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In an optical anamorphosis, an object is seen distorted unless the viewer is positioned at
a specific point, where the object appears normal. We describe how to endow a rational
Free-Form Deformation with an anamorphic character in a simple manner, obtaining an
AFFD (Anamorphic Free-Form Deformation). Given a (planar or 3D) initial object, which
will appear normal from the desired viewpoint, we deform the object with a rational Bézier
surface or volume as deformation tool. To achieve the desired deformation, the user input
amounts to displacing the control points of the deformation tool along radial directions
through the viewpoint, whereas the weights come as a byproduct. Mathematically, the
deformation means changing the last homogeneous coordinate of the control points. An
AFFD defined by a linear Bézier tetrahedron can be regarded as a user-friendly way to
construct a perspective collineation. In this case, or when the deformation tool is a Bézier
triangle of degree one, the AFFD transforms NURBS to NURBS keeping the original degree.
With a deformation tool of higher degree, the rational composition required to obtain
the exact result yields NURBS also of higher degree. For a quadratic Bézier triangle as
deformation tool, our AFFD coincides with the inverse of a stereographic projection.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Anamorphic images

Anamorphic images are those that appear distorted unless viewed from a particular viewpoint (optical anamorphosis) 
or with a suitable mirror or lens (catoptric anamorphosis). In this article, we focus on optical anamorphosis, requiring no 
optical device for a correct view.

A typical optical anamorphosis is shown in Fig. 1, where a logo Ŝ painted on a twisted surface appears distorted when 
observed from a general viewpoint, such as that used in this illustration, but becomes recognizable, seen as the undistorted 
logo S , if the observer is located at a certain point O. Another remarkable effect could be achieved when the initial object 
S is a picture of a 3D object taken from O. Then, an observer at O easily mistakes Ŝ for the 3D object. This is the technique 
behind anamorphic pavement drawings, such as those designed by Beever (2012), or the 3D illusion of anamorphic frescos 
painted on vaults by classical painters. Many examples and applications in architecture can be found in the recent article 
by Di Paola et al. (2015). An optical anamorphosis is also possible by deforming 3D geometry, such as the Stanford bunny 
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Fig. 1. Anamorphic versions Ŝ of a planar logo and a 3D bunny S .

(Stanford Computer Graphics Laboratory, 2014) of Fig. 1. A viewer sees a distorted 3D object Ŝ from O and mistakes it for a 
more familiar (undistorted) version S , to realize the true shape of Ŝ after moving away from O.

Anamorphosis is hardly mentioned in traditional textbooks on Computer Graphics, only receiving some attention in two 
manuals by Salomon (2006, 2011). However, this fascinating technique has been employed by artists and architects for 
centuries, as illustrated in the webpage by Kent (2013), and has also drawn the attention of researches on visual perception 
(Topper, 2000). Anamorphosis is utilized for visual effects in popular TV series, such as Brain Games (National Geographic 
Channel, 2015), or video games (FDG Entertainment, 2015). An anamorphosis can even be dynamic, adapting itself to a 
changing position of the observer, which finds applications to improve eye contact in videoconferencing (Ravnik et al., 
2014).

1.2. Anamorphosis as a radial deformation

The basic mathematics behind an optical anamorphosis are surprisingly simple, something not always made clear in the 
existing literature. Given a viewpoint O, where the observer is located, and an initial object S , to generate an anamorphic 
version Ŝ just deform S , by displacing each point p on the object to a new position p̂ along a radial line through O, as 
shown in Fig. 1. In consequence, given an arbitrary view plane Π where objects are projected, p and p̂ have exactly the 
same perspective projection pΠ with center O. Thus, S and Ŝ share a common silhouette and their edges have the same 
projection, so in a traditional non-photorealistic line drawing (silhouettes and edges), or in a wireframe representation, the 
two objects appear identical. If O lies at infinity, the perspective projection degenerates to parallel and the anamorphic radial 
deformation transforms to what Elber (2011) calls Line of Sight Deformation, in his work for modeling seemly impossible 
objects.

In a shaded or photorealistic rendering, or with real objects, the renderings of S and Ŝ would not be identical. Indeed, 
nor the points p, ̂p neither their corresponding normals coincide, hence reflecting the incoming light in a different way. 
However, both objects would be difficult to distinguish from each other, in particular if they are textured. The projection 
of textures is not affected by the anamorphosis, which mitigates the lighting problem and enhances the deception effect. 
Anamorphic objects are thus appearance-mimicking, a term coined by Schüller et al. (2014) to characterize bas-reliefs and 
other surfaces that look similar to another one from a fixed viewpoint while having different geometry. Whereas in a 
general anamorphosis the points move freely along radial directions, Schüller et al. (2014) design a thin surface, i.e., with 
a narrow depth rage, trying to preserve the surface normals in order to minimize the visual difference under a diversity of 
illumination conditions. More information on computer-assisted relief generation is found in the survey (Kerber et al., 2012)
and references therein, including the work (Bian and Hu, 2011) on preservation of detailed features.
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1.3. Anamorphosis via FFD (Free-Form Deformation)

Rather than a tedious point-by-point anamorphic deformation of the initial object, a more sensible alternative is clearly 
the use of some FFD (Free-Form Deformation) technique, a term coined by Sederberg and Parry (1986). Indeed, for creating 
anamorphic 3D geometry, Hansford and Collins (2007) advocate the use of a collineation, a certain linear map in projective 
space that can be regarded as a rational linear FFD. Sela and Elber (2007) also employ a FFD (in this case, a polynomial 
B-spline FFD) to generate deceiving geometry. However, instead of an anamorphosis, their goal is to merge two 3D objects 
into a common geometry, which resembles the first object from one viewing direction and the second one form another 
orthogonal direction. In our work, following the initial ideas by Hansford and Collins (2007), we develop more general 
anamorphic transformations for true perspective projection, in terms of a rational FFD. Thus, we give a modern interpreta-
tion of anamorphosis, more accessible for implementation in CAGD and a NURBS setting.

The paper is arranged as follows. First, in Section 2, we note that the key idea to simplify the mathematics behind 
anamorphosis is the use of homogeneous coordinates, with origin at the center O of perspective. Then, in Section 3 we 
tackle the initial case of the anamorphic deformation of a planar object, using an embedding rational surface as deformation 
tool. The underlying mathematics carry over easily to the deformation of 3D geometry using a rational volume (Section 4). 
Finally, conclusions and extensions of this work are outlined in Section 5.

2. Anamorphosis made simple: homogeneous coordinates

2.1. Homogeneous coordinates

In this section, we recall that an optical anamorphic transformation becomes trivial in homogeneous coordinates, with 
origin at the center O of perspective. First, some remarks regarding terminology and notation. Given an affine point p in 
Euclidean 3D-space, its homogeneous counterpart p in projective space is generating by adding a forth unit coordinate (and 
optionally multiplying by a nonnegative scalar weight w):

p =
⎧⎨
⎩

x
y
z

⎫⎬
⎭ , p = w

{
p
1

}
, w �= 0. (1)

Adhering to the notation introduced by Farin (1999), homogeneous points p will be underlined to distinguish them from 
their affine counterparts p. The projection mapping p back to Euclidean space amounts to dividing the first three coordinates 
by the forth one and dropping the latter.

Let us apply a deformation Φ , yielding a new point p̂ = Φ(p), such that only the last component of p changes:

p = w

{
p
1

}
Φ−→ p̂ = w

{
p
δ

}
→ p̂ = p/δ. (2)

The new affine point p̂ is simply a scaled version (with center O and dilation factor 1/δ) of the original p, that is, p̂ lies 
on the radial line Op. Therefore, its projection pΠ on any given view plane Π remains unchanged. As remarked by Farin
(1999), all points on the line Op, being indistinguishable for the observer, are equivalent in projective geometry. Thus, by 
applying the transformation (2) to all points of an object S , we generate an anamorphic sibling Ŝ .

2.2. NURBS curves and surfaces

If the object is defined using a boundary representation (B-rep), with NURBS curves or surfaces (Farin, 1999; Piegl and 
Tiller, 1997), we can rather apply the anamorphic dilation to the NURBS control points, instead of point-by-point.

Consider a NURBS curve p(t), over a certain knot vector, with homogeneous control points pi or, equivalently, affine 
points pi and weights wi . Now, let us modify only the last homogeneous component of pi , as in (2). This operation Φ
yields another NURBS curve, over the same knot vector, with new points and weights ŵi :

pi = wi

{
pi
1

}
Φ−→ p̂i = wi

{
pi
δi

}
,

p̂i = pi/δi

ŵ i = wiδi
. (3)

For each value of the parameter t , once again the new affine p̂(t) is obtained by dilating the original p(t), and thus p̂(t)
amounts to an anamorphic version of p(t). Equivalently, p̂(t) lies on a cone with vertex O and generatrix p(t). Though we 
are dealing with homogeneous coordinates, the user input amounts to choosing the desired final affine position p̂i = pi/δi
along the radial direction Opi . The new weight ŵi = wiδi (3) associated to p̂i comes as a by-product from p̂i . In case 
pi = O, then pi remains fixed and only its weight changes. More details on this NURBS modification technique are found in 
Sánchez-Reyes (1997).

Fig. 2 depicts a simple example, where the initial curve p(t) is a circular arc segment, defined in quadratic rational Bézier 
form with three control points. This arc lies on the view plane Π , hence coinciding with the image seen by an observer 
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Fig. 2. Conic sections as anamorphic images Ŝ of a circular arc S .

Fig. 3. Submitting a rectangular trimmed patch to an anamorphosis.

located at O. If the control points are submitted to a transformation (3), the resulting planar curve p̂(t) lies on a circular 
cone, and we generate different conic sections. However, these sections are always perceived as a circle by an observer 
located at O.

The extension to NURBS surfaces is a straightforward exercise: once again, simply apply transformation (3) to the control 
points. The case of trimmed patches (Farin and Hansford, 2000; Farin, 2002) deserves special attention for their widespread 
use in solid and surface modelers. In such patches certain areas are trimmed away by marking them as invalid, with 
trimming curves defined in the surface domain. Fig. 3 gives an example, a rectangular patch p(u, v) with a trimming curve 
x(t) = {u(t), v(t)} in the rectangular domain (u, v). Remarkably, if we displace anamorphically (3) the control points of a 
NURBS trimmed patch S , keeping the original trimming curves in the domain, the resulting trimmed patch is an anamorphic 
image Ŝ of S . Indeed, for each pair (u, v) the point p(u, v) on S transforms anamorphically to p̂(u, v), so in particular each 
point p(x(t)) of the initial 3D trimming curve transforms anamorphically to the corresponding point p̂(x(t)) of the trimming 
curve on Ŝ .

2.3. Anamorphic Free-Form Deformation (AFFD)

In the case of a complex object S , composed of several NURBS curves or patches, the manipulation of their individual 
control points would still be a tedious task. We can go a step further and employ instead a Free-Form Deformation. The idea 
is to embed the (planar or 3D) object S in a (planar or 3D) structure (i.e., a regular lattice of control points) and then deform 
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the structure by applying an anamorphic transformation to a lattice of control points bi . The resulting Anamorphic Free-Form 
Deformation (AFFD) propagates to S , yielding an anamorphic version Ŝ . Next, we analyze the mathematics involved.

As in any FFD (Gain and Bechmann, 2008), given a point p its image p̂ stems from a two-step functional composition:

p
E−→ u

d−→ p̂ (4)

1. Find the local coordinates u of p, in the local parameter space associated to the deformation tool, before it is deformed, 
via an embedding function E (basically, a change of coordinates).

2. Displace anamorphically the control points bi (with initial unit weights) to their new locations b̂i , and compute d(u)

as:

bi =
{

bi
1

}
→ b̂i =

{
bi
δi

}
, p̂ = d(u) =

∑
i

b̂i B i(u), (5)

where the subscript i runs over the nodes of the lattice, and B i(u) denotes the associated basis functions, forming a 
partition of unity.

If we do not move any bi the result of the composition (4) (in homogeneous version, with unit weight) coincides with 
the initial point p. By dilating anamorphically the points bi , only the fourth component in d(u) (5) is altered:

p =
{

p
1

}
Φ−→ p̂ = d(u) =

{
p

δ(u)

}
, δ(u) =

∑
i

δi B i(u), (6)

which yields a functional version of transformation (2). Now, the scalar δ (inverse of the dilation factor) is replaced with 
a dilation function δ(u) depending on u, in essence on the orientation of the ray Op. If all points bi are dilated sharing a 
common δi = δ, the anamorphosis degenerates to a homogeneous dilation, with dilation factor 1/δ.

The user input amounts to moving the control points bi of the deformation tool along radial lines Obi , to their desired 
final position b̂i = bi/δi in Euclidean space. The weight ŵ i = δi associated to b̂i comes as a by-product. This AFFD allows 
hence the generation of anamorphic models in an intuitive way, since the user manipulates positions of affine points in 
Euclidean space.

3. AFFD of a planar object

In this section, we tackle the introductory case where a planar object S is submitted to an AFFD and transformed into 
an anamorphic sibling Ŝ , not necessarily planar but embedded into a surface. The object S could be either a vector image 
(defined by lines and curves), or a bitmap image. We assume that S lies on the view plane Π , so that it coincides with the 
image seen by an observer located at the center O.

In our AFFD, the user defines on Π a reference triangle T (or rectangle R) embedding the object, and then chooses the 
degree of the deformation tool, which for the Bézier case results in a control mesh over T (or R) with points evenly spaced. 
The homogeneous version of these points are assigned a unitary weight and finally the user displaces them anamorphically 
(5) away from Π , by choosing their final positions, to generate the desired anamorphic image Ŝ .

3.1. Rational linear AFFD

The simplest deformation tool is a triangular Bézier surface of degree n = 1, with three control points b0, b1, b2, 
corresponding to the vertices of a reference triangle T on Π . These points define a system of barycentric coordinates 
u = (u0, u1, u2) as local parameter space, where triplets u with positive coordinates indicate the interior of T . The three 
points bi are assigned initially a unit weight, and then the user displaces them along radial directions Obi , to their final 
positions b̂i . This defines the new homogeneous points b̂i (5) and a rational linear deformation:

d(u) =
2∑

i=0

ui b̂i, bi =
{

bi
δi

}
. (7)

This geometry is shown in Fig. 4, where the initial object S is a letter. The first three components in (7) are inherited 
from the initial triangle (before deformation), and hence define the identity. Therefore, the AFFD indeed admits the compact 
form (6), where:

δ(u) =
2∑

uiδi . (8)

i=0
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Fig. 4. Rational linear AFFD of a planar vector object, using a Bézier triangle.

Fig. 5. Road marks as an example of rational linear AFFD.

This AFFD, being rational linear, amounts to a perspective projection with center O, from the initial plane Π to the new 
plane Π̂ defined by b̂0, ̂b1, ̂b2. As a consequence, lines project to lines, and to obtain the image of a line segment we simply 
find the image of its endpoints. Similarly, a NURBS curve p(t) on Π of degree n transforms to another NURBS curve p̂(t) of 
the same degree, lying on Π̂ . Indeed, the AFFD Φ is linear in homogeneous coordinates, so that Φ(wp) = wΦ(p). Therefore, 
a NURBS control point pk (with barycentric coordinates uk and weight wk) transforms as follows:

pk = wk

{
pk
1

}
Φ−→ p̂k = wk

{
pk

δ(uk)

}
. (9)

This rational linear anamorphosis is commonly seen in the symbols and drawings painted in the roads, as illustrated in 
Fig. 5: to replace a vertical traffic signal S , simply paint Ŝ on the road. Whereas Ŝ appears distorted when observed directly 
from above, this elongation compensates for the foreshortening perceived by an approaching driver.
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Fig. 6. Inverse of a stereographic projection as a rational quadratic AFFD.

3.2. Quadratic and higher-degree AFFD

The linear construction of Section 3.1 easily carries over to an AFFD with a triangular Bézier surface of arbitrary degree n
as deformation tool. Next, we analyze the remarkable quadratic case (n = 2). Now, the initial regular control mesh over the 
reference triangle T has 6 points (Fig. 6), with three new control points at the midpoints of the edges of T , resulting from 
standard degree-elevation of a linear Bézier triangle. These additional degrees of freedom allow the design of non-planar 
anamorphoses, but we could move all the points to a plane, recapturing the construction of Section 3.1.

Now, in the AFFD (6) the reciprocal δ(u) of the dilation is quadratic, instead of linear (8). Therefore, T transforms 
into a rational quadratic Bézier patch Q . In general, such a patch lies on a quartic implicit surface called Steiner sur-
face (Sederberg and Anderson, 1985). However, in this case the AFFD corresponds to the canonical construction of quadrics 
(Sánchez-Reyes and Paluszny, 2000), yielding a quadric Q through O (when extended beyond the image of T ). In conse-
quence, we are reproducing the inverse of a stereographic projection (Lodha and Warren, 1990; Boehm and Hansford, 1991;
Teller and Séquin, 1991; Farin, 1999). This quadratic AFFD maps lines on Π to conics on Q , passing through O when they 
are nondegenerate (i.e., different from a straight line). The celebrated stereographic projection, used in cartography, pro-
ceeds hence in opposite direction to the AFFD: we choose a point O on the earth Q and then generate a map on a plane Π

(parallel to the tangent plane at O), by firing rays from O.
We can resort to a rectangular surface, instead of triangular, as deformation tool. Now, the user defines on Π a reference 

rectangle R . The embedding function E (4) amounts to an affine map, mapping R to a unit square defining a local parameter 
space u = (u, v) ∈ [0, 1] × [0, 1]. Fig. 7a shows a simple example, a Bézier surface of degree (1, 1), with four control points 
b00, b01, b10, b11 corresponding to the vertices of R . Any rational bilinear patch is a quadric, either a hyperbolic paraboloid 
or a hyperboloid of one sheet (Boehm and Hansford, 1991; Farin, 1999). Therefore, if we subdivide the rectangular domain 
into two subtriangles along a diagonal, at each triangle the AFFD yields the aforementioned inverse of a stereographic 
projection. A rectangular surface is clearly the tool of choice when the object S is a bitmap image (Fig. 7b), typically a 
rectangular pixel array. This AFFD admits a direct implementation using standard tools in graphic libraries, by adding a 
texture mapping S to the surface in parameter space. Observe that, as commented in Section 1.2, the projection of textures 
is not affected by the AFFD.

4. Volumetric AFFD of a 3D object

In this section, we study the case of a volumetric AFFD, where the object S to deform is 3D (instead of planar). The 
initial geometry S could be either an approximated faceted model, such as those employed for fast interactive rendering, or 
a more refined B-rep solid, with faces defined as NURBS patches.

First, the user embeds S in a 3D regular lattice of control points, used as a deformation tool. The homogeneous version 
of these points is assigned a unitary weight, so that initially the lattice induces a linearly parameterized hyperpatch. Then 
the user displaces the control points radially (5), to generate the desired anamorphic version Ŝ . As a result, note two basic 
properties of the transformation (6):
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Fig. 7. Rational bilinear AFFD using a Bézier rectangle as deformation tool: a) vector image, b) bitmap.

• The origin O = {0, 0, 0}T is a fixed point, because Ô = O.
• Any line through O is mapped to itself, since any point p is dilated, using O as center.

4.1. Rational linear case: Bézier form

The simplest volumetric deformation tool is a Bézier tetrahedral volume (Hoschek and Lasser, 1993) of degree n = 1, with 
four control points {bi}3

i=0 corresponding to the vertices of a reference tetrahedron T (Fig. 8). Similarly to the planar case, 
these points define, as local parameter space, a system of barycentric coordinates u = (u0, u1, u2, u3). The four points bi are 
assigned initially a unit weight, and then the user displaces them along radial directions Obi , to their final positions b̂i , thus 
defining the new homogeneous points b̂i (5) and a linear function δ(u) (6):

p̂ =
{

p
δ(u)

}
, δ(u) =

3∑
i=0

uiδi . (10)

The resulting rational linear AFFD transforms lines to lines, and planes to planes. Therefore, given a faceted S with planar 
faces, Ŝ remains an object with planar faces.

In fact, the linear AFFD of Section 3.1 can be regarded as the effect of a certain 3D AFFD on the view plane Π : just define 
a tetrahedron T whose face b0b1b2 coincides with the triangle on Π of the planar case. Since the remaining point b3 exerts 
not influence on Π , we can choose b3 and b̂3 arbitrarily, for instance a fixed point b3 = b̂3 = O (δ3 = 1).
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Fig. 8. Bézier tetrahedron as deformation tool in a rational linear AFFD.

Fig. 9. Rational linear AFFD of the Utah teapot, composed of bicubic Bézier patches.

Analogously to the linear case of Section 3.1, a NURBS transforms to another NURBS of the same degree, with new control 
points given by (9). For example, in Fig. 9 we have deformed a teapot composed of bicubic Bézier patches. Although a FFD 
is usually aimed at global deformations, in this case we localized a stretching in the spout S . Thus, we chose a tetrahedron 
T embedding S , restricting the AFFD to points contained in T (i.e., with positive barycentric coordinates). To guarantee 
C0 continuity in the final teapot and avoid the continuity problems pointed out by Bechmann (1994), the triangular face 
b0b1b2 where T intersects the teapot does not move. Therefore, we displace only b3, that is:

δ0 = δ1 = δ2 = 1, δ3 �= 1. (11)
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In this case, as an alternative to displacing b3, we could apply instead a point-based deformation (Gain and Bechmann, 
2008), by picking an arbitrary point p on S , not contained in the face b0b1b2, and prescribing its new position p̂ = p/δ

along a radial line Op. This constraint furnishes the value δ. Finally, if ui denotes the barycentric coordinates of p, taking 
into account (11) and that 

∑
ui = 1, the required value δ3 (and hence b̂3) is isolated from (10):

b̂3 = b3

δ3
, δ3 = 1 + δ − 1

u3
.

4.2. Rational linear case as a perspective collineation: matrix form

Next, we check that our rational linear AFFD is simply a geometric and intuitive way to construct a perspective collineation
(Pottmann and Wallner, 2001), in a Bézier fashion. A collineation was also defined by Hansford and Collins (2007), but in 
a less direct manner. Clearly, the AFFD is a linear map in projective space, mapping this space into itself, and hence a 
collineation (i.e., it transforms collinear points to collinear points). It remains to check the existence of the two elements 
characterizing a perspective collineation:

• A fixed point (center): We already know that this is the point O.
• A fixed axis plane Πa: Since δ(u) (10) is linear in terms of barycentric coordinates, it is also linear in affine coordinates 

(1) of points p. Therefore, the implicit equation δ(u) = 1 defines a plane Πa, clearly invariant (unit dilation).

Thus, the function δ(u) has a clear geometric meaning, as δ(u) − 1 is proportional to the signed distance to Πa. As an 
alternative to the sum (10), δ(u) can be rewritten in terms of a scalar product:

δ
(
u(p)

) = p · d + d, d = {d0,d1,d2}T, (12)

where d denotes a vector normal to Πa, and d a certain scalar. To find d, d, consider the affine points:

e0 =
⎧⎨
⎩

1
0
0

⎫⎬
⎭ , e1 =

⎧⎨
⎩

0
1
0

⎫⎬
⎭ , e2 =

⎧⎨
⎩

0
0
1

⎫⎬
⎭ , O =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ ,

compute their barycentric coordinates u (some may be negative) and isolate from (12):

di = δ
(
u(ei)

) − d, d = δ
(
u(O)

)
. (13)

Once these values d, d are determined, expression (12) does not require the computation of the barycentric coordinates of 
a given point p, so it is more efficient than the sum in (10). Therefore, we recommend the use of (12) when deforming a 
polygonal object with a large number of vertices.

Given the center O, the collineation is thus defined by only 4 parameters, namely d and d (13). In contrast, the general 
Bézier construction in the previous section requires as input four initial points and their displacements. We conclude that 
a given collineation can be reproduced with different Bézier constructions. Nevertheless, this redundancy is convenient for 
the user, who can control in a more intuitive manner the deformation within an arbitrary region T of interest.

To set the axis plane Πa using the Bézier construction, simply choose three control points on Πa (for instance, b0, b1, b2
as in the example of Fig. 9) and do not move them. The remaining forth degree of freedom available in a perspective 
collineation is controlled by the radial displacement of the remaining point b3. Alternatively, we could set this point at the 
origin (b3 = O) and then apply (5), which in this case amounts to changing its weight (without displacement). Thus, all 
vertices of the tetrahedron T are fixed and the interior of T is mapped to itself by the AFFD.

Finally, the collineation admits a customary homogeneous form, in terms of a 4 × 4 matrix M:

p̂ = Φ(p) = Mp. (14)

Since this expression for the AFFD coincides with (10), and taking into account (12), the matrix M (14) enjoys a simple 
structure:

M =
[

I 0
d d

]
,

where I denotes a 3 × 3 identity matrix, and d, d are given by (13).

4.3. Quadratic and higher-degree AFFD

The extension to an AFFD of higher degree is a straightforward exercise. In particular, with a quadratic (degree n = 2) 
tetrahedral Bézier volume as deformation tool, at each plane we reproduce the quadratic construction of Section 3.2 (i.e., an 
inverse of a stereographic projection), so that planes transform to quadrics through O.
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Fig. 10. Rational trilinear AFFD of a polygonal model S , using a Bézier cube as deformation tool. 3D-printed objects S , Ŝ and their projections.

Instead of a Bézier tetrahedron, we can employ a parallelepiped P as deformation tool, i.e., a trivariate tensor-product 
Bézier volume in rational version (Kalra et al., 1992; Davis and Burton, 1991; Lasser, 1994). Now, the user defines the 
reference P embedding the object, and then chooses the degree of the deformation tool. For a Bézier tool, this means a 
regular control grid, resulting from degree-elevating a trilinear hyperpatch. Therefore, the embedding function E (4) amounts 
to an affine transformation, mapping P to a unit cube, associated to the local parameter space u = (u, v, w) ∈ [0, 1] ×[0, 1] ×
[0, 1]. These control points, initially with unit weights, are displaced anamorphically (5) to define a rational hyperpatch b(u).

An example is shown in Fig. 10, where we deformed a polygonal model of a horse (Turk and Mullins, 1999) with a 
simple Bézier cuboid of degree (1, 1, 1), defined by eight control points corresponding to the vertices of P . This geometry 
yields a rational trilinear hyperpatch, the rational version of the deformation tool described by Pottmann et al. (2007). 
Similarly to the teapot of Fig. 9, to guarantee C0 continuity in a local deformation we do not move the control points on 
the face of P intersecting the model (Sederberg and Parry, 1986). Note also that the initial cuboid P and its anamorphic 
image P̂ share a common projection on Π , so an observer at O would easily mistake P̂ for the more familiar cuboid P , 
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with rectangular faces at right angles to each other. This is the precisely the effect involved in the celebrated Ames room
(IllusionWorks, 1997) used to create optical illusions.

The initial horse S and its anamorphic version Ŝ have been 3D-printed, to check the anamorphosis. The model Ŝ contains 
a slender through hole, materializing a ray fired from the viewpoint O, to help the viewer orient Ŝ correctly. To visualize 
the anamorphosis, the viewer holds Ŝ at a prescribed distance and aligns it so that the hole is seen through. To avoid any 
clues from stereopsis (i.e., the depth perception resulting from by binocular vision), Ŝ must be viewed with only one eye.

Clearly, we could use any control-point based deformation tool in its rational form, including pentahedral Bézier volumes 
(Hoschek and Lasser, 1993), NURBS volumes (Lamousin and Waggenspack, 1994), or even weighted T-spline volumes (Song 
and Yang, 2005), the volumetric generalization of T-splines (Sederberg et al., 2003). A higher degree of the deformation tool 
allows a higher continuity of Ŝ when S is only partially contained in the initial volume, by selectively displacing its control 
points. We could also achieve a continuous deformation by piecing several Bézier tetrahedra, rather than using just one, 
following the idea of the CFFD (Continuous Free-Form Deformation) proposed by Bechmann et al. (1997).

5. Conclusions

We have developed a simple, yet powerful method to create a digital anamorphosis, called AFFD (Anamorphic Free-Form 
Deformation), by endowing a rational FFD with an anamorphic character. The key idea is the use of homogeneous coor-
dinates with origin at the viewpoint where the observer is located. In this setting, the problem becomes trivial, because 
to displace a certain point anamorphically (along a radial direction passing through the viewpoint), we only alter its last 
homogeneous coordinate.

Instead of displacing an object point by point, we can displace in the same manner the NURBS control points of an object 
defined by NURBS curves or patches. In the case of a complex geometry, the AFFD provides a more convenient alternative 
to generate an anamorphic version. We embed the (planar or 3D) object in a (planar or 3D) structure and then deform the 
structure by applying an anamorphic transformation to the control points of the lattice. The user moves the control points 
along radial lines through the viewpoint to the desired final position, whereas the weights, inversely proportional to the 
distance to the viewpoint, come as a byproduct. Remarkable cases are the AFFD of a planar object with a rational linear 
Bézier triangle (resulting in a projection into another plane) or with a rational quadratic Bézier surface (corresponding to 
the inverse of a stereographic projection from a quadric). In case of a rational linear Bézier tetrahedron as deformation tool, 
the volumetric AFFD is nothing else than a perspective collineation, defined geometrically in a Bézier fashion.

The AFFD gives a notable example where the rational model provides a clear advantage over its polynomial counterpart, 
as anticipated in any topic related to realistic perspective maps (Farin, 1989). Notwithstanding that the rational form intro-
duces an unnecessary complication in certain constructions (Piegl et al., 2014), in the AFFD it is fully justified. Although the 
mathematical underpinnings involve homogeneous coordinates and projective space, the user input amounts to displacing 
affine points in Euclidean space. Thus, we avoid altogether a nuisance of the rational model pointed out by Farin (1992), 
namely having to choose the weights.

Our AFFD admits a simple explicit expression, so it is not restricted to polygonal objects and can also be applied in 
native form to those defined by parametric curves and surfaces. In particular, an AFFD applied to a NURBS yields a NURBS; 
formally speaking, the set of NURBS is closed with respect to the AFFD. In the simple rational linear case, the degree is 
unchanged, and the new points and weights are trivially computed. When the deformation tool is not rational linear, the 
exact NURBS representation implies polynomial composition and hence a high final degree, which may not be transferable
to many commercial systems, not admitting such high degrees. This problem is inherent to any polynomial/rational FFD 
scheme when the precise explicit representation of output is required. A possible solution (Sánchez-Reyes and Chacón, 
2012) would be to generate a low-degree Hermite approximation of the resulting high-degree curve or patch, by truncating 
its expansion in a modified Newton form (Sánchez-Reyes, 2000; Sánchez-Reyes and Chacón, 2005).

The extension to EFFD (Extended Free-Form Deformation) (Coquillart, 1990) seems also feasible. The EFFD has an added 
complexity, namely that the embedding function is no longer a simple affine transformation. However, this becomes im-
material, because the key step to generate an anamorphosis is the deformation, where we simply have to change the last 
homogeneous coordinate of the lattice control points.
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