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Minkowski Pythagorean hodograph (MPH) curves provide a means for representing
domains with rational boundaries via the medial axis transform. Based on the observation
that MPH curves are not the only curves that yield rational envelopes, we define and study
rational envelope (RE) curves that generalise MPH curves while maintaining the rationality
of their associated envelopes.
To demonstrate the utility of RE curves, we design a simple interpolation algorithm using
RE curves, which is in turn used to produce rational surface blends between canal surfaces.
Additionally, we initiate the study of rational envelope surfaces as a surface analogy to RE
curves.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Rational curves and surfaces play a key role in computer aided design (Piegl and Tiller, 1997). However, the important
operation of offsetting can produce objects outside this class, even when applied to shapes with rational parametrisations. 
One way to overcome this limitation is to restrict oneself to a subclass of rational shapes which is closed under offset-
ting. This led, in the curve case, to the definition of PH curves, i.e., curves with Pythagorean hodographs (Farouki, 2008;
Kosinka and Lávička, 2010). A PH curve x(t) is distinguished by the PH condition ‖x′(t)‖2 = σ(t)2, where σ(t) ∈R(t). These 
curves were introduced as planar polynomial objects. Later, the PH concept was generalised to their rational counterparts 
by Pottmann (1995).

A closely related issue is that of reconstructing a planar domain’s boundary from its medial axis transform (MAT) (Blum, 
1967). Similarly to PH curves, only a subclass of rationally parametrised MATs, called Minkowski PH curves, or MPH curves 
(Moon, 1999; Kosinka and Lávička, 2010), leads to rational domain boundaries. MPH curves are rational curves (y(t), r(t)) in 
3-space whose hodographs satisfy the PH condition with respect to the Minkowski inner product with signature (+, +, −).

In this paper, we return to this thoroughly studied problem of MPH and envelope curves (Choi et al., 1999; Kosinka 
and Jüttler, 2006; Kosinka and Jüttler, 2009; Kosinka and Šír, 2010; Kosinka and Lávička, 2011). As we will see shortly 
in Section 2, it turns out that if one allows a square-root term (Abhyankar, 1994) in the MAT’s representation, a broader 
class of MATs corresponding to rational envelopes of the associated family of circles is obtained. We call this class rational 
envelope curves, or RE curves for short.

✩ This paper has been recommended for acceptance by Rida Farouki.
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Consider a parametric curve y(t) = (y(t), r(t)) in the Minkowski 3-space R2,1 considered as the MAT of its associated 
domain. The corresponding two branches x±(t) of the envelope curve x(t) can be parametrised by

x±(t) = y(t) − r(t)
r′(t)y′(t) ± y′ ⊥(t)

√‖y′(t)‖2 − r′ 2(t)

‖y′(t)‖2
, (1)

where x⊥ = (x2, −x1) for x = (x1, x2). Clearly, an MPH curve, which satisfies

‖y′(t)‖2 − r′ 2(t) = σ 2(t) (2)

for some rational function σ(t), guarantees the rationality of the associated envelope branches x± . It was observed in 
Kosinka and Lávička (2010) that for any MPH curve y(t) ⊂R

2,1, the associated curves x± ⊂ R
2 are rational PH curves. Based 

on this, it was shown that any rational MPH curve y in R2,1 can be constructed starting from a planar rational PH curve x
in R2 and a rational function r in the form

y(t) = (x1 + rn1, x2 + rn2, r) , (3)

where n = (n1, n2) is the rational unit normal vector field associated with x. Building on (3), one can obtain an expression 
for all rational MPH curves (Kosinka and Lávička, 2010).

The discussion of the interplay between spatial MPH curves and their associated planar PH curves from the point of 
view of Hermite interpolation was further developed by Kosinka and Lávička (2011). The main advantage of the method 
presented in Kosinka and Lávička (2011) lies in the fact that it uses, only after some simple additional computations, an 
arbitrary algorithm for interpolation by planar PH curves also for interpolation by spatial MPH curves. Thus, compared to 
other MPH schemes, it does not require the complicated Clifford algebra machinery (Choi et al., 2002). We will show in 
Section 3 that this procedure can be simplified further still with the help of RE curves.

A condition guaranteeing the rationality of contour curves on canal surfaces, which can be used for obtaining rational 
parametrisations of canal surfaces, was studied by Bizzarri and Lávička (2013). This approach extended the results on ratio-
nal MPH curves from Kosinka and Lávička (2010) and led to a simple method for computing rational offset blends between 
two canal surfaces (Bizzarri and Lávička, 2013). We will discuss a similar approach to blending from the point of view of 
RE curves in Section 4.

A generalisation of PH curves to the surface case led to the class of PN surfaces, i.e., surfaces with Pythagorean normals 
(Pottmann, 1995). PN surfaces are rational surfaces with rational offsets. Similarly, MOS surfaces, i.e., medial surfaces obeying 
a certain sum of squares condition (Kosinka and Jüttler, 2007), represent a generalisation of MPH curves to the bivariate 
setting in R3,1. MOS surfaces correspond to associated domain boundaries which are rational via the envelope formula for 
medial surface transforms. In this regard, we extend the concept of MOS surfaces to RE surfaces and lay down their basic 
structure in Section 5. The paper is concluded in Section 6.

2. Rational envelope curves

Turning back to the envelope formula (1), observe that if we start with two rational boundary curves (or envelopes) 
x1,2(t) that correspond in parameter, we obtain a rational medial axis. But the full MAT contains, in general, a square-root 
term in its third coordinate function. Thence, the class of curves in R2,1 that yield rational envelopes must be broader than 
only the class of rational MPH curves. Indeed, it also comprises curves that can be parametrised by square-roots, which are 
known to be rational, elliptic, or hyper-elliptic (Abhyankar, 1994; Hartshorne, 1977).

Therefore, we will deal with curves in R2,1 given by y(t) = (
y(t),

√
R(t)

)
. This leads to the following envelope formula:

Lemma 2.1. Let y(t) = (
y(t),

√
R(t)

)
be a regular C1 parametric curve considered as the MAT of a planar domain with y(t) and R(t)

rational. Then the corresponding envelope is given by

x±(t) = y(t) − R ′(t)y′(t) ± y′ ⊥(t)
√

4R(t)‖y′(t)‖2 − R ′ 2(t)

2‖y′(t)‖2
. (4)

Additionally, the envelope x±(t) of y(t) is rational if and only if there exists a rational function σ(t) such that

4R(t)‖y′(t)‖2 − R ′ 2(t) = σ 2(t). (5)

This lemma gives rise to

Definition 2.2. A parametric curve y(t) = (
y(t),

√
R(t)

)
in R2,1 is called an RE curve, i.e., a curve yielding a Rational Envelope, 

if there exists a rational function σ(t) such that condition (5) is satisfied.

Clearly, rational MPH curves (including the subclass of polynomial MPH curves) form a proper subset of RE curves.
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As mentioned above, any MPH curve can be obtained by using the fact that if y is an MPH curve, its envelopes x±(t) are 
planar rational PH curves (Kosinka and Lávička, 2010). We now show that an analogous construction is possible in the case 
of RE curves as well.

First, for a given rational planar curve x(t), we construct its one-sided generalised offset curve y(t) with varying distance 
r(t), i.e., the curve in the form

y(t) = x(t) + r(t)
x′ ⊥(t)

‖x′(t)‖ . (6)

This curve is rational if and only if

r(t)

‖x′(t)‖ = f (t) (7)

is a rational function. Using (7), we arrive at the class of curves in the form

y(t) =
(

x1 + x′
2 f , x2 − x′

1 f , f
√

(x′
1)

2 + (x′
2)

2

)
. (8)

Hence we can formulate the following

Theorem 2.3. Any RE curve in R2,1 can be expressed in the form of (8). In particular, if x(t) is a rational PH curve, then (8) describes a 
rational MPH curve, and any MPH curve can be obtained this way.

Proof. Substituting (8) into (1) gives the condition σ 2 = [
2 f

(
(x′

1)
2 + (x′

2)
2 + f (x′

2x′′
1 − x′

1x′′
2)

)]2
, and thus any curve given 

by (8) is an RE curve. On the other hand, let us consider an RE curve y(t) =
(

y,
√

R
)

. Then by definition, there exist two 

conjugate rational envelope curves x±(t), and since the medial axis y(t) is rational, the function f (t) = √
R/‖x′(t)‖ has to 

be rational as well. Thus, by setting e.g. x(t) = x+(t) and f (t) = √
R/‖x′(t)‖ we can construct any RE curve y(t) in the 

required form of (8). The case when x(t) is a rational PH curve was proved already in Kosinka and Lávička (2010). �
Additionally, (8) leads to a classification of RE curves in the following form.

Proposition 2.4. A curve y(t) = (
y1(t), y2(t),

√
R(t)

) ∈ R
2,1 is an RE curve if and only if there exist five polynomials a, b, c, g, h ∈

R[t] satisfying gcd(a, c) = gcd(b, c) = gcd(g, h) = 1 such that

y1(t) = a/c + (b/c)′ g/h,

y2(t) = b/c − (a/c)′ g/h,

R(t) =
(
(a/c)′ 2 + (b/c)′ 2

)
(g/h)2.

(9)

Proof. Consider an MAT defined by (9). A direct computation leads to

σ(t) = 2g/h
(
(a/c)′ 2 + (b/c)′ 2 + g/h

(
(a/c)′(b/c)′′ − (a/c)′′(b/c)′

))
.

Hence the corresponding envelope curve is rational. On the other hand, any planar rational curve can be parametrised as 
x = (a/c, b/c) and any rational function is given by f = g/h. Substitution into (8) gives the formulas in (9). �

Note that for some choices of the polynomials in (9), the resulting y(t) may not be a curve in the strict sense of 
differential geometry (although it still formally satisfies the RE condition). We do not pursue these technical considerations 
further. Additionally, the parameter speed of y(t) is given by |σ(t)|.

Building on (9), let a, b, c, g , h be polynomials of degrees da , db , dc , dg , dh , respectively. Then the rational degree of (9)
is given by:

deg(y) = [max(da,db) + dc + max(dh,dg − 1),2dc + dh],
deg(R) = [2(max(da,db) + dc + dg − 1),2(2dc + dh)].

(10)

As we will see below, a prominent subset of the class of RE curves is formed by those for which x(t) and f (t) are 
polynomial. In this case, c(t) is constant and h(t) has to divide a′(t) and b′(t). It follows that there exist polynomials k(t)
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Fig. 1. Our 4-step algorithm for interpolating G1 data in R
2,1 by an RE curve.

and l(t) such that a′(t) = k(t)h(t) and b′(t) = l(t)h(t). Combining this with (9), we obtain

y1(t) =
∫

k(t)h(t)dt + l(t)g(t),

y2(t) =
∫

l(t)h(t)dt − k(t)g(t),

R(t) =
(

k(t)2 + l(t)2
)

g(t)2

(11)

with polynomials k(t), l(t), g(t), h(t).

3. Interpolation by RE curves

In Kosinka and Lávička (2011), an interpolation method using MPH splines based on planar PH splines was introduced 
and thoroughly investigated. While conceptually simpler than previous methods, it still relies on the construction of a PH 
curve interpolating certain derived data in the plane. This in some situations means that the interpolant does not exist as 
a single MPH arc, and several arc need to be employed. We now show that if MPH curves are replaced by RE curves, the 
associated PH interpolation can be replaced by an arbitrary interpolation technique formulated for polynomial or rational 
planar curves. This guarantees that an RE interpolant always exists. The method is then utilised in Section 4 for constructing 
rational blending surfaces between two canal surfaces.

As an example, we propose a simple method for interpolating G1 Hermite data in R2,1 by RE curves. As in Kosinka and 
Lávička (2011), this method is based on projecting these data to the plane, performing some suitable interpolation in R2 , 
and finally lifting the interpolant back to R2,1. The whole process consists of 4 steps and is illustrated in Fig. 1.

Consider the following G1 Hermite input data in R2,1: pi (end points) and ti (end tangent vectors); i ∈ {0, 1}; see Fig. 1, 
Step 1. Using (1), we obtain the associated points qi ∈ R

2 on the corresponding envelope curve as

qi = �
pi − pi3

ti3
�
ti + �

ti

⊥√
‖�

ti‖2 − (ti3)
2

‖�
ti‖2

, (12)

where 
�
x = (x1, x2) for x = (x1, x2, x3); see Fig. 1, Step 2. We choose vi as the perpendicular vectors to the vectors 

�
pi − qi :

vi = αi

( �
pi − qi

)⊥

‖ �
pi − qi‖

. (13)

The magnitudes αi of vi are free parameters and can be chosen to modify the resulting shape. We address this in more 
detail in our examples below.

In Step 3, we interpolate qi and vi in the plane by a suitable Hermite interpolation method (we use the Ferguson cubic) 
and obtain a planar curve x(t), t ∈ [0, 1] satisfying

x(i) = qi, and x′(i) = vi, i ∈ {0,1}. (14)
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Fig. 2. RE interpolants for the input data (black) from Example 3.2. Left: The two-parametric family of RE interpolants (blue). Right: The RE interpolants 
with minimal arc-length (green) and minimal elastic bending energy (red). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

Finally, in Step 4, we lift the interpolant x(t) from R2 to R2,1. This is done by computing a polynomial f (t) such that 
the curve

y(t) =
(

x1 + x′
2 f , x2 − x′

1 f , f
√

(x′
1)

2 + (x′
2)

2

)
(15)

interpolates the input data in R2,1. We employ the Ferguson interpolant again, this time given by the Hermite data f0, f1, 
f ′
0, f ′

1, where

f i = f (i) = pi3

‖vi‖ and f ′
i = f ′(i) = −

�
ti · ( f i x′′(i) − v⊥

i

)
�
ti · vi

(16)

were computed by solving

y(i) = pi and y′(i) = βiti, (17)

where

βi = vi · vi − f i x′′(i) · v⊥
i

�
ti · vi

. (18)

This gives the sought-after RE interpolant y(t).

Remark 3.1. To obtain a real envelope, the medial axis transform must be a space-like curve fulfilling the condition 
‖y′(t)‖2 − r′ 2(t) > 0. In the case of RE curves, this condition reads 4R(t)‖y′(t)‖2 − R ′ 2(t) > 0. However, as we construct 
RE curves from one real branch, the reality of the second branch and thus of the whole envelope is automatically guaran-
teed. So the only condition is that the tangent vectors (as input data for the Hermite interpolation) are space-like, i.e., their 
angle with the xy-plane is less than π/4; see Kosinka and Lávička (2011) for more details about the validity conditions of 
envelopes. We have not encountered a violation of these conditions in any of our examples and tests.

Example 3.2. We construct a family of RE curves interpolating the data

p0 = (0,0,1), p1 = (12,12,3), t0 = (20,0,−5), t1 = (20,0,5). (19)

The magnitudes αi of vi are free parameters; see (13). The resulting two-parametric set f(t, α0, α1) of solutions is shown 
in Fig. 2, left. Within this family, we choose suitable interpolants according to two natural criteria (Farouki, 1996, 2002). 
The first criterion is minimal arc-length, i.e., we minimise the following objective function

�(α0,α1) =
1∫

0

√
f(t,α0,α1) · f(t,α0,α1) dt. (20)

And the second criterion is minimal elastic bending energy, i.e., we minimise

�(α0,α1) =
1∫

0

κ2(t,α0,α1)dt, (21)

where κ is the curvature of f. The interpolants with minimal arc-length and minimal elastic bending energy are shown in 
Fig. 2, right.
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Remark 3.3. As was mentioned above, an RE interpolant to G1 data always exists. This is in contrast to the method used by 
Kosinka and Lávička (2011), based on planar cubic PH interpolants, where existence of a single MPH interpolating arc is not 
guaranteed and several concatenated arcs may need to be employed, depending on the mutual position of the input data.

If offsets of the corresponding envelopes are to be rational, MPH curves have to be employed. On the other hand, if the 
application is aimed at canal surface blending (addressed in the following section), the MPH interpolant can be replaced by 
the simpler-to-compute RE interpolant.

In summary, the situation is not as clear-cut as it may seem at first sight. Both MPH and (pure) RE curves have their 
advantages and disadvantages, and which to use depends on the application in mind.

4. Canal surface blending using RE curves

Blending is one of the important operations used in Computer-Aided (Geometric) Design. Blending surfaces are necessary 
for rounding edges and corners or for smooth connections of given objects. In what follows, we will deal with the cases 
when canal surfaces are used for the construction of a smooth transition between input shapes. We recall that canal surfaces 
are defined as envelopes of one parameter families of spheres in 3-space.

Any canal surface with a rational spine curve (a set of all centres of moving generating spheres) and a rational radius 
function has a rational parametrisation, as proved in Peternell and Pottmann (1997), Landsmann et al. (2001). However, 
a crucial part of the parametrisation algorithm is decomposing a positive polynomial into a sum of two squares (SOS 
problem) over reals, which is symbolically unsolvable, in general. Hence, a special role in geometric modelling is played by 
canal surfaces for which it is possible to find their rational representation without the need to solve the SOS decomposition.

Rational canal surfaces given by two curves were investigated by Bastl et al. (2014). This study revealed that for a canal 
surface to be rational it is not required that its medial axis transform is rational; square roots are allowed in the radius 
function. Such canal surfaces are, in general, not PN and do not possess rational offsets. However, they are in the more 
general class of surfaces called PSN surfaces (Vršek and Lávička, 2014), i.e., surfaces with Pythagorean surface normals along 
rational curves.

PN surfaces were introduced due to their straightforward applicability in CAD/CAM as they guarantee that the surface 
representing the centres of the spherical milling cutter is rational (and thus it can be described via the NURBS formalism). 
Nevertheless, this requirement can be unnecessarily strong in some situations as the milling cutter does not follow the 
whole offset surface but only some precomputed trajectories on it. So we do not have to assume that the PN property is 
satisfied globally but only along some special “suitably” distributed curves (trajectories of the milling cutter) along which the 
unit normals of the surface are rational. And it holds that all canal surfaces given by MATs in the form y(t) = (

y(t),
√

R(t)
)

are exactly surfaces of this type as they contain a 1-parameter family of circles along which the unit surface normals are 
always rational. RE curves can serve as a simple tool for finding rational parametrisations of blending canal surfaces without 
the need to apply the SOS decomposition.

A method for computing rational canal blending surfaces between two given (parts of) canal surfaces using MPH curves 
was studied by Bizzarri and Lávička (2013). We now present a simplified method based on RE curves. Consider (parts of) 
two canal surfaces Si given by their medial axis transforms mi(t) ⊂R

3,1, t ∈ [0, 1], i ∈ {0, 1}. Constructing a C1/G1 blending 
canal surface between Si can be transformed into the problem of interpolating the C1/G1 Hermite data in R3,1

p∗
i = mi(i) and t∗i = m′

i(i), (22)

and computing the canal surface given by the resulting interpolant considered as the MAT of the surface.
The key step in computing a rational parametrisation of a canal surface is finding a rational curve c(t) on it. The surface 

parametrisation is then obtained by rotating this curve around the tangents of the rational spine curve m(t) in the form

s(t, u) = m(t) + (	(u) + m′(t)) 
 (c(t) − m(t)) 
 (	(u) − m′(t))
(	(u) + m′(t)) 
 (	(u) − m′(t))

, (23)

where 	(u) is a rational function, the scalars and vectors in the sums 	(u) ± m′(t) are considered as quaternions, and 
 is 
the operation of quaternion multiplication

(a + a) 
 (b + b) = ab − a · b + ab + ba + a × b; (24)

see Bizzarri and Lávička (2013), Bizzarri et al. (2015) for more details. Any rational choice of 	(u) yields a rational parametri-
sation of the canal surface. One can choose e.g. 	(u) = u yielding a low rational degree of s(t, u) in u, or 	(u) = 2u/(1 − u2)

for a relatively uniform distribution of the t-parameter lines.
Therefore, we need to interpolate the data in (22) by a rational (spine) curve and find a rational curve on the sought-after 

canal surface. We show that using contour curves (Bizzarri and Lávička, 2013) allows us to employ the RE interpolation 
procedure described in Section 3.

We now describe the particular steps of the method, which is summarised in Algorithm 1 and illustrated in Fig. 3. We 
project the data (22) to the hyperplane z = 0 by omitting the third co-ordinate, which yields

pi =
(

p1
i , p2

i , p4
i

)
, ti =

(
t1

i , t2
i , t4

i

)
, (25)
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Algorithm 1 Canal surface blending using RE curves.
INPUT: Two canal surfaces Si given by their medial axis transforms mi(t), t ∈ [0, 1], i ∈ {0, 1}.
1: Set Hermite data (22) and project them to the hyperplane z = 0; see (25).
2: Compute the points and the tangent vectors at the corresponding boundary curve; see (12) and (13).
3: Construct x(t) interpolating qi and vi , i = 0, 1.
4: Compute medial axis y(t) corresponding to x(t): y(t) = (

x1 + x′
2 f , x2 − x′

1 f
)
, where f (t) interpolates (16).

5: Lift y(t) and x(t) to R3 and obtain the rational spine and the contour curve m(t) and c(t), respectively.
6: Rotate c(t) around the tangents of m(t).

OUTPUT: A parametrisation s(t, u) of the blending surface between the given canal surfaces Si .

Fig. 3. An illustration of Algorithm 1 for canal surface blending using RE curves.

and consider these as data in R2,1. In turn, the data (25) are used as the input to the RE curve interpolation algorithm 
described in Section 3. This results in y(t) ⊂R

2,1.
In the last step, we lift y(t) from R2,1 to R3,1. This is done by interpolating the one-dimensional data

p3
i and βit

3
i , (26)

by a suitable function g(t); βi s are of form (18). Again, we use the method of Ferguson. The sought-after MAT of the 
blending canal surface reads

m(t) = (y1(t), y2(t), g(t), y3(t)) , t ∈ [0,1]. (27)
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Fig. 4. A rational blending canal surface (yellow) with a rational contour curve (red) between the two canal surfaces (blue) from Example 4.1. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Additionally, the curve

c(t) = (x1(t), x2(t), g(t)) , t ∈ [0,1] (28)

is, by construction, the rational contour curve of the constructed canal surface with respect to the vector v = (0, 0, 1).
Finally, by rotating the points of the contour curve c(t) around the tangents of the spine curve m(t), we arrive at the 

rational parametrisation s(t, u) of the blending canal surface; see the last part of Fig. 3.

Example 4.1. Consider two canal surfaces given by the respective MATs

m0(t) =
(

6t − 6, t2 − 2t + 1,3t3 − 9t2 + 9t − 3, t2 − 2t + 2
)

, t ∈ [0,1];
m1(t) =

(
6t + 6, t2 + 2t + 1,3t3 + 9t2 + 9t + 3, t2 + 2t + 2

)
, t ∈ [0,1].

(29)

Using (22), we obtain the Hermite data

p∗
0 = (0,0,0,1), p∗

1 = (6,1,3,2), t∗0 = (6,0,0,0), t∗1 = (6,2,9,2), (30)

whose projection to the hyperplane z = 0 is

p0 = (0,0,1), p1 = (6,1,2), t0 = (6,0,0), t1 = (6,2,2). (31)

Computing boundary points and vectors via (12) and (13) yields

q0 = (0,1), q1 =
(

24

5
,

13

5

)
, v0 = (4,0), v1 =

(
32

5
,

24

5

)
. (32)

These data are then interpolated by the Ferguson cubic

x(t) =
(

4

5

(
t3 + 5t

)
,

1

5

(
8t3 + 5

))
, t ∈ [0,1]. (33)

Next, we compute the medial axis transform y(t) in R2,1 corresponding to x(t); see (15). This leads to

y(t) =
(

2

5

(
t5 − t4 + 2t3 + 3t2 + 10t

)
,

1

15

(
−3t5 + 3t4 + 19t3 − 4t2

)
,

(
t3 − t2 + 3

)√
9t4 + 6t2 + 5

3
√

5

)
. (34)

Lifting y(t) to R3,1 is facilitated by interpolating (26) by the Ferguson cubic

g(t) = 3

5

(
13t3 − 8t2

)
. (35)

Hence we obtain

m(t) =
(

2

5

(
t5 − t4 + 2t3 + 3t2 + 10t

)
,

1

15

(
−3t5 + 3t4 + 19t3 − 4t2

)
,

3

5

(
13t3 − 8t2

))
(36)

and

c(t) =
(

4

5

(
t3 + 5t

)
,

1

5

(
8t3 + 5

)
,

3

5

(
13t3 − 8t2

))
. (37)

Finally, rotating c(t) around the tangents of m(t), cf. (23), yields the rational PSN parametrisation (of rational degree (11, 8)

in t and (2, 2) in s) of the blending canal surface (shown in Fig. 4).
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Fig. 5. A rational blending canal surface (yellow) with a rational contour curve (red) between the two cylinders (blue) from Example 4.2. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The following example presents an advantage of using RE curves in the blending process, when some standard methods 
fail; cf. Remark 3.3.

Example 4.2. Consider parts of two cylinders which are to be blended. They are represented by the Hermite data

p∗
0 = (0,1,0,1), p∗

1 = (6,0,0,1), t∗0 = t∗1 = (4,−3,0,0). (38)

First, we project data (38) to the hyperplane z = 0 and compute the associated boundary points and vectors in the form

q0 =
(

3

5
,

9

5

)
, q1 =

(
33

5
,

4

5

)
, v0 = v1 =

(
4

5
,−3

5

)
. (39)

Following the presented contour blending method, the data of (39) are interpolated by the Ferguson cubic x(t), which 
is lifted to y(t) ∈ R

2,1 and afterwards to m(t) ∈ R
3,1, describing the canal blending surface with rational contour curve 

c(t) = (x(t),m3(t)); see Fig. 5. Note that since x(t) is a cubic, the spine curve m(t) is a polynomial curve of degree 5 and 
the contour curve c(t) is a cubic.

It can be shown that when a standard approach based on PH and MPH curves is used (Kosinka and Lávička, 2011), 
a solution is not obtained for this input situation. In more detail, when RE curves are replaced by MPH curves then the 
interpolation by Ferguson cubic must be replaced by the interpolation using PH curves. Moreover when the same parametri-
sation degree of the resulting canal surface is required, one has to use G1 interpolation by the PH (so called Tschirnhausen) 
cubic. However not all Hermite data can be interpolated by the PH cubic and this is exactly the case of the data of (39); see 
Kosinka and Jüttler (2006), Byrtus and Bastl (2010) for details on planar cubic PH interpolant existence.

One can still interpolate the data of (39) by PH curves of higher degrees. For instance, PH quintics (Farouki and Neff, 
1995) always provide a solution, but this yields m(t) of degree 7 and c(t) of degree 5, which significantly raises the degree 
of the resulting blending surface.

We note that the presented method may not provide constant radii of the constructed blend when the input shapes are 
pipe surfaces with the same radii (e.g. cylinders), whereas the classical approaches based on interpolating data (38) and 
finding a rational curve (using SOS decomposition) on the corresponding canal surface have this feature. Nevertheless, we 
can use a suitable optimisation function such as

χ(α0,α1) =
1∫

0

[
r′(t,α0,α1)

]2 dt (40)

to obtain a ‘pipe’ surface of nearly constant radius. This optimisation was used in Fig. 5.

When constructing blending surfaces, we interpolate the input data in R2,1 by an RE curve. However, there is a two-
parametric family of such interpolants; see Section 3. Thus, similarly to Example 3.2 and Fig. 2, we can choose desired 
shapes within this family. Two arbitrary chosen blending canal surfaces and two having optimised shapes are shown in 
Fig. 6.

5. Rational envelope surfaces

PN surfaces (Pottmann, 1995) are a natural generalisation of PH curves to the surface case. Similarly, MOS surfaces 
(Kosinka and Jüttler, 2007) represent a generalisation of MPH curves to the bivariate setting in R3,1. MOS surfaces corre-
spond to associated domain boundaries which are rational via the envelope formula for a medial surface transform (MST), 
see Fig. 7. Although we are not aware of any direct applications as in the case of generalising MPH curves to RE curves, we 
lay down the basic concepts regarding RE surfaces as a generalisation of MOS surfaces.

For a C1 segment y(u, v) = (y1(u, v), y2(u, v), y3(u, v), r(u, v)) ⊂ R
3,1 of an MST and its projection y(u, v) =

(y1(u, v), y2(u, v), y3(u, v)) ⊂ R
3, the corresponding boundary of the domain it represents is given by the envelope for-
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Fig. 6. Arbitrarily chosen rational blending canal surfaces (yellow), the rational blending surface corresponding to its RE curve with minimal arc-length 
(green) and minimal elastic blending energy (red) between two canal surfaces (blue). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 7. The medial surface (green) and two branches (blue) of the envelope surface forming the boundary of a domain �. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)

mula

x± = y − rn±, (41)

where

n± = 1

EG − F 2

[(
∂r

∂u
G − ∂r

∂v
F

)
yu +

(
∂r

∂v
E − ∂r

∂u
F

)
yv ∓

√
EG − F

2
(yu × yv)

]
, (42)

where n± is a unit vector perpendicular to x±. The components E , F , G of the first fundamental form of y(u, v) are com-
puted using the indefinite Minkowski inner product with signature (+, +, +, −) whereas the components E , F , G of the 
first fundamental form of y(u, v) are determined using the standard Euclidean inner product in R3. This envelope formula 
is a direct surface analogy to formula (1) for curves; see Kosinka and Jüttler (2007).

MOS surfaces are characterised by

EG − F
2 = σ 2(u, v), (43)

where σ(u, v) ∈ R(u, v), which ensures that the envelope x± is rational. Consequently, x± possesses a normal vector field 
rationally parametrising the unit sphere, i.e., x± are rational PN surfaces. Additionally, analogously to the univariate case, 
any rational MOS surface y in R3,1 can be constructed starting from an (associated) rational PN surface x in R3 and a 
rational function r in the form

y(u, v) = (x1 + rn1, x2 + rn2, x3 + rn3, r) , (44)

where n = (n1, n2, n3) = (xu × xv)/‖xu × xv‖.
However, MOS surfaces are not the only surfaces with rational envelopes. Turning back to (41), we only have to guarantee 

that rn± is rational. This brings us to a broader class of (generally non-rational) RE surfaces, i.e., surfaces yielding Rational 
Envelopes. Accordingly, we set r(u, v) as the square root of some non-negative function R(u, v), which leads to

r
∂r = 1 ∂ R ∈R(u, v), r

∂r = 1 ∂ R ∈ R(u, v). (45)

∂u 2 ∂u ∂v 2 ∂v
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Then the rationality of rn± (and thus also of the envelope x±), cf. (42), is guaranteed by the condition

R(EG − F
2
) = σ 2(u, v). (46)

Additionally, any RE surface y in R3,1 can be constructed starting from an (associated) rational surface x in R3 and a rational 
function f in the form

y(u, v) = (x1 + f · (xu × xv)1, x2 + f · (xu × xv)2, x3 + f · (xu × xv)3, f · ‖xu × xv‖) , (47)

where (xu × xv)i denotes the i-th coordinate of the cross-product. In contrast to MOS surfaces, it is now easy to generate 
RE surfaces in the form (y1, y2, y3, r2 = R).

6. Conclusion

We have presented rational envelope curves as a generalisation of MPH curves. RE curves, although containing square 
roots, yield rational envelopes and can be constructed by simpler methods than those for MPH curves. To demonstrate the 
utility of RE curves, we proposed a simple interpolation algorithm for RE curves, which in turn can be used for canal surface 
blending using rational blends.

While the curve case with (M)PH and RE curves is well understood now, their surface analogies still pose many chal-
lenges. For instance, there are no direct algorithms for interpolation with PN surfaces, especially in the polynomial setting, 
which could then be utilised in the MOS case. On the one hand, rational envelope surfaces seem to avoid this limitation, 
but on the other hand, further research needs to be conducted in this area to place the bivariate case on the same firm 
footing as the univariate setting.
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