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This work proposes a novel method for computing area-preserving parameterization for 
genus zero surfaces with multiple boundaries (poly-annuli), which is based on discrete 
optimal mass transportation and surface Ricci Flow. We first begin with a conformal 
mapping (which may greatly distort area) by Ricci Flow and then correct the area distortion 
using the mass transport procedure via a convex optimization. The method is intrinsic 
and stable, and the resulting parameterization preserves area element and minimizes angle 
distortion. Comparing with existing algorithms, our method is more general and flexible. 
It can handle surfaces with more complicated topology, and gives users full control of the 
target measure, such as the areas of the holes. We have tested the method for applications 
in various fields. Our experimental results demonstrate the efficiency and efficacy of the 
proposed method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Parameterization

Surface parameterization (Hormann et al., 2008; Sheffer et al., 2007) refers to the process of mapping a surface embedded 
in R3 to a canonical planar domain with minimal distortions, which has been utilized for a wide variety of applications 
(Sheffer et al., 2006) like remeshing (Floater and Reimers, 2001; Floater et al., 2002; Zhang et al., 2010), texture mapping 
(Dominitz and Tannenbaum, 2010; Lévy and Mallet, 1998; Lévy et al., 2002), morphing (Liu et al., 2008), and shape modeling
(Sheffer et al., 2005; Floater, 1997; Floater and Hormann, 2005; Sheffer and Sturler, 2000).
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Fig. 1. Area-preserving texture mapping for poly-annulus surface. (a) Original 3D poly-annulus surface; (b) Flatting the 3D surface to 2D poly-annulus by 
Ricci Flow; (c) Area preserving mapping surface by discrete optimal mass transportation (OMT); (d) Casting a checker board texture to (c); (e) The pull-back 
texture mapping on 3D original surface; (d) and (e) are bijective area preserving texture mapping.

In general, distortions can be classified to angle distortion and area distortion. If a parameterization has neither angle 
distortion nor area distortion, then it must be an isometric mapping, hence preserves Gaussian curvatures. In general, 
isometric mapping between a 3D surface and a planar domain doesn’t exist. Therefore, in practice, research efforts focus on 
pursuing either angle-preserving parameterizations or area-preserving parameterizations.

1.2. Angle-preserving parameterization

Angle-preserving parameterizations preserve local shapes, therefore they are highly desirable for practical applications, 
such as texture mapping, visualization. Therefore, most existing algorithms emphasize on angle-preserving parameteriza-
tions. Many prominent approaches, such as conformal mapping, harmonic mapping and Ricci Flow that attempt to rigorously 
minimize the angular distortion have been introduced into the computer graphics community.

The angle-preserving mapping may bring huge area distortions in certain surfaces, for example, Fig. 2(b) shows large 
shrinkage of the lid of the world cup model. In fact, if one wants to conformally map a cylinder onto a planar annulus, the 
area distortion on the top is exponential with respect to the height of the cylinder. In turn, such distortions usually intro-
duce much difficulty for the down streaming texture mapping and model processing. The exponential shrinkage makes the 
surface registration highly inaccurate, the geometric computation numerically unstable. In order to enlarge the insufficient 
texture area caused by the parameterization, topological surgeries need to be introduced, which makes the algorithm more 
complicated and less automatic.

1.3. Area-preserving parameterization

Another surface parameterization approach is to minimize the area distortion. The most popular methods include quasi-
area parameterization, Lie advection method and optimal mass transportation map method.

Quasi-area parameterization A simple and fast method for generating low-stretch mesh parameterizations is shown in 
Yoshizawa et al. (2004).

Given a parameterized triangle mesh M ∈ R3, consider a mesh triangle T ∈ M and its corresponding triangle U in the 
parametric plane R2. The correspondence between the vertices of T and U uniquely defines an affine mapping P : U → T .

Define, quantity σ(U ) = √
(�2 + γ 2)/2 characterizes the stretch of mapping P , where � and γ are the maximal and 

minimal eigenvalues of the metric tensor induced by the mapping P . For each vertex ui in the parameter domain, its 
stretch σ(ui) is defined by

σ(ui) =
√∑

A(T j)σ (U j)
2/

∑
A(T j),

where A(T ) denotes the area of triangle T and the sums are taken over all triangles T j surrounding mesh vertex pi
corresponding to ui .

For each inner vertex pi ∈ M its corresponding vertex ui ∈ R2, minimizes the local quadratic energy

E(ui) =
∑

j

wij(u j − ui)
2,

where u j are vertices corresponding to the mesh one-link neighbors of pi and wij are positive weights. The optimal posi-
tions for ui are found by solving a sparse system of linear equations∑

wij(u j − ui) = 0.
j
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Use the local stretch σ(ui) for each inner vertex ui in the parametric plane to estimate the weight wij by assigning

wnew
ij = wold

i j /σ (u j).

The optimization is achieved by minimizing a weighted quadratic energy with positive weights chosen to minimize the 
parameterization stretch. The quasi-area parameter is fast since it is based on solving a sparse system of linear equations. 
In contrast, our method has solid mathematical foundation. Our experimental results demonstrate that our method outper-
forms this method.

Lie advection The method in Zou et al. (2011) is based on Lie derivative and Cartan’s formula. Given a surface S , the Lie 
advection method designs a time-variant tangent vector field on the surface v(t), each point p ∈ S moves on the surface, at 
the time t the velocity vector of p is v(p, t). Therefore, we obtain a single-parameter family of diffeomorphisms ϕt : S → S , 
such that

d

dt
ϕt(p) = v(p, t).

Suppose the area element on the surface is ω, the mapping ϕt induces the pull-back area element, denoted as ϕ∗
t ω, then 

by Cartan’s formula, the Lie derivative of ω

Lvω = d

dt
ϕ∗

t ω = ivdω + d(ivω) = d(ivω),

where the inner product of v and the 2-form ω is a 1-form, ivω = ω(v, ·). One can design the Lie derivative of ω to 
deform the current area element to the desired one, which is controlled by the vector field v(t). Therefore, by designing 
the vector field, one can manipulate the evolution of the area element. This method can handle surfaces with complicated 
topologies, incorporating landmark constraints. The method has some disadvantages: the solution is not unique, and the 
iterative procedure of designing time variant vector field is indirect and less efficient.

Optimal mass transportation (OMT) Another approach to area-preserving parameterization is based on optimal mass trans-
portation, which is also known as the “earth mover’s problem” (Gu et al., 2016; Dominitz and Tannenbaum, 2010). Suppose 
(X, μ) and (Y , ν) are two domains in the Euclidean space with measures μ and ν respectively, ϕ : X → Y is a diffeomor-
phism. We say ϕ is measure preserving, if for any Borel set B ⊂ Y , we have∫

B

ν =
∫

ϕ−1(B)

μ,

equivalently, the PDE is given by

μ = Jϕν ◦ ϕ (1)

where Jϕ is the Jacobian of the mapping ϕ . The Optimal Mass Transportation map is a measure-preserving mapping, that 
minimizes the total transportation cost, namely,

minϕ

∫
S c(p,ϕ(p))μ(p)dp

s.t.

μ = Jϕν ◦ ϕ

where c(p, q) is the transportation cost for moving one unit mass from p to q. There are mainly two approaches to solve 
OMT problem: one is Kantorovich’s approach (Kantorovich, 1948), and the other is Brenier’s approach (Brenier, 1991).

Kantorovich’s approach discretizes both the source and the target as point sets with Dirac measures, {(p1, μ1), · · · ,

(pm, μm)} and {(q1, ν1), · · · , (qn, νn)} respectively, such that 
∑m

i=1 μi = ∑n
j=1 ν j , a transportation plan can be represented as 

{λi j}, which means the mass λi j is moved from pi to q j , then the optimal mass transportation plan is a linear programming 
problem:

minλ

∑m
i=1

∑n
j=1 λi jc(pi, p j),

s.t.∑
i λi j = μi,

∑
j λi j = ν j .

This method has O (mn) unknowns, and the solution mapping is not as smooth as those obtained by the alternative methods.
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Brenier (1991) observes that if the cost function c(p, q) is the quadratic Euclidean distance c(p, q) = |p − q|2, then there 
exists a convex function u : S → R, such that the optimal mass transportation map is given by the gradient map of u, 
p → ∇u(p). In this case, the measure-preserving condition in Eqn. (1) becomes Monge–Ampère equation,

det

(
∂2u

∂xi∂x j

)
ν ◦ ∇u = μ.

The discrete OMT method discretizes the target as a point set with Dirac measures with only O (n) unknowns. This method 
is equivalent to a convex optimization process, which can be achieved using more efficient Newton’s method, and the 
solution is unique.

Our approach Most existing optimal mass transportation method can only handle simply connected surfaces. An efficient 
method to compute area-preserving parameterizations for surfaces with complex topologies is highly advantageous for tex-
ture mapping and visualization in research area. In our current work, we propose a novel area-preserving parameterization 
algorithm, which is based on discrete optimal mass transportation (Gu et al., 2016) theory, and therefore it is equivalent 
to a convex optimization, with a unique solution. Furthermore, it is capable of handling genus zero surfaces with multiple 
boundaries (topological annuli).

Our method is as follows: first, the input topological annulus (S, g) is conformally mapped onto a circle domain 
ϕ : (S,g) → (
,dzdz̄) using discrete Ricci flow method (Chow and Luo, 2003), where


 = D \
k⋃

i=1

B(pi, ri),

and B(pi, ri) is the disk centered at pi with radius ri . Because ϕ is conformal, the original Riemannian metric on the surface 
g = e2λ(dx2 + dy2). On the unit disk, we define a measure μ : D →R,

μ(p) =
{

ae2λ(p), p ∈ 


b, p /∈ 

,

where a, b are two adjustable constants, such that 
∫
D

μdxdy = π . Then we compute the unique optimal mass transportation 
map τ : (D, μdx ∧ dy) → (D, dx ∧ dy). The composition τ ◦ φ : (S, g) → D is the desired area-preserving parameterization. 
Fig. 1 illustrates the pipeline of our approach.

1.4. Previous work

Conformal parameterization The literature for conformal mesh parameterization is vast, and a complete review is beyond 
the scope of the current work. We refer readers to the thorough surveys Floater and Hormann (2005), Sheffer et al. (2006)
and Sheffer et al. (2007). Many existing parameterizations focus on minimizing angle distortion, such as the method based 
on Riemann–Cauchy equation (Lévy et al., 2002), harmonic energy minimization (Desbrun et al., 2002), holomorphic differ-
entials (Gu and Yau, 2003), most isometric parameterizations (MIPS) (Hormann et al., 1999), angle-based flattening (Sheffer 
and de Sturler, 2001), conformal equivalence meshes (Springborn et al., 2008), curvature flows (Jin et al., 2008), conformal 
equivalence (Springborn et al., 2008), spin transformation (Crane et al., 2011) and so on.

Locally injective and bounded distortion mappings Schüller et al. (2013) modify any deformation energy to guarantee a locally 
injective mapping. Levi and Zorin prioritize higher distortion for minimization and provide a minimal L∞-norm solution for 
distortion control (Levi and Zorin, 2014). Fu et al. introduce an advanced MIPS method that inherits the local injectivity of 
MIPS, achieves as low as possible distortions with high efficiency. Their method depends on an enhanced MIPS energy func-
tion that penalizes the maximal distortion and distributes the distortion evenly, and the inexact block coordinate descent 
method that avoids local optima.

Lipman (2012), Aigerman and Lipman (2013), Kovalsky et al. (2014, 2015) propose to construct a maximal convex 
subspace, which is the continuous piecewise linear mapping space for bounding the maximal distortion and ensuring no in-
verted mesh elements. Locally injective mapping with bounded distortion is guaranteed when the algorithms converge. The 
algorithm is iterative, a quadratic programming or semidefinite programming problem needs to solve at each step. A feasi-
ble solution space may not exist if the convex subspace is empty or the upper bound of distortion is too small. In contrast, 
our method has theoretical advantages that the solution exists and is unique, the algorithm converges to the unique global 
optimum.

Optimal mass transport

(a) Monge–Kantorovich For optimal mass transport, some approaches based on Monge–Kantorovich theory have been pro-
posed. Zhu et al. (2003) applied optimal mass transport for flattening blood vessel in an area preserving mapping for medical 
visualization. Haker et al. (2004) proposed to use optimal mass transport for image registration and warping, the method is 
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parameter free and has the unique global optimum. Dominitz and Tannenbaum (2010) proposed to use optimal mass trans-
port for texture mapping. The method first starts with an angle-preserving mapping and then refines the mapping using 
the mass transport procedure derived via gradient flow. Rehman et al. (2009) presented a method for 3D image registration 
based on optimal mass transport problem. Meanwhile, they stress the fact that the optimization of OMT is computationally 
expensive and emphasize that it is important to find efficient numerical methods to solve this issue, and it is crucial to 
extend the results to 3D surfaces.

(b) Monge–Brenier There are also some works based on Monge–Brenier theory. Su et al. proposed an area-preserving map-
ping method for brain morphological study. Zhao et al. proposed an OMT based method for visualization in Zhao et al.
(2013). But these methods can only compute the maps from the unit disk domain with Euclidean measure to another disk 
with general measure.

Mérigot (2011) has proposed a multi-scale approach to solve optimal transport problem. De Goes et al. (2011) have 
provided an optimal-transport driven approach for 2D shape reconstruction and simplification. Recently they have presented 
a formulation of capacity-constrained Voronoi tessellation as an optimal transport problem for image processing (de Goes 
et al., 2012). This method produces high-quality blue noise point sets with improved spectral and spatial properties.

1.5. Contribution

In summary, the current work has the following contributions:

• This work offers an area-preserving surface parameterization method that is able to handle complicated topologies, such 
as genus zero surfaces with multiple boundaries.

• The mapping is diffeomorphic and unique under normalization. Moreover, the mapping is invariant under conformal 
transformations.

• Comparing to existing approaches based on Monge–Kantorovich theory, our method reduces the number of unknown 
variables from O (n2) to O (n).

The outline of the remainder of this paper is as follows: In Section 2, we demonstrate the theoretical foundation of Ricci 
Flow and optimal mass transportation. In Section 3, we discuss some relevant implementation issues. In Section 4, we give 
some illustrative examples of our scheme, and present an evaluation of the running time and distortion measures of our 
method, compare with stretch minimization method (Yoshizawa et al., 2004). Finally, in Section 5, we summarize our work 
and give some possible future research directions.

2. Theoretical foundation

In this section, we briefly introduce the theoretic foundations of the current work. We refer readers to more thorough 
treatments on Ricci flow (Zeng and Gu, 2013) and Optimal mass transportation theory (Gu et al., 2016).

2.1. Conformal mapping using Ricci flow

According to conformal geometry theory, we know that a genus zero surface with multiple boundaries can be confor-
mally mapped onto a planar circle domain (Wang et al., 2012), the unit disk with circular disks removed. Furthermore, such 
kind of mapping is unique up to a Möbius transformation, the centers and the radii of inner circles are automatically de-
termined by the geometry of the surface. The so-called generalized Koebe’s iteration method is given in Zeng et al. (2009), 
which is based on the surface Ricci flow.

Smooth surface Ricci flow Suppose (S, g) is a surface with several boundaries embedded in R3, g is the natural induced 
Euclidean metric g = (gij). We select one boundary as the exterior boundary, the others as the interior boundaries. Let the 
mapping φ : (S, g) → (
, dx2 + dy2) transform the surface to the planar circle domain 
, where dx2 + dy2 is the planar 
Euclidean metric. We say φ is a conformal mapping, or angle-preservation mapping, if φ is a diffeomorphism, such that:

g(x, y) = e2λ(x,y)(dx2 + dy2),

where λ : S → R is a smooth scalar function defined on the surface, the so called conformal factor.
The Ricci flow is the process to deform the metric g(t) according to its induced Gaussian curvature K (t), where t is the 

time parameter, such that the curvature evolves according to a non-linear heat diffusion process:

dgij(t)

dt
= −2K (t)gij(t) (2)

with the constraint that the total surface area is preserved. Let g(t) = e2u(t)g(0). The Ricci flow is
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du(t)

dt
= −2K (t). (3)

At any time t , the metric g(t) is conformal to the original metric g(0). The Ricci flow can be easily modified to compute a 
metric with a prescribed curvature K̄ , and then the flow becomes

dgij(t)

dt
= 2(K̄ − K (t))gij(t). (4)

The goal here is to find a conformal mapping to map the surface to a circle domain, so we set the target curvature for 
interior points to be 0, and the boundary geodesic curvature to be constant.

Discrete surface Ricci flow The discrete surface Ricci flow is the exact analogy of the smooth surface Ricci flow. A surface 
is approximated by piecewise linear triangular mesh M = (V , E, F ). The discrete Riemannian metric is represented by the 
edge lengths, the discrete Gaussian curvature is formulated as angle deficit,

K (vi) =
{

2π − ∑
jk θ

jk
i , ∀vi /∈ ∂M

π − ∑
jk θ

jk
i , ∀vi ∈ ∂M

(5)

where θ jk
i is the corner angle at the vertex vi in the face [vi, v j, vk]. The total discrete curvature satisfies the Gauss–Bonnet 

theorem, 
∑

vi∈M K (vi) = 2πχ(M), where χ(M) is the Euler characteristic number of the mesh M .
We associate each vertex vi with a circle c(vi, γi), the circles associated with the two end vertices of an edge [vi, v j]

intersect at an angle φi j . The edge length is given by

li j =
√

γ 2
i + γ 2

j + 2γiγ j cosφi j, (6)

which is called the circle packing metric. We then deform the discrete metric by changing the circle radii {γi}’s, but pre-
serving the circle intersection angles {φi j}’s. The discrete conformal factor is given by ui = logγi , then the discrete surface Ricci 
flow has the same formula as the smooth counter part, dui/dt = K̄ i − Ki . The discrete surface Ricci flow is the gradient flow 
of the convex energy

E(u) =
un∫

u0

n∑
i=1

(K̄ i − Ki)dui,

therefore, the flow converges to the unique global optimum. The convex energy can be efficiently optimized using Newton’s 
method. The computational details are as follows: for each face [vi, v j, vk], there is a unique circle orthogonal to 3 circles 
c(vi, γi), c(v j, γ j) and c(vk, γk), which is called the power circle of the face. Each edge e ∈ M is shared by two faces, we 
connect the power centers of the two faces to get the dual edge of e, denoted as ē, then we obtain the dual mesh M̄ . Given 
an edge ei j connecting vi and v j , we define the edge weight on it wij = |ēi j|/|ei j|, where |ēi j| is the length of the dual edge. 
The Hessian matrix H = (∂2 E(u)/∂ui∂u j) is given by

∂2 E(u)

∂ui∂u j
=

⎧⎨
⎩

−wij, vi ∼ v j∑
k �=i wik, i = j

0, vi � v j

(7)

The gradient of the energy is given by

∇E(u) = (K̄1 − K1, K̄2 − K2, · · · , K̄n − Kn)
T . (8)

In the Newton’s method, at each step, the change of conformal factor δu satisfies the equation: H(u)δu = ∇E(u).
The target curvatures are subtle. The total curvature of exterior boundary vertices is 2π , for each interior boundaries, the 

total curvature is −2π . Fix one interior boundary, suppose the vertices are consecutively labeled as {v0, v1, · · · , vk−1}, then 
the target curvature should satisfy 

∑
i K̄ (vi) = −2π ,

K̄ (vi)

|ēi−1,i | + |ēi,i+1| = const,

where the edge lengths are the target edge length, which are unknown at the beginning. Hence, the algorithm iteratively 
updates the target curvatures of the boundary vertices.

The power distance from a point p on the surface to the vertex vi is given by Pow(p, vi) = |p − vi |2 − γ 2
i . The power 

Voronoi diagram of the mesh is a cell decomposition, S = ⋃
i W i , where each cell W i := {p ∈ S|Pow(p, vi) ≤ Pow(p, v j)}.

The power Delaunay triangulation is the dual to the power Voronoi diagram. During the whole flow, the triangulation is 
maintained to be power Delaunay by edge swap operations. This can ensure the existence of the solution to arbitrary target 
curvature K̄ : V → R , if K̄ (vi) ∈ (−∞, 2π) and 

∑
i K̄ (vi) = 2πχ(M). Detailed proof can be found in Gu et al. (2013).
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2.2. Discrete optimal mass transport

Suppose μ has compact support on X , define 
 = Suppμ = {x ∈ X |μ(x) > 0}, assume 
 is a convex domain in X . The 
space Y is discretized to Y = 〈y1, y2, · · · , yn〉 with Dirac measure ν = ∑n

j=1 ν jδ(y − y j).
We define a height vector h = (h1, h2, · · · , hn) ∈R

n , consisting of n real numbers. For each yi ∈ Y , we construct a hyper-
plane defined on X : πi(h) : 〈x, yi〉 +hi = 0, where 〈,〉 is the inner product in Rn . Define a function: uh(x) = maxi{〈x, yi〉 +hi}, 
then f (h, x) is a convex function. We denote its graph by G(h), which is an infinite convex polyhedron with supporting 
planes πi(h). The projection of G(h) induces a polygonal partition of 
, 
 = ⋃n

i=1 W i(h), and W i(h) = {x ∈ X |uh(x) =
〈x, yi〉 + hi} ∩ 
. Each cell W i(h) is the projection of a facet of the convex polyhedron G(h) onto 
. The convex function uh
on each cell W i(h) is a linear function πi(h), therefore, the gradient map

grad uh : W i(h) → yi, i = 1,2, · · · ,n, (9)

maps each W i(h) to a single point yi . The following theorem plays a fundamental role here:

Theorem 1. For any given measure μ,ν j > 0, j = 1, · · · , n, such that 
∑n

j=1ν j = ∫



μ, there must exist a height vector h unique 
up to adding a constant vector (c, c, · · · , c), the convex function uh induces the cell decomposition of 
, such that the following 
area-preservation constraints are satisfied for all cells,∫

W i(h)

μ(x)dx = νi, i = 1,2, · · · ,n. (10)

Furthermore, the gradient map grad uh optimizes the following transportation cost

E(T ) :=
∫



|x − T (x)|2μ(x)dx. (11)

The existence and uniqueness have been first proven by Alexandrov using a topological method (Alexandrov, 2005). The 
existence has been also proven by Aurenhammer et al. (1998), and the uniqueness and optimality have been proven by 
Brenier (see for instance Villani, 2003, Theorem 2.12(ii), and Theorem 2.32).

Recently, Gu et al. (2016) have given a novel proof for the existence and uniqueness based on variational principle. The 
global minimum can be obtained efficiently using Newton’s method.

First, we define the admissible space of the height vectors:

H0 :=

⎧⎪⎨
⎪⎩h|

∫
W i(h)

μ > 0,
∑

i

hi = 0

⎫⎪⎬
⎪⎭ .

Then, define the energy E(h) as the volume of the convex polyhedron bounded by the graph G(h) and the cylinder 
through 
 minus a linear term,

E(h) =
∫



uh(x)μ(x)dx −
n∑

i=1

νihi . (12)

The gradient of the energy is given by:

∇E(h) =
⎛
⎜⎝ ∫

W i(h)

μ(x)dx − νi

⎞
⎟⎠ , (13)

Suppose the cells W i(h) and W j(h) intersect at an edge ei j = W i(h) 
⋂

W j(h) 
⋂


, then the Hessian matrix of E(h) is given 
by:

∂2 E(h)

∂hi∂h j
=

{
1

|y j−yi |
∫

ei j
μ , W i(h)

⋂
W j(h)

⋂



0 , otherwise.
(14)

In Gu et al. (2016), it is proven that H0 is convex, and the Hessian is positive definite on H0, the global unique minimum 
h is an interior point of H0. At the minimum point, the gradient map graduh meets the measure-preserving constraints in 
Eqn. (10). Furthermore, this gradient map is the optimal mass transportation map.
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3. Algorithm

This section explains the details of the computational algorithms.

3.1. Conformal mapping using Ricci flow to planar poly annulus

The first stage is to compute the conformal mapping, the surface is mapped onto a planar circle domain. Initializing the 
parameterization by a conformal mapping is helpful to reduce the angle distortion of the final area-preserving mapping 
as explained in Dominitz and Tannenbaum (2010). The conformal parameterization method based on holomorphic 1-forms 
(Gu and Yau, 2003) is equivalent to the geometric Finite Element Method. The quality of the triangle meshes will affect the 
convergence and accuracy of the algorithm. In contrast, Ricci flow method has no requirement to the triangle mesh quality, 
the existence and uniqueness of the solution are guaranteed in theory (Gu et al., 2013). Therefore, in the current work, we 
adopt the Ricci flow method.

Suppose the input triangle mesh M = (V , E, F ) is given.

1. Compute the initial circle packing metric
First, we compute the circum center of each face [vi, v j, vk], the circum radius is denoted as dijk . Then for each ver-
tex vi , we define its circle radius γi as

γi = min
jk

di jk.

Set the discrete conformal factor ui = logγi, i = 1, 2, · · · , n.
Second, we initialize the intersection angles for circles associated with two end vertices of an edge. Consider edge 
[vi, v j], we use the circle packing metric formula Eqn. (6) to compute the value of cos φi j .

2. Compute the initial target curvature
For every interior vertex v /∈ ∂M , its target curvature is set to be 0, K̄ (v) ← 0. Trace the boundary loops, denoted as 
�0, �1, · · · , �m . The �0 is the exterior boundary. |�i| denotes the number of vertices in �i, i = 1, · · · , m. For any vertex 
on vk ∈ �0, its target Gaussian curvature is

K̄k ← 2π

|�0| ,k = 1, · · · , |�0|.

For any vertex on vk ∈ �i, i �= 0, its target Gaussian curvature is

K̄k ← − 2π

|�i | ,k = 1, · · · , |�i |.

3. Newton’s method
From the current conformal factor, compute the edge lengths

li j =
√

e2ui + e2u j + 2eui eu j cosφi j,

update the triangulation to be Power Delaunay by edge swapping. From the edge length, compute the corner angles

θ
jk

i ← cos−1
l2i j + l2ki − l2jk

2li jlki
,

from the corner angles compute the vertex curvatures K (vi) using Eqn. (5). Compute the gradient of the entropy energy 
∇E(u) using Eqn. (8). Compute the power circle for each face, compute edge weight wij for each edge, construct the 
Hessian matrix of entropy energy using formula Eqn. (7). Solve the positive definite linear system

H(u)δu = ∇E(u),

with the constraint 
∑

i ui = 0, using conjugate gradient method. Update the discrete conformal factor

u ← u + εδu,

where ε is the step length.
Repeat the whole procedure, until the curvature error is less than a given threshold

max
i

|K̄ i − Ki| < threshold.
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4. Update the boundary target curvature
Suppose �0 is represented as a list of consecutive vertices {v0, · · · , vk−1, vk, vk+1, · · · }, compute the total length of �0

s0 =
∑

vk∈�0

lk−1,k,

update the target curvature as

K̄ (vk) = 2π
lk−1,k + lk,k+1

2s0
.

Similarly, consider an interior boundary loop �i ,

si =
∑

vk∈�i

lk−1,k,

update the target curvature for vk ∈ �i as

K̄ (vk) = −2π
lk−1,k + lk,k+1

2si
.

5. Iteration
Repeat step 3 and 4, until the change of the target curvatures on boundary vertices are all less than a given threshold. 
We denote the conformal mapping obtained in this stage as ϕ : M → 
, where 
 is a circle domain contained in the 
planar unit disk, 
 = D \ B(pi, ri), where B(pi, ri) is a disk centered at pi with radius ri .

3.2. Optimal mass transportation map

In the second stage, we compute the optimal transportation map.

Initialization of target area We use the conformal mapping result to set up the target domain and the target measure,

D := {(ϕ(v1),aμ1), (ϕ(v2),aμ2), · · · , (ϕ(vn),aμn)}
m⋃

i=1

{(pi,bνi)},

where ϕ(vk) is the conformal mapping image of vertex vk ,

μk := 1

3

∑
jk

Area([vi, v j, vk]),

where μk is the Dirac measure associated with ϕ(vk), which is the one third of the total area of the faces attached to it in 
the mesh in R3. pi is the center of the i-th circular hole of the circle domain, νi is the area of the hole νi = πr2

i . Positive 
constants a, b > 0 are used to normalize the total area, and the relative sizes of the holes

a
n∑

k=1

μk + b
m∑

i=1

νi = π.

Optimal mass transport mapping For the convenience of discussion, we rewrite the target as

D = {(y1, w̄1), (y2, w̄2), · · · , (yn+m, w̄n+m)}.
We plan to compute the unique optimal mass transportation τ : D → {(yi, w̄i)}. According to the Monge–Brenier theory, 
we need to find the height vector h = (h1, h2, · · · , hn+m). Fix a height vector, the support planes are given by {πi(h) :
〈x, yi〉 + hi}, the convex function is uh(x) = maxi〈x, yi〉 + hi , and its graph G(h) can be computed as upper envelope of 
the supporting plane πi(h). The projection of G(h) onto D forms a polygonal partition D = ⋃

i W i(h). The algorithm is as 
follows:

1. Initialize the height

hi = −1

2
〈yi, yi〉, i = 1,2, · · · ,n + m,
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2. Compute the upper envelope of the planes {πi}’s, which is equivalent to compute the power Voronoi diagram of the 
unit disk

D =
n+m⋃
i=1

W i(h),

the area of each cell is denoted as

wi(h) = Area(W i(h)).

Then we compute the dual power Delaunay triangulation.
3. The Hessian matrix is given by H(h) = (hij(h)),

hij(h) =
⎧⎨
⎩

−|ẽi j |/|eij|, i �= j, W i ∩ W j ∩D �= ∅∑
k �=i hik, i = j

0, otherwise

where |ei j| is the length of the dual power Delaunay triangulation edge and |ẽi j | is the length of power Voronoi diagram 
edge.

4. Solve the linear system using conjugate gradient method

H(h)δh = w̄ − w,

with the constraint 
∑

i hi w̄i = 0. Then we update the height vector

h ← h + εδh,

where ε is a step length parameter.
5. Repeat step 2 through 4, until

max
i

|w̄i − wi(h)| < threshold.

4. Experimental results

In this section, we demonstrate the efficiency and efficacy of our method using examples from the real world.
All the experiments were conducted on a laptop computer of Intel Core i5-4200U CPU, 2.29 GHz with 8 GB memory. All 

the algorithms are implemented using generic C++ with visual studio 2013 on Windows 10 platform.

4.1. Area-preserving parameterization

Fig. 2 illustrates our area-preserving parameterization result. The semi-world-cup model in frame (a) is a genus zero 
surface with three boundaries. We conformally map it onto a circle domain using Ricci flow method as shown in frame (b). 
The conformal mapping produces large area distortions near the lid region, which is zoomed in frame (c). Then, we compute 
the optimal mass transportation mapping to obtain the area-preserving parameterization as shown in frame (d), where the 
area distortions are within the threshold prescribed by users, as demonstrated in the zoomed image in frame (e).

Fig. 3 further compares angle-preserving and area-preserving parameterizations. We slice the genus one surface model 
along two fundamental group generators to make it a genus zero surface with one boundary, then we punch three holes 
as shown in frame (a) and (b). The poly annulus is conformally mapped onto a circle domain as shown in frame (c) using 
Ricci flow, then the circle domain is further mapped using OMT to obtain the area-preserving parameterization as shown in 
frame (d). By comparing frame (c) and (d), we can see the ear regions have large distortions in (c), and the area elements 
are well preserved in (d).

4.2. Texture mapping

Fig. 4 demonstrates a direct application of our OMT parameterization: area-preserving texture mapping. In order to show 
the flexibility of our method, we test it on surfaces with different topologies. All the surfaces in the figure are of genus 0, but 
with different number of boundaries. Our method is general enough to handle arbitrary topological poly annuli without any 
modification or adaption. In order to visualize the correspondence between the texture and the surface, we use a checker 
board texture with numerical labels, such that the users can easily locate each checker on the geometric surface. It can be 
easily verified that all the checkers on the surface are with similar areas.

Fig. 5 compares the conformal texture mapping and the area-preserving texture mapping. The conformal texture mapping 
results are shown in the first and the third columns, which preserve the local shapes well but distort the area undesirably; 
in contrast, the area-preserving results are shown in the 2nd and the 4th columns, which preserve the areas but distort the 
local shapes. Depending on the real applications, user may prefer different texture mapping method, or combine both of 
them for visualization purpose.



JID:COMAID AID:1568 /FLA [m3G; v1.176; Prn:19/05/2016; 13:10] P.11 (1-16)

K. Su et al. / Computer Aided Geometric Design ••• (••••) •••–••• 11
Fig. 2. Comparison between angle-preserving and area-preserving parameterizations. It is obvious that the angle-preserving parameterization induces large 
area distortions in the lid region; in contrast, the area-preserving parameterization almost eliminates the area distortions.

Fig. 3. Comparison between angle-preserving and area-preserving parameterizations for the sliced kitten model. It is easy to see that the angle-preserving 
parameterization induces large area distortions in the kitten ear regions (c), the area-preserving parameterization avoids area distortion thoroughly (d).

Fig. 4. Area-preserving texture mapping for poly annuli. Our method is general enough to handle genus zero surfaces with arbitrary number of boundaries.

4.3. Importance driven surface parameterization

Our method allows users to fully control the texture area of regions of interests. By adjusting the target measure, the 
user can zoom or shrink specific regions on the surface as shown in Fig. 6 and 7. The top row demonstrates that the user 
can control the areas of the holes, the bottom row shows the user can enlarge/shrink the nose region with different scaling 
factors in Fig. 6. The similar visual effect is also achieved for the skull model as shown in Fig. 7.
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Fig. 5. Comparison of area-preserving and conformal texture mapping; (a)–(c) image used as texture; (d)–(g) texture mapping results for piglet model; 
(h)–(k) texture mapping results for sliced kitten model. ‘CF’ is the conformal texture mapping. ‘AP’ stands for area-preserving texture mapping.

4.4. Evaluation

Area-preserving In order to quantify the parameterization quality, we compute the distribution of the area-distortion factor 
explicitly as follows: for each face on the mesh, we calculate the ratio between its 3D geometric area and 2D parameter 
area, then we compute the histogram of the area-distortion factors and shown in Fig. 8. Frame (a) shows the histogram 
of area-distortion factors of OMT parameterization of the human face model, (b) the histogram produced by the confor-
mal parameterization of the same face model. It is obvious that the histogram produced by OMT parameterization highly 
concentrates near the origin, namely, the mapping result is highly area-preserving. On the contrary, the histogram induced 
by Ricci flow is widely distributed. Similarly, we compare the histograms for the Piglet model in frame (c) and (d), which 
further verifies the fact that our OMT based method achieves higher accuracy.

Robustness and efficiency We verify the robustness of our method by testing it on meshes with complicated topologies, as 
shown in Fig. 4. We deliberately modify the topologies of the surfaces to challenge our algorithm. In practice, our method 
can smoothly handle all of them without any modification or adaption, which demonstrates that our method is robust to 
complicated topologies.

We test the performance of our algorithm and report the statistics in Table 1, where the number of faces of the models, 
the iterations and the running time are summarized. We can see for meshes with high geometric complexity (55k faces), 
high topological complexity (7 boundaries), the running time is less than 2 minutes, without any optimization of our 
implementation. We compare the area distortion and angle distortion induced by different parameterization algorithms on 
different models, as shown in Fig. 8.

In addition, we compare our algorithm with alternative quasi-area preserving method, such as stretch minimization 
parameterization (Yoshizawa et al., 2004). We demonstrate our area-preserving method and quasi-area preserving method 
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Fig. 6. Importance driven surface parameterization for a human face; (a) the 3d face model; (b)–(d) show importance driven results of the holes with 
different scaling factors; (e)–(h) show the importance driven results of the nose and holes with different scaling factors.

Fig. 7. Importance driven surface parameterization for the skull model; (a) the 3D skull model; (b)–(d) show importance driven results of the holes with 
different scaling factors; (e)–(h) show the importance driven results of the forehead region with different scaling factors.

on four typical mesh models which are topological equivalent to the unit disk, since the quasi-area preserving can not 
handle complex topology. Fig. 9 compares the histograms of the area distortion of our method (darkgray) and stretch 
minimization method (gray). It is obvious that the histogram of our method is highly concentrated around 1, while that 
of stretch minimization method is widely spread. The distortion statistics are shown in Table 2. This shows our method 
achieves much higher quality in terms of area preserving. On the other hand, our method is highly non-linear and is more 
time consuming, about 1.5 times slower as shown in Table 2.
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Fig. 8. Comparison between histograms of the area and angle distortion; (a) area distortion of OMT for the human face model; (b) area distortion of 
conformal mapping for the human face model; (c) area distortion of OMT for the piglet model; (d) area distortion of conformal mapping for the piglet 
model; (e) angle distortion of OMT for the human face model; (f) angle distortion of conformal mapping for the human face model; (g) angle distortion of 
OMT for the piglet model; (h) angle distortion of conformal mapping for the piglet model.

Table 1
Performance statistics.

Model Boundaries Faces Number of iterations Time in minutes

Error < 1e–6 Error < 1e–12 error < 1e–6 error < 1e–12

Bear, Fig. 4(b) 2 46852 56 83 1.012 1.587
World-cup, Fig. 4(c) 3 24035 101 127 0.993 1.282
Colon, Fig. 4(d) 2 18203 240 266 1.718 1.957
Kitten, Fig. 4(e) 4 20090 42 64 0.341 0.524
Face, Fig. 4(f) 4 39465 17 43 0.312 0.767
Horse, Fig. 4(g) 5 39622 54 81 0.836 1.298
Piglet, Fig. 4(h) 7 55203 118 145 1.752 1.969

Fig. 9. The first row is the bear head, Alex face, terrain and Venus mesh model; The second row shows the comparison between the histograms of area 
distortions induced by OMT method and the stretch minimization method. (For interpretation of the references to color in this figure, the reader is referred 
to the web version of this article.)
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Table 2
Performance statistics.

Model # vertices # faces Time in seconds max Average std

OMT Quasi OMT Quasi OMT Quasi OMT Quasi

Bear head 13768 27370 6.666 8.717 1.7692 8.1893 1.0011 0.9117 0.0358 0.2635
Alex 21326 42184 7.97 4.399 1.5387 3.3272 1.004 1.0014 0.0436 0.0874
Terrain 51902 102771 32.869 20.235 3.0725 4.6912 1.0010 0.9977 0.0375 0.2046
Venus 10430 20754 4.261 3.342 4.6486 2.8708 1.0025 0.9997 0.0547 0.4157

5. Conclusion

This work proposes a novel parameterization method, based on discrete surface Ricci flow and optimal mass trans-
portation theories. The algorithm is capable of finding area-preserving parameterizations for genus zero surfaces with 
multiple boundaries. The achieved mapping is diffeomorphic and invariant under conformal transformations. Conventional 
Kantorovich’s approach has O (n2) unknown variables, whereas the proposed method has only O (n) variables, where n is 
the number of vertices on the mesh. Furthermore, the algorithm gives users full control of the area of each part on the 
texture domain. Both Ricci flow and Optimal Mass Transport Map are based on convex optimizations. Our experimental re-
sults demonstrate the efficiency and efficacy of the proposed method. In practice, conformal mapping and area-preserving 
mapping have different advantages and disadvantages. Depending on the real applications, users can choose one of them or 
a combination of them.

In future, we will explore the way to generalize the current framework to high genus surfaces, and find more applications 
in various engineering and medical fields.
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