b2
2 + c4b3

2

+ 3K (c13b2
1 + 2c14b1b2 + c15b2

2)

+ 3K 2(c21b1 + c22b2) + K 3c25.

Using formulas (7)–(10), (12)–(14) and b1 = 1 − b2 − K we get

S|〈q1,q2,d〉(1 − b2 − K ,b2, K ) = b2(1 − 3λ)(z2 − z3) + C(K ), (24)

where C(K ) is a constant independent of b1 and b2. Similarly, S is linear on 〈q3, q4, d〉 along any line parallel to e(i, j) .
Next, consider 〈q4, q1, d〉. If the barycentric coordinates of a point v restricted to a line parallel to e(i, j) with respect to 

〈q1, q2, d〉 are (b1, b2, K ), then the barycentric coordinates of v with respect to 〈q4, q1, d〉 are

(b1, K + b2

μ
,−b2(1 − μ)

μ
).

Then the spline on 〈q4, q1, d〉 restricted to a line parallel to e(i, j) can be simplified using b1 = 1 − b2 − K as

S|〈q4,q1,d〉(1 − b2 − K , K + b2

μ
,−b2(1 − μ)

μ
) = b2(1 − 3λ)(z2 − z3) + C(K ),

where the constant C(K ) is identical to the one in (24).
The following results are concerned with convexity of the spline.
Let L(i)(v) denote the restriction of L(v) to τ (i) . Note that if z4 > (<)L(i)(v4) then L(v) is concave up (down) on τ (i) ∪

τ ( j) . If z4 = L(i)(v4) then the points (vk, zk), k = 1, 2, 3, 4 are coplanar. �
Theorem 1. The spline S restricted to q̃(i, j) preserves concavity of L(v) on τ (i) ∪ τ ( j) .

Proof. We will show that the result holds on the sub-triangles 〈q1, q2, d〉 and 〈q4, q1, d〉. Since our construction is symmetric 
the result follows for the other two sub-triangles of q̃(i, j) .

According to Theorem 3.15 of Lai and Schumaker (2007) we need to consider the matrices Aijk , i + j + k = 1 which on 
〈q1, q2, d〉 simplify as

A100 = λ(1 − μ)2(z4 − L(i)(v4))

[
0 0
0 1

]
,

A010 = λ(1 − μ)2(z4 − L(i)(v4))

[
0 0
0 1

]
,

A001 = μλ(1 − μ)2(z4 − L(i)(v4))

[
0 0
0 1

]
.

Here (1 − μ)2, λ, and μ are positive (as long as we keep 1 − 6λ positive), while the sign of the difference z4 − L(i)(v4)

depends on the concavity of L(v) on τ (i) ∪ τ ( j) . Similarly,

A100 =
[

0 0
0 0

]
,

A010 = λ(z4 − L(i)(v4))

[
1 μ

μ μ2

]
,

A001 = μλ(z4 − L(i)(v4))

[
1 μ

μ μ2

]
,

imply preservation of concavity of L(v) on 〈q4, q1, d〉. �
Let t2 be a triangle with vertices u2, u3, u4 and a barycenter o2 as in Section 3.2. Additionally let δi = zi − zi+1 + zi+2 − z0, 

and note that δi = zi+2 − L(i)(vi+2) > 0 implies L(v) is concave up on τ (i) ∪ τ (i+1) .

Theorem 2. Suppose L(v) is concave up on τ (2) ∪ τ (3) ∪ τ (4) . The spline S restricted to t2 is concave up as well.
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Proof. Consider the triangle 〈u2, u3, o2〉 and the matrices

A100 = λ

9
δ2

[
9 6
6 4

]
,

A010 =
[

0 0
0 0

]
,

A001 = λ

27
δ2

[
9 6
6 4

]
+ λ

27
δ3

[
0 0
0 1

]
. (25)

The linear function L(v) is concave up on τ (2) ∪ τ (3) ∪ τ (4) if both δ2 > 0 and δ3 > 0, or if one quantity is strictly positive, 
while the other is zero. By Theorem 3.15 in Lai and Schumaker (2007), if δ2 > 0 and δ3 > 0, the spline is concave up on 
〈u2, u3, o2〉. If one of the quantities is zero, the spline’s concavity depends on the sign of the other. If δ2 = δ3 = 0, that 
is the points (vi, zi), i = 2, 3, 4, 5 and (v0, z0) are coplanar, the spline is linear on 〈u2, u3, o2〉. Due to symmetry of our 
construction we skip similar considerations for 〈u3, u4, o2〉, and move on to studying the behavior of S on 〈u4, u2, o2〉.

We find that the matrices of interest are

A100 = λ

9
δ3

[
9 6
6 4

]
,

A010 = λ

9
δ2

[
9 3
3 1

]
,

A001 = λ

27
δ2

[
9 3
3 1

]
+ λ

27
δ3

[
9 6
6 4

]
,

and all claimed conclusions follow again. �
Due to symmetry of the construction, the behavior of S on t1 and t3 is similar to that of S on t2. It remains to show, 

however, that

Theorem 3. If L(v) on ∪6
i=1τ

(i) is concave up, then the spline S restricted to t4 is concave up as well.

Proof. It suffices to show that the result holds on one of the micro-triangles of t4. For example, consider 〈u2, u4, v0〉 and 
the matrices

A100 = λ

9
δ2

[
9 3
3 1

]
+ λ

9
δ1

[
0 0
0 1

]
,

A010 = λ

9
δ3

[
9 6
6 4

]
+ λ

9
δ4

[
0 0
0 1

]
,

A001 = λ

27
(δ2 + δ5)

[
9 3
3 1

]
+ λ

27
(δ3 + δ6)

[
9 6
6 4

]

+ λ

27
(δ3 − δ6 + 2δ4)

[
0 0
0 1

]
.

Clearly, Aijk , i + j +k = 1 are non-negative definite if δi ≥ 0, i = 1, ..., 6 and δ3 −δ6 +2δ4 ≥ 0. The last inequality is equivalent 
to

z2 + z5 ≤ z3 + z4 + z6 + z1 − 2z0. (26)

Since δ1 and δ2 are nonnegative z2 ≤ z1 + z3 − z0 and z5 ≤ z4 + z6 − z0, and therefore (26) follows. �
To sum up, if L(v) is concave up (down) on ∪6

i=1τ
(i) , then δi ≥ (≤)0, i = 1, ..., 6. By Theorem 3.15 in Lai and Schumaker

(2007) and Theorems 1, 2 above the spline S is concave up (down) on ti , i = 1, ..., 4, and on each of the six quadrangles 
along the edges 〈v0, vi〉, i = 1, ..., 6 of the original triangulation.

If the concavity of L(v) around v0 changes, that is the data inflects, then δi ’s have different signs and the spline inflects. 
It is interesting to see how the spline changes along the three edge directions of the original triangulation.

Theorem 4. Suppose δ2 > 0 and δ3 < 0. On the triangle 〈u2, u3, o2〉 the spline is

(i) concave up in the direction u3 − u2 ,
(ii) concave down in the direction u4 − u3 ,
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(iii) concave up in the direction u4 − u2 if in addition |δ3| < |δ2|.

Proof. In the triangle 〈u2, u3, o2〉 by Theorem 3.14 (Lai and Schumaker, 2007), and using the matrices (25), for the direction 
u = u3 − u2 = 1(u3 − u2) + 0(o2 − u2) the expressions

(1 0)Aijk(1 0)T

depend on δ2 only. Indeed

(1 0)A100(1 0)T = λδ2,

(1 0)A010(1 0)T = 0,

(1 0)A001(1 0)T = λ

3
δ2.

Since δ2 is positive the spline restricted to a line parallel to u3 − u2 is concave up.
The direction u4 − u3 can be expressed as 3(o2 − u2) − 2(u3 − u2), then

(−2 3)A100(−2 3)T = 0,

(−2 3)A010(−2 3)T = 0,

(−2 3)A001(−2 3)T = λ

3
δ3.

Clearly, the spline is concave down in the direction u4 − u3.
Finally, the direction u4 − u2 can be expressed as 3(o2 − u2) − 1(u3 − u2), and thus we consider the expressions

(−1 3)A100(−1 3)T = λδ2,

(−1 3)A010(−1 3)T = 0,

(−1 3)A001(−1 3)T = λ

3
(δ2 + δ3).

Clearly, in the direction u4 − u2 the spline is concave up as long as |δ3| < |δ2|. �
Theorem 5. Suppose sign(δ2) = −sign(δ3). The spline restricted to the triangle 〈u4, u2, o2〉 inflects along every line b3 = k, 0 ≤ k ≤ 1, 
parallel to the edge 〈u4, u2〉. The inflection point lies inside the triangle for every k < min

{
3δ3

2δ3−δ2
, 3δ2

2δ2−δ3

}
=: M.

Proof. A line parallel to the edge 〈u4, u2〉 and crossing the interior of 〈u4, u2, o2〉 can be defined as

�(t) = u4(1 − t) + u2(t − k) + o2k,

for 0 ≤ k ≤ 1. The line segment inside the triangle corresponds to values of t between k and 1. The spline along this line 
has a second order derivative

2λ(3δ3 + 3t(δ2 − δ3) + k(−2δ2 + δ3)),

and an inflection point

tinf = −3δ3 + (2δ2 − δ3)k

3(δ2 − δ3)
.

Case 1: Suppose δ2 > 0 and δ3 < 0. Then the condition k < tinf is equivalent to

k <
3δ3

2δ3 − δ2
.

The condition tinf < 1 is equivalent to

k <
3δ2

2δ2 − δ3
.

Thus k < tinf < 1 as long as

k < M.

Case 2: Suppose δ2 < 0 and δ3 > 0. Then the condition k < tinf is equivalent to
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k <
3δ3

2δ3 − δ2
.

The condition tinf < 1 is equivalent to

k <
3δ2

2δ2 − δ3
.

Since M ≤ 1, the point tinf is inside the triangle when k ≤ M . If M < 1, the inflection point vanishes from the triangle as 
soon as k exceeds M . �
Theorem 6. Suppose sign(δ2) = −sign(δ3). The spline restricted to the triangle 〈u2, u4, v0〉 inflects along every line b3 = k, 0 ≤ k ≤ 1, 
parallel to the edge 〈u2, u4〉. The inflection point is inside the triangle for every k < min

{
3δ3

δ3−2δ2
, 3δ2

δ2−2δ3

}
=: M ′ .

Proof. A line parallel to the edge 〈u2, u4〉 and crossing the interior of 〈u2, u4, v0〉 can be defined as

�(t) = u2(1 − t) + u4(t − k) + v0k,

for 0 ≤ k ≤ 1. The spline restricted to this line and differentiated twice (with respect to t) is defined by

2λ(−δ3(k − 3t) + δ2(3 + 2k − 3t)),

and its only inflection point is

tinf = 3δ2 + (2δ2 − δ3)k

3(δ2 − δ3)
.

This point is interior to the triangle when k ≤ M ′ , since M ′ ≤ 1. If M ′ < 1, the inflection point vanishes from the triangle as 
soon as k exceeds M ′ . �
4.2. Monotonicity

Let us now study monotonicity of the spline on a quadrangle q̃(i, j) , constructed along the edge 〈v2, v3〉, common to 
triangles τ (i) = 〈v1, v2, v3〉 and τ ( j) = 〈v2, v4, v3〉.

Theorem 7. The spline restricted to q̃(i, j) preserves monotonicity of L(v) on τ (i) ∪ τ ( j) .

Proof. Let qk , k = 1, ..., 4 denote the vertices of q̃(i, j) = 〈w(i)
3 , w(i)

2 , w( j)
1 , w( j)

3 〉. The directions q2 −q1, q3 −q2, q4 −q1 are the 
same as the directions of v2 − v3, v4 − v2 = v3 − v1, v2 − v1 = v4 − v3. Consider the spline behavior along these directions. 
According to Theorem 3.10 in Lai and Schumaker (2007), a cubic BB-polynomial is monotone increasing on a triangle t in a 
direction u if

a1ci+1, j,k + a2ci, j+1,k + a3ci, j,k+1 ≥ 0, i + j + k = 2. (27)

Here (a1, a2, a3) are the directional coordinates of u with respect to the triangle t .
First consider the triangle 〈q1, q2, d〉. In the direction v2 − v3 we have (−1, 1, 0) as the directional coordinates in ques-

tion, and thus expressions in (27) are

c4 − c3 = c3 − c2 = c2 − c1 = c15 − c14 = c14 − c13 = c22 − c21 = (1 − 3w)(z2 − z3)/3.

The quantity (1 − 3w) is positive for 0 < λ < 1/6, the value z2 − z1 is positive if L(v) is increasing from v3 towards v2. By 
Theorem 3.10 in Lai and Schumaker (2007) the spline preserves monotonicity of the data in the direction v2 − v3. Next, let 
a denote the triple of directional coordinates of q3 − q2 with respect to 〈q1, q2, d〉. We find that

a =
(

− μ

1 − μ
,−1,

1

1 − μ

)
,

and expressions in (27) become

− μ

1 − μ
c1 − c2 + 1

1 − μ
c13 = λ(z3 − z1),

− μ

1 − μ
c2 − c3 + 1

1 − μ
c14 = λ(z3 − z1),

− μ
c3 − c4 + 1

c15 = λ(z3 − z1),

1 − μ 1 − μ
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− μ

1 − μ
c13 − c14 + 1

1 − μ
c21 = λ(μ(z3 − z1) + (1 − μ)(z4 − z2)),

− μ

1 − μ
c14 − c15 + 1

1 − μ
c22 = λ(μ(z3 − z1) + (1 − μ)(z4 − z2)),

− μ

1 − μ
c21 − c22 + 1

1 − μ
c25 = λ(μ2(z3 − z1) + (1 − μ2)(z4 − z2)).

The spline is monotone increasing in the direction q3 − q2 if L(v) increases from v1 towards v3 and from v2 towards v4. 
Since the directions q3 − q2, v3 − v1 and v4 − v2 are the same, the spline preserves monotonicity of L(v) in the direction 
q3 − q2. Now, let a denote the triple of directional coordinates of q4 − q1 with respect to 〈q1, q2, d〉. We find that

a =
(

−1,− μ

1 − μ
,

1

1 − μ

)
,

and

−c1 − μ

1 − μ
c2 + 1

1 − μ
c13 = λ(z2 − z1),

−c2 − μ

1 − μ
c3 + 1

1 − μ
c14 = λ(z2 − z1),

−c3 − μ

1 − μ
c4 + 1

1 − μ
c15 = λ(z2 − z1),

−c13 − μ

1 − μ
c14 + 1

1 − μ
c21 = λ(μ(z2 − z1) + (1 − μ)(z4 − z3)),

−c14 − μ

1 − μ
c15 + 1

1 − μ
c22 = λ(μ(z2 − z1) + (1 − μ)(z4 − z3)),

−c21 − μ

1 − μ
c22 + 1

1 − μ
c25 = λ(μ2(z2 − z1) + (1 − μ2)(z4 − z3)).

The spline is monotone increasing in the direction q4 − q1 if L(v) increases from v1 towards v2 and from v3 towards v4. 
Since the directions q4 − q1, v2 − v1 and v4 − v3 are the same, the spline preserves monotonicity of L(v).

Now consider the triangle 〈q2, q3, d〉. Directional coordinates of q2 − q1 are (−1, − 1−μ
μ , 1

μ), and

−c4 − 1 − μ

μ
c5 + 1

μ
c15 = (1 − 3w)(z2 − z3)/3

−c5 − 1 − μ

μ
c6 + 1

μ
c16 = (1 − 3w)(z2 − z3)/3,

−c6 − 1 − μ

μ
c7 + 1

μ
c17 = (1 − 3w)(z2 − z3)/3,

−c15 − 1 − μ

μ
c16 + 1

μ
c22 = (1 − 3w)(z2 − z3)/3,

−c16 − 1 − μ

μ
c17 + 1

μ
c23 = (1 − 3w)(z2 − z3)/3,

−c22 − 1 − μ

μ
c23 + 1

μ
c25 = (1 − 3w)(z2 − z3)/3.

Theorem 3.10 in Lai and Schumaker (2007) implies that in this triangle in the direction v2 − v3 the spline preserves mono-
tonicity of the data. Similarly, we find that (−1, 1, 0) are the directional coordinates of q3 − q2 with respect to 〈q2, q3, d〉. 
Then

c5 − c4 = λ(z3 − z1),

c6 − c5 = λ(z4 − z2),

c7 − c6 = λ(z4 − z2),

c16 − c15 = λ(μ(z3 − z1) + (1 − μ)(z4 − z2)),

c17 − c16 = λ(z4 − z2),

c23 − c22 = λ(μ2(z3 − z1) + (1 − μ2)(z4 − z2)),
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and conclusions follow. Finally, the triple of directional coordinates of q4 − q1 with respect to 〈q2, q3, d〉 are

a =
(

− μ

1 − μ
,

1 − μ

μ
,

2μ − 1

μ(1 − μ)

)
.

Then

− μ

1 − μ
c4 + 1 − μ

μ
c5 + 2μ − 1

μ(1 − μ)
c15 = (1 − 3w)(z2 − z1)/3,

− μ

1 − μ
c5 + 1 − μ

μ
c6 + 2μ − 1

μ(1 − μ)
c16 = (1 − 3w)(z4 − z3)/3,

− μ

1 − μ
c6 + 1 − μ

μ
c7 + 2μ − 1

μ(1 − μ)
c17 = (1 − 3w)(z4 − z3)/3,

− μ

1 − μ
c15 + 1 − μ

μ
c16 + 2μ − 1

μ(1 − μ)
c22 = λ(μ(z2 − z1) + (1 − μ)(z4 − z3)),

− μ

1 − μ
c16 + 1 − μ

μ
c17 + 2μ − 1

μ(1 − μ)
c23 = (1 − 3w)(z4 − z3)/3,

− μ

1 − μ
c22 + 1 − μ

μ
c23 + 2μ − 1

μ(1 − μ)
c25 = λ(μ2(z2 − z1) + (1 − μ2)(z4 − z3)),

and we reach similar conclusions. Due to the symmetry of our construction we do not have to consider the triangles 
〈q3, q4, d〉 and 〈q4, q1, d〉. �

Monotonicity of the spline on a 12T macro-element with a central vertex v0 depends on the behavior of L(v) on the 
six triangles having v0 in common. Refer to Sections 2 and 3 for the notation and geometry. We restrict our attention to 
macro-triangles 〈u2, u3, u4〉, barycenter o2, and 〈u2, u4, u6〉, barycenter v0.

Theorem 8. The spline restricted to the 12T macro-element around a vertex v0 preserves monotonicity of L(v) on ∪6
i=1τ

(i) .

Proof. First consider expressions a1ci+1, j,k + a2ci, j+1,k + a3ci, j,k+1 on 〈u2, u3, o2〉 in the direction u3 − u2 (this direction is 
the same as the directions v3 − v2, v5 − v6, v4 − v0, v0 − v1). Directional coordinates (a1, a2, a3) of u3 − u2 are (−1, 1, 0), 
and

−c(2)
1 + c(2)

4 = λ(z3 − z2),

−c(2)
4 + c(2)

9 = λ(z4 − z0),

−c(2)
9 + c(2)

2 = λ(z4 − z0),

−c(2)
5 + c(2)

13 = λ/3(z3 − z2) + 2λ/3(z4 − z0),

−c(2)
13 + c(2)

8 = λ(z4 − z0),

−c(2)
16 + c(2)

17 = λ/9(z3 − z2) + 8λ/9(z4 − z0),

imply that the spline monotonicity is controlled by the behavior of L(v) along the edges 〈v3, v2〉 and 〈v4, v0〉. For the 
direction u4 − u3 (this direction is the same as the directions v5 − v4, v6 − v0, v1 − v2, v0 − v3), directional coordinates 
are (−1, −2, 3), and

−c(2)
1 − 2c(2)

4 + 3c(2)
5 = λ(z0 − z3),

−c(2)
4 − 2c(2)

9 + 3c(2)
13 = λ(z0 − z3),

−c(2)
9 − 2c(2)

2 + 3c(2)
8 = λ(z0 − z3),

−c(2)
5 − 2c(2)

13 + 3c(2)
16 = λ(z0 − z3),

−c(2)
13 − 2c(2)

8 + 3c(2)
17 = λ(z0 − z3),

−c(2)
16 − 2c(2)

17 + 3c(2)
19 = λ/9(z5 − z4) + 8λ/9(z0 − z3),

imply that the spline monotonicity is controlled by the behavior of L(v) along the edges 〈v3, v0〉 and 〈v4, v5〉. For the 
direction u4 − u2 (this direction is the same as the directions v5 − v0, v0 − v2, v6 − v1, v4 − v3), directional coordinates 
are (−2, −1, 3), and
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−2c(2)
1 − c(2)

4 + 3c(2)
5 = λ(z0 − z2),

−2c(2)
4 − c(2)

9 + 3c(2)
13 = λ(z4 − z3),

−2c(2)
9 − c(2)

2 + 3c(2)
8 = λ(z4 − z3),

−2c(2)
5 − c(2)

13 + 3c(2)
16 = λ/3(z0 − z2) + 2λ/3(z4 − z3),

−2c(2)
13 − c(2)

8 + 3c(2)
17 = λ(z4 − z3),

−2c(2)
16 − c(2)

17 + 3c(2)
19 = λ/9(z5 − z0) + λ/9(z0 − z2) + 7λ/9(z4 − z3),

imply that the spline’s monotonicity is controlled by the behavior of L(v) along the edges 〈v4, v3〉, 〈v5, v0〉 and 〈v0, v2〉.
Consider the triangle 〈u4, u2, o2〉 next. Along the same 3 directions, we get

−c(2)
3 − 2c(2)

10 + 3c(2)
11 = λ(z4 − z0),

−c(2)
10 − 2c(2)

6 + 3c(2)
15 = λ(z4 − z0),

−c(2)
6 − 2c(2)

1 + 3c(2)
5 = λ(z3 − z2),

−c(2)
11 − 2c(2)

15 + 3c(2)
18 = λ(z4 − z0),

−c(2)
15 − 2c(2)

5 + 3c(2)
16 = λ/3(z3 − z2) + 2λ/3(z4 − z0),

−c(2)
18 − 2c(2)

16 + 3c(2)
19 = λ/9(z3 − z2) + 8λ/9(z4 − z0),

in the direction u3 − u2,

2c(2)
3 + c(2)

10 − 3c(2)
11 = λ(z5 − z4),

2c(2)
10 + c(2)

6 − 3c(2)
15 = λ(z0 − z3),

2c(2)
6 + c(2)

1 − 3c(2)
5 = λ(z0 − z3),

2c(2)
11 + c(2)

15 − 3c(2)
18 = λ/3(z5 − z4) + 2λ/3(z0 − z3),

2c(2)
15 + c(2)

5 − 3c(2)
16 = λ(z0 − z3),

2c(2)
18 + c(2)

16 − 3c(2)
19 = λ/9(z5 − z4) + 8λ/9(z0 − z3),

in the direction u4 − u3, and

c(2)
3 − c(2)

10 = λ(z5 − z0),

c(2)
10 − c(2)

6 = λ(z4 − z3),

c(2)
6 − c(2)

1 = λ(z0 − z2),

c(2)
11 − c(2)

15 = λ/3(z5 − z0) + 2λ/3(z4 − z3),

c(2)
15 − c(2)

5 = λ/3(z0 − z2) + 2λ/3(z4 − z3),

c(2)
18 − c(2)

16 = λ/9(z5 − z0) + λ/9(z0 − z2) + 7λ/9(z4 − z3),

in the direction u4 − u2. Each set of expressions supports our claim that S preserves monotonicity of L.
Finally we consider similar conditions for the macro-triangle 〈u2, u4, u6〉, specifically its micro-triangle 〈u2, u4, v0〉. For 

the direction u4 − u6 we get

c(4)
1 + 2c(4)

4 − 3c(4)
5 = λ(z3 − z2),

c(4)
4 + 2c(4)

9 − 3c(4)
13 = λ(z4 − z0),

c(4)
9 + 2c(4)

2 − 3c(4)
8 = λ(z4 − z0),

c(4)
5 + 2c(4)

13 − 3c(4)
16 = λ/3(z3 − z2) + λ/3(z4 − z0) + λ/3(z0 − z1),

c(4)
13 + 2c(4)

8 − 3c(4)
17 = λ/3(z5 − z6) + 2λ/3(z4 − z0),

c(4)
16 + 2c(4)

17 − 3c(4)
19 = λ/9(z3 − z2) + 2λ/9(z5 − z6) + 3λ/9(z4 − z0) +

+ 3λ/9(z0 − z1).

For the direction u4 − u2 we get
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−c(4)
1 + c(4)

4 = λ(z0 − z2),

−c(4)
4 + c(4)

9 = λ(z4 − z3),

−c(4)
9 + c(4)

2 = λ(z5 − z0),

−c(4)
5 + c(4)

13 = λ/3(z4 − z3) + 2λ/3(z0 − z2),

−c(4)
13 + c(4)

8 = λ/3(z4 − z3) + 2λ/3(z5 − z0),

−c(4)
16 + c(4)

17 = λ/9(z6 − z1) + 2λ/9(z4 − z3) + 3λ(z5 − z0) + 3λ(z0 − z2),

and for the direction u6 − u2 we get

−2c(4)
1 − c(4)

4 + 3c(4)
5 = λ(z0 − z3),

−2c(4)
4 − c(4)

9 + 3c(4)
13 = λ(z0 − z3),

−2c(4)
9 − c(4)

2 + 3c(4)
8 = λ(z5 − z4),

−2c(4)
5 − c(4)

13 + 3c(4)
16 = λ/3(z1 − z2) + 2λ/3(z0 − z3),

−2c(4)
13 − c(4)

8 + 3c(4)
17 = λ/3(z5 − z4) + λ/3(z6 − z0) + λ/3(z0 − z3),

−2c(4)
16 − c(4)

17 + 3c(4)
19 = λ/9(z5 − z4) + 2λ/9(z1 − z5) + 3λ/9(z6 − z0) +

+ 3λ/9(z0 − z3). �
4.3. Positivity

According to the equation (3), if on a triangle τ (i) = 〈v1, v2, v3〉 the data values zi, z2, z3 are positive, the values z(i)
j , 

j = 1, 2, 3 are positive as well. Respectively the spline S is positive on τ̃ (i) by Theorem 3.3 in Lai and Schumaker (2007), 
since its coefficients, defined by (5), are positive.

Suppose L(v) is positive on two neighboring triangles τ (i) and τ ( j) . Following the notation used in Sections 2, 3, and 5, it 
means that the data values zk , k = 1, ..., 4 are positive. Respectively, z(i)

k and z( j)
k , k = 1, 2, 3 are positive as well. By formulas 

(7)–(10), (12), (13) it is clear that the coefficients c(4)

k , k ∈ {1, ..., 4, 7, ..., 10} are positive. Note that

c12 = 2λz2 + (1 − 2λ)z3,

c5 = (1 − 2λ)z2 + 2λz3

are positive and thus so are c13, c14 and c15. Similarly, since c6 and c11 can be shown to be positive, so are c17, c18, c19. 
Now, as long as we can show that c16 and c20 are positive, the rest will follow. Simplifying c16 we get

(5 − 33λ + 45λ2)z2 + (1 + 3λ − 36λ2)z3 + 3(1 − 3λ)λz4

3(2 − 9λ)

where each of the quadratic polynomials – coefficients of z2, z3 and z4 – are strictly positive for 0 < λ < 1/6. The result is 
similar for c20. We thus conclude that

Theorem 9. If L(v) is positive on two neighboring triangles τ (i) and τ ( j) , then the spline defined on the quadrangle q̃(i, j) along the 
edge e(i, j) common to τ (i) and τ ( j) is positive as well.

The results are even more straight forward for the coefficients of the spline on 12T macro-elements.

Theorem 10. If zi , i = 0, ...6 of ∪6
i=1τ

(i) are positive, the spline is positive on all ti , i = 1, ..., 4.

Proof. Follow the formulas (15)–(23). �
Clearly, all the shape-preservation properties proved for a triangle t2 above hold for the macro-elements along the 

boundary as well. Note also that having S to interpolate L and its derivatives at the chosen locations implies that

lim
λ→0

S = L,

and that completes our results on shape-preserving approximation of L on �.
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Fig. 8. Left: Type I uniform triangulation. Outlined portion corresponds to a region of “flatness” in Example 1. Right: A portion of the refined triangulation 
on the left with λ = 0.1.

Fig. 9. Left: Piece-wise linear interpolant is presented by a triangular mesh. Spline surface as seen through the mesh preserves its shape. Right: Piece-wise 
linear interpolant and spline surface of Example 2.

Fig. 10. Piece-wise linear interpolant, Example 3.

Fig. 11. Approximating splines with different tension parameter values in Example 3.

5. Numerical experiments

In this section we compute several spline surfaces to demonstrate their shape-preserving properties.

Example 1. We begin with a type I uniform triangulation on a 8 by 6 grid of vertices. A z-value at some of the vertices 
is a random number between 0 and 1, for the rest of the vertices z = 1. Fig. 8, left, shows the triangulation and a region 
outlined by the vertices at which z = 1. Fig. 9, left, shows the piece-wise linear and the corresponding shape-preserving 
smooth cubic spline.

Example 2. On the same grid, z-values are random numbers between 0 and 1 at the vertices of the shaded region of Fig. 8, 
left. Outside the region the values are z = 0. Fig. 9, right, shows the piece-wise linear interpolant and the corresponding 
spline. In both examples we used λ = 0.1.
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Fig. 12. Triangulations in Example 4.

Table 1
Numerical results for Example 4.

λ ‖ f − s1
λ‖∞ ‖ f − s2

λ‖∞ ‖ f − s3
λ‖∞

1e−1 7.7716e−16 1.1102e−15 1.3323e−15
1e−2 1.1102e−15 6.6613e−15 2.5535e−14
1e−3 4.8628e−14 6.7724e−14 1.3078e−13
1e−4 4.5519e−14 4.6363e−13 1.0283e−12
1e−5 2.3652e−12 1.0468e−11 1.4482e−11
1e−6 3.8362e−11 1.2986e−10 3.1365e−10

Example 3. In this example we create two shape-preserving splines, each corresponding to a different value of λ. The linear 
piece-wise interpolant for the data is shown in Fig. 10. The spline, Fig. 11, left, is computed with λ = 0.16, the figure on the 
right is for the λ = 0.05. As expected, smaller values of λ result in spline surfaces with sharper outlined edges.

Example 4. A typical block of �̃, λ = 0.1, is pictured in Fig. 8, right. It is well known that thin angles cause numerical error, 
and some of the angles of �̃ are quite small. In this last example we present numerical results investigating the influence 
of λ on the numerical error in the approximation of f = x + y by a spline over a quadrangle in �̃.

In each of the three cases below we start with just two triangles in �. The new partition �̃ consists of two regular 
triangles and a single quadrangle along the interior edge of �. The three triangulations, which vary by the sizes of angles 
in the initial triangulations, are pictured in Fig. 12, where λ = 0.1 for all three figures. Let q denote the quadrangle in �̃. 
We compute a cubic C1 spline si

λ , i = 1, 2, 3 on q interpolating the values of a function f and its gradients at the vertices 
of q. Additionally we interpolate directional derivatives of f at midpoints of the outer edges of q in the directions normal to 
the respective edges. The remaining spline coefficients are computed to ensure C1 smoothness across the interior edges of 
q (see section 6.5 in Lai and Schumaker, 2007 for details). As we vary λ we record the absolute error in the approximation 
of f by the spline si

λ with respect to the infinity norm taken over about 3000 locations in q. Each spline interpolant is 
expected to reproduce f , and thus the errors recorded in Table 1 are due to the decreasing angles.

In the original triangulation � corresponding to Fig. 12, left, the smallest angle is about 53◦ . The errors for the splines 
s1
λ are recorded in the second column of Table 1. In the third column we record similar results for s2

λ-splines are computed 
over quadrangles as in �̃ Fig. 12, center, the smallest angle in � is 45◦ . Finally, for the third triangulation the smallest 
angle is approximately 30◦ , and the results are recorded in column 4 of the table. Examining results down the table, as λ
decreases towards zero, each time by a factor of 10, we loose approximately 1 digit in accuracy. Additionally the smallest 
angle of the original triangulation decreases as we follow results in the table from left to right, while the error generally 
increases.

As expected (see equations (2)) the approximation on quadrangles involved in �̃ suffers from small values of λ, as well 
as from small angles in the initial triangulation. Considering that larger λ’s lead to more visually pleasing solutions, in 
practice we would not anticipate λ’s much smaller than 0.1, which would reduce the negative effect of λ on the error. The 
rest would depend on the initial triangulation �.

6. Conclusions

We have shown how to construct a triangulation �̃ that allows us to define a smooth cubic spline interpolating values 
and gradients of a piece-wise linear function at certain locations. The triangulation and the values to be interpolated are 
chosen to produce a solution that follows local changes in the behavior of the piece-wise linear function. The spline pre-
serves monotonicity, convexity and positivity of the piece-wise linear function without overshooting. In fact, around each 
vertex of the initial triangulation, along certain directions the spline is variation diminishing. The scheme uses local data 
information, and simple explicit formulas for the coefficients of the spline are included.

Numerical examples illustrate shape-preserving behavior of the spline and highlight visual differences induced by the 
choice of the parameter λ. Last example investigates the influence of λ on angles in quadrangles of �̃ and the resulting loss 
of accuracy.
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Visually examining the solutions we outline several directions in which the results may be improved or modified. Since 
larger values of λ lead to more rounded looking surfaces, it is interesting to see if the method can be redefined and shape-
preserving properties still hold for λ = 1/6. Additionally it might be possible to improve the solution by adjusting slopes 
and values interpolated by splines, possibly removing or relaxing the condition that S ≡ L on some of the sub-triangles. 
Extra degrees of freedom may be introduced by splitting the triangles where the spline is currently flat and using these 
degrees of freedom to minimize flat areas. It would be interesting to see if similar spline spaces can be defined for higher 
degrees and smoothness, and whether an additional control over the final look of a shape-preserving surface can be gained 
from a greater dimension of a spline space.
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