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In this paper, a general theoretical study, from the perspective of the algebraic geometry,
of the untrimmed bisector of two real algebraic plane curves is presented. The curves are
considered in C

2, and the real bisector is obtained by restriction to R
2. If the implicit

equations of the curves are given, the equation of the bisector is obtained by projection
from a variety contained in C

7, called the incidence variety, into C
2. It is proved that all

the components of the bisector have dimension 1. A similar method is used when the
curves are given by parametrizations, but in this case, the incidence variety is in C

5. In
addition, a parametric representation of the bisector is introduced, as well as a method for
its computation. Our parametric representation extends the representation in Farouki and
Johnstone (1994b) to the case of rational curves.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Given two geometric objects, their bisector is often defined as the geometric locus of the points which are equidistant
from both objects. Examples of bisectors in the Euclidean plane are the perpendicular bisector of two points (or a segment),
the angle bisector (the equidistant half-line from the sides of the angle), and the parabola, which is the equidistant curve
between a straight line and a point external to the line. Subjects of particular interest are the study of the bisector of two
curves, in the plane or in 3-dimensional space, and of the bisector of two surfaces. The bisector of two curves is sometimes
called the equidistant curve. The untrimmed bisector is the locus of the centers of all the circles which are tangent to both
curves. The untrimmed bisector contains the bisector as defined above, and a trimming method is a procedure to eliminate
from it the parts that are not contained in the bisector.

Bisectors have been studied in the context of Computational Geometry because they play an important role in the
construction of Voronoi diagrams (see Boissonnat et al., 2006; Aurenhammer and Klein, 2000; Devadoss and O’Rourke,
2011). Various papers on bisectors of algebraic curves have been written in the context of CAGD, starting with the articles
(Farouki and Johnstone, 1994a) and (Farouki and Johnstone, 1994b) where the notion of untrimmed bisector is considered,
for pairs of regular polynomial or rational curves, and a trimming procedure is presented. In Hoffmann and Vermeer (1991)
a system of equations for the untrimmed bisector is proposed, together with the elimination of certain extraneous compo-
nents. Elber and Kim (1998) consider C1-continuous plane rational curves, and present a method of elimination to obtain
a representation of the bisector in terms of the parameters of the initial curves. Some geometric and algebraic properties

* Corresponding author.
E-mail addresses: mario.fioravanti@unican.es (M. Fioravanti), rafael.sendra@uah.es (J.R. Sendra).
http://dx.doi.org/10.1016/j.cagd.2016.06.004
0167-8396/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cagd.2016.06.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:mario.fioravanti@unican.es
mailto:rafael.sendra@uah.es
http://dx.doi.org/10.1016/j.cagd.2016.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2016.06.004&domain=pdf


190 M. Fioravanti, J.R. Sendra / Computer Aided Geometric Design 47 (2016) 189–203
of the bisector of two curves, a curve and a surface, and two surfaces, are studied in Peternell (2000). In the thesis of
Adamou (2013), a method for the parametrization of bisectors of rational curves is presented. Several approximate or inter-
polation methods for the computation of bisectors have been proposed (see, for example Farouki and Ramamurthy, 1998;
Omirou and Demosthenous, 2006 or Oliveira and De Figueiredo, 2003).

In this paper, a general theoretical treatment, from the perspective of the algebraic geometry, of the untrimmed bisector
of two real algebraic plane curves is presented. Similar analyses to other geometric objects, as offsets or conchoids, can be
found in Arrondo et al. (1997), Sendra and Sendra (1997) and Sendra and Sendra (2008). The curves are considered in C2,
and the equation of the bisector is obtained by projection from a variety A contained in C7, called the incidence variety, into
C2. Each element of A is composed by one point (in complex coordinates) from each curve, one point in the bisector and an
auxiliary variable. They must obey suitable equations. If the coordinates are restricted to R2, the real bisector is obtained. In
this way, the three objects involved in the construction, namely the two original curves, C1,C2, and the bisector, Bis(C1,C2),
are connected via rational maps (see Diagram (2)). Therefore, one may study how the properties of the two original curves
can be translated to the bisector. Examples of this assertion could be the study of the rationality and of the genus of the
bisector; this was, indeed, the crucial idea in Arrondo et al. (1999) for the case of offsets. Using the corresponding diagrams
of the generic offset and of the bisector (see Diagram (3)), we relate these two geometric constructions, and we prove that
all components of the bisector have dimension 1, by using that this property holds for non-degenerate offsets.

A similar method is applied to the case where both curves, or one of them, are given parametrically (see Diagram (6)).
In this case, the incidence varieties are contained in C5 or C6, respectively. The bisector of two curves, although being a
curve, turns to be a more complicated object. For instance, there is an explosion of the degree (see Remark 2.10), and the
genus (see e.g. Example 2.6). From the point of view of applications, this is a serious obstacle since the implicit equation
can be huge, and hence hard to manage. On the other hand, as pointed above, the genus is not invariant under the bisector
operation, and thus the component of the bisector usually has positive genus. Therefore, in general, there do not exist
rational parametrizations. In Farouki and Johnstone (1994b), an alternative representation for irreducible bisectors, based on
the parameters space, is introduced. They assume the curves C1 and C2 to be rational, regular and C1-continuous. In this
paper, we formally extend this representation to the general case.

The structure of the manuscript is the following. In section 2, the definition of untrimmed bisector using an incidence
variety is presented, for the case of implicit curves, and some related theorems are proved. The characterization of the
bisector as the intersection of offset curves at variable distance is analyzed in this context. In section 3, the incidence
variety is introduced for the case of two parametric curves, assuming the parametrizations are normal, which is not much
restrictive. The combination of one implicit and one parametric curves is also considered. A method to get a parametric
representation of the bisector is presented in section 4. Several examples are presented in the three sections. In section 5 we
discuss how the ideas and results in the paper can be generalized to hypersurfaces, and we point out where the difficulties
are. In the last section some conclusions are stated, and directions in which to extend this research are presented.

2. Untrimmed bisectors: implicit case

We start this section analyzing the notion of bisector of two algebraic curves. Intuitively speaking, the (trimmed) bisector
of two curves is the geometric locus of those points being at the same (Hausdorff) distance from the two curves. We recall
that the distance from a point P to a non-empty subset A of a metric space, under a distance d, is

d(P , A) = inf{d(P , Q ) | Q ∈ A}.
In our case, A will be a real algebraic affine plane curve, and hence a set with infinitely many points. In order to deal
algebraically with this concept, we would like to somehow skip the infimum in our definition. This leads to the notion of
(untrimmed) bisector that corresponds with the geometric locus of those points that, being on the normal lines to both
curves, are at the same distance from the two footpoints in the intersection of each curve with the corresponding normal
line. In other words, the points in the untrimmed bisector are the centers of the circles which are tangent to both curves.
Note that the untrimmed bisector is a superset of the trimmed bisector. In Example 2.4 the untrimmed bisector of two
concentric circles of radii 1 and 2 has two components: the circle with the same center and radius 3/2, which is the
trimmed bisector, and the circle of radius 1/2 (see Fig. 1).

In the following we analyze the notion of untrimmed bisector. The idea, as stated above, is to define it as an algebraic
set. When describing this algebraic set, and in some degenerate cases, extraneous components might be introduced. Our
goal is to guarantee that none of these extraneous factors is the full plane since, in that case, the untrimmed bisector
would be the plane and would provide no information (see Theorem 2.12). For this purpose, throughout this paper, let C1
and C2 be two different real irreducible affine curves defined by f1(x, y) and f2(x, y), respectively. We use the notation
x = (x1, x2),y = (y1, y2), z = (z1, z2). Although we are interested in the case of real curves and real bisector, it is convenient
to work with complex coordinates. Afterwards, x,y and z will be restricted to R2 to obtain the real bisector.

In order to deal algebraically with the notion of bisector, we need to combine, in the same affine space, the two original
curves C1 and C2 as well as their bisector; for this purpose, we use incidence varieties as in Arrondo et al. (1997), Sendra
and Sendra (2008). Since the curves are plane, and since their bisector is a geometric object in the plane, we need to work,
at least, in C2 × C2 × C2. Moreover, since we want to exclude some degenerate situations in the bisector construction as,
for instance, the singular points on the original curves, we introduce an additional coordinate where these circumstances
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Fig. 1. Two concentric circles of radii 1 and 2 (dashed lines), and their bisector.

are forbidden. So, our working ambient for describing algebraically the bisector construction is the affine space C7 = C2 ×
C2 × C2 × C. Now, we introduce an algebraic set A, composed by elements of the form (x,y, z, W ), where the element
x ∈ C1,y ∈ C2, z belongs to the untrimmed bisector, and W is an auxiliary variable; this variety A is called an incidence
variety. Then, the untrimmed bisector will be the projection of the incidence variety on the set of z coordinates. As incidence
variety, we consider the set

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x,y, z, W ) ∈C7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(x) = 0 [Equation of C1]
f2(y) = 0 [Equation of C2]

rank

(
z − x

∇ f1(x)

)
= 1

rank

(
z − y

∇ f2(y)

)
= 1

‖x − z‖2 = ‖y − z‖2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

[Equations of the
geometric
construction]

‖∇ f1(x)‖2‖∇ f2(y)‖2W = 1
[Equation
avoiding
degenerations]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (1)

In this situation, we consider the projection map

πz : A ⊂ C7 → C2

(x,y, z, W ) �→ z

Then, we have the following definition (for S ⊂C2 we denote by S its Zariski closure).

Definition 2.1. We define the (untrimmed) bisector of C1,C2 as the Zariski closure of πz(A), and we represent it by
Bis(C1,C2); i.e. Bis(C1,C2) = πz(A).

So, if πx,πy are the projections on the x and y coordinates, respectively, we have the following diagram connecting
C1,C2,Bis(C1,C2).

C1 ⊂ C2 �πx A ⊂ C7 πy� C2 ⊂ C2

Bis(C1,C2)

πz

�

(2)

Let us interpret the set A. Suppose (x0,y0, z0, W0) ∈ A. The first two equations imply that x0 ∈ C1 and y0 ∈ C2. The
third equations (the rank conditions) ensure that z0 is on the normal line to C1 at x0, and on the normal line to C2
at y0. The fourth equation means that the distances (for x0,y0 real points) between z0 and x0 and between z0 and y0 are
equal. The last equation implies that x0 and y0 are not singular points of C1 and C2, respectively. But why do we need
the last equation? If x0 = y0 ∈ C1 ∩ C2 and it is a singular point on each curve, then ‖x0 − z‖2 = ‖y0 − z‖2 holds for all
z ∈ C2. Moreover, both rank conditions are trivial. So x0,y0 would generate in A a plane, namely (x0,y0, z), and hence
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Bis(C1,C2) would be the plane C2. Even if x0 
= y0, extraneous components may appear because all points z0 satisfying
‖x0 − z0‖2 = ‖y0 − z0‖2 form a line which satisfies the equations. The last equation also guarantees that x0,y0 are not
isotropic, what is used in the proof of Theorem 2.8 to relate bisectors and offsets; see also Remark 2.13. We recall that a
point P on a curve g(x, y) = 0 is isotropic if

∂ g

∂x
(P )2 + ∂ g

∂ y
(P )2 = 0.

Observe that not only singularities are isotropic; (i,−1/2) is isotropic and regular on the parabola y = x2/2.

Remark 2.2. Some authors (see e.g. Hoffmann and Vermeer, 1991) choose to avoid the situations where there are infinitely
many points in the bisector corresponding to the same footpoint. They happen when an element of A has x = y, (see
the points x = (0,0) = y in Examples 2.5 and 2.7). This sort of points could be avoided by replacing the last equation by
‖∇ f1(x)‖2‖∇ f2(y)‖2

(
(x1 − y1)

2 + (x2 − y2)
2
)

W = 1. However, we decided not to do so, because Theorem 2.8 below would
not be true. On the other hand, the extraneous components arising from the cases x = y can be removed in the trimming
process. �
Remark 2.3 (Computational issues: first part). Our main goal is the establishment of a theoretical algebro-geometric frame to
analyze the bisectors. Nevertheless, in this remark, we discuss some of the computational issues associated to our construc-
tion. Taking into account that the untrimmed bisector is a projection, it can be obtained as follows. Let I be the ideal in
C[x,y, z, W ] generated by the polynomials defining A. Then, by the Closure Theorem (see Cox et al., 1997, p. 122), one
has that the untrimmed bisector is the variety defined by I ∩ C[z]. Hence elimination theory techniques, such as Gröbner
bases, provide a method to compute the untrimmed bisector. Therefore, the complexity of the method is dominated by the
computation of a Gröbner basis of an ideal depending on 7 variables. This, in general, may imply heavy computations.

Another computational issue is the determination of the components of the bisector. Since, in Theorem 2.12, we prove
that all components have dimension 1, and since the bisector is an algebraic variety in C2, the irreducible decomposition
of Bis(C1,C2) can be carried out computing the absolute factorization of a bivariate polynomial. Algorithms for this purpose
can be found in Section 5.5 in Winkler (1996). �

We illustrate the definition by means of some examples.

Example 2.4. We start with a simple example. Let C1 be the circle x2
1 + x2

2 = 4 and C2 the circle y2
1 + y2

2 = 1. Then, the
incidence variety is defined by the polynomials

{x2
1 + x2

2 − 4, y2
1 + y2

2 − 1,2z1x2 − 2z2x1,2z1 y2 − 2z2 y1,

(z1 − x1)
2 + (z2 − x2)

2 − (z1 − y1)
2 − (z2 − y2)

2, (4x2
1 + 4x2

2)(4y2
1 + 4y2

2)W − 1}.
Considering W > x1 > x2 > y1 > y2 > z1 > z2, and computing a Gröbner basis w.r.t. the lex order, we get

{16z4
1 + 32z2

1z2
2 + 16z4

2 − 40z2
1 − 40z2

2 + 9,−4z2
1z2 − 4z3

2 + 3y2 + 7z2,−4z3
1 − 4z1z2

2 + 3y1 + 7z1,

4z2
1z2 + 4z3

2 + 3x2 − 13z2,4z3
1 + 4z1z2

2 + 3x1 − 13z1,64W − 1},
and hence Bis(C1,C2) is the union of the two circles 4z2

1 + 4z2
2 = 1 and 4z2

1 + 4z2
2 = 9; see Fig. 1.

Example 2.5. Let C1 be the parabola x2 = x2
1 and C2 the line y2 = 0 (see Fig. 2). Then, the incidence variety is defined by

the polynomials

{−x1
2 + x2, y2, z1 − x1 + 2 (z2 − x2) x1, z1 − y1,

(z1 − x1)
2 + (z2 − x2)

2 − (z1 − y1)
2 − (z2 − y2)

2 , (4x2
1 + 1)W − 1} .

Considering W > x1 > x2 > y1 > y2 > z1 > z2, and computing a Gröbner basis w.r.t. the lex order, we get that Bis(C1,C2) is
the quintic defined by

z1

(
16 z1

4 − 32 z1
2z2

2 + 16 z2
4 − 40 z1

2z2 − 24 z2
3 + z1

2 + 12 z2
2 − 2 z2

)
.

We observe that, in this case, the genus of the quartic in Bis(C1,C2) is 0. On the other hand, if one had introduced the
condition x 
= y, then the line z1 = 0 would have been removed from the bisector (see Remark 2.2).

Example 2.6. Let C1 be the parabola x2
2 − x1 = 0 and C2 the parabola −y2

1 + y2 = 0 (see Fig. 3). Applying the ideas above,
one gets that Bis(C1,C2) is a curve of degree 15 and its defining polynomial has 114 nonzero terms. Bis(C1,C2) factors into
the line z1 = z2 and a 14th-degree curve of genus 4.
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Fig. 2. Parabola x2 = x2
1, line y2 = 0 (dashed lines), and their bisector.

Fig. 3. Parabolas x1 = x2
2, y2 = y2

1 (dashed lines), and their bisector.

Example 2.7. Let C1 be the parabola x2 − x2
1 = 0, and C2 the cubic y2 − y3

1 = 0 (see Fig. 4). Applying the ideas above, one
gets that Bis(C1,C2) is a curve of degree 24, whose defining polynomial has 228 nonzero terms, and factors as the line
z1 = 0 and a 23rd-degree curve. This whole line correspond to the single common footpoint at the origin (see Remark 2.2).

Alternatively, one may relate bisectors to offsets. For this purpose, let

Bi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x, z,d, W ) ∈C6

∣∣∣∣∣∣∣∣∣∣

f i(x) = 0,

rank

(
z − x

∇ f i(x)

)
= 1,

‖x − z‖2 = d2,

‖∇ f (x)‖2W = 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, i = 1,2,
i
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Fig. 4. Left: Parabola x2 = x2
1, cubic y2 = y3

1 (dashed lines), and their bisector. Right: Detail of the bisector for z1 ∈ (−0.05,0.1).

πz,d : C6 → C3, πz,d(x, z,d, W ) = (z,d), and πz :C3 → C2, πz(z,d) = z. We say that πz,d(Bi) is the generic offset of Ci (see
Definition 1 in San Segundo and Sendra, 2009). In this situation, we have the following theorem.

Theorem 2.8. Bis(C1,C2) = πz(πz,d(B1) ∩ πz,d(B2)).

Proof. Let c ∈ πz(A) (recall the definition of A in (1)). Then, there exist a,b ∈ C2 and w ∈ C such that (a,b, c, w) ∈ A.
Because of the first, second, and last equations defining A, we know that a ∈ C1, b ∈ C2, and they are not singular points,
neither isotropic points on C1 and C2 respectively. Therefore, ‖∇ f1(a)‖ 
= 0, ‖∇ f2(b)‖ 
= 0. So, by the third and fourth
equations we have that

c = a + ‖c − a‖
‖∇ f1(a)‖∇ f1(a) = b + ‖c − b‖

‖∇ f2(b)‖∇ f2(b) and ‖c − a‖ = ‖c − b‖.
Therefore,

(a, c,‖c − a‖,1/‖∇ f1(a)‖2) ∈ B1, (b, c,‖c − a‖,1/‖∇ f2(b)‖2) ∈ B2.

So c ∈ πz(πz,d(B1) ∩ πz,d(B2)), and taking closures, Bis(C1,C2) ⊂ πz(πz,d(B1) ∩ πz,d(B2)). Conversely, let c ∈ πz(πz,d(B1) ∩
πz,d(B2)). Then, there exists d0 ∈ C such that (c,d0) ∈ πz,d(B1) ∩ πz,d(B2). So, there exist a,b ∈ C2 and W1, W2 ∈ C such
that (a, c,d0, W1) ∈ B1, (b, c,d0, W2) ∈ B2. Then, (a,b, c, W1W2) ∈A, whence c ∈ πz(A). Taking closures one gets the other
inclusion. �
Corollary 2.9. Let Oi be the generic offset of Ci then Bis(C1,C2) ⊂ πz(O1 ∩O2).

Proof. Applying Theorem 2.8, one gets

Bis(C1,C2) = πz(πz,d(B1) ∩ πz,d(B2)) ⊂ πz(πz,d(B1) ∩ πz,d(B2)) = πz(O1 ∩O2). �
In the following diagram, we illustrate the combination of the offset and bisector constructions.

B1 ⊂ C6 B2 ⊂C6

C1 ⊂ C2

πx

�
O1 ∩O2 ⊂ C3

�

π z,d
π

z,d

�

C2 ⊂ C2

πx

�

7

πx

�

πz� 2

πz

�
�πz 7

πy

�
(3)
A ⊂ C Bis(C1,C2) ⊂ C A ⊂ C
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Remark 2.10 (Bounding the degree of the bisector). Corollary 2.9 can be used to analyze the degree and the genus of the
bisector by means of the degree and the genus of the offsets (see San Segundo and Sendra, 2005, 2009 and Arrondo et al.,
1999, respectively). In this remark we see how to derive a first bound for the degree of the bisector using the results of
San Segundo and Sendra (2005, 2009). For the genus, the application is not so direct and needs a deeper analysis; and we
leave this as future research.

Let Oi be the generic offset of Ci , and let O i(z,d) be the defining polynomial of Oi . We note that O i ∈ C[z,d2] (see
Proposition 26 in San Segundo and Sendra, 2009). Therefore, by Corollary 2.9, it holds that Bis(C1,C2) is included in the
variety defined by Resd2 (O 1(z,d), O 2(z,d)), where Resz denotes the resultant w.r.t. z. Therefore, taking into account the
Sylvester expression of the resultant we have that

deg(Bis(C1,C2)) ≤ 1

2

(
degd(O 2)degz(O 1) + degd(O 1)degz(O 2)

)
. (4)

Finally, note that the results in San Segundo and Sendra (2005, 2009) provide the exact value of degz(O i) and degd(O i),
and hence upper bounds for the total degree of the bisector. �
Remark 2.11 (Computational issues: second part). Corollary 2.9 and Remark 2.10 provide two different alternatives to de-
termine Bis(C1,C2). For instance, one may use interpolation techniques in combination with the degree bounds given in
Remark 2.10. Also, one may compute Bis(C1,C2) by determining the resultant Resd2 (O 1(z,d), O 2(z,d)) (where we use the
notation introduced in Remark 2.10). Nevertheless, for this purpose, the generic offsets must be computed first. �
Theorem 2.12. If Bis(C1,C2) is not empty, then all its components have dimension 1.

Proof. From Lemma 3 in San Segundo and Sendra (2009), the generic offset Oi of Ci is a surface in C3. So, each irreducible
component of πz,d(Bi) is a quasiprojective variety of dimension 2. Furthermore, since C1 and C2 are irreducible and differ-
ent, πz,d(B1) and πz,d(B2) have no common component. So, applying Corollary 1, page 75 in Shafarevich (1994) to each
component of πz,d(B1) and each component of πz,d(B2), we get that either πz,d(B1) ∩ πz,d(B2) = ∅ or all its components
have dimension 1. However, by Theorem 2.8, if Bis(C1,C2) 
= ∅ then πz,d(B1)∩πz,d(B2) 
= ∅. Now, let us prove that for every
c ∈ πz(πz,d(B1) ∩ πz,d(B2)), π−1

z (c) is finite. Indeed, if card(π−1(c)) = ∞ then there exist infinitely many di ∈ C such that
O1(c,di) =O2(c,di) = 0. But this implies that c belongs to the offset of Ci for almost all distances, which is impossible (see
Lemma 4 in San Segundo and Sendra, 2005). Therefore, by Theorem 11.12 in Harris (1995), the dimension of the components
of Bis(C1,C2) and of πz,d(B1) ∩ πz,d(B2) is the same. �
Remark 2.13. If we allow the curves not to be real, and we exclude the isotropic condition in the incidence variety A,
the dimension of the bisector may drop to 0. For instance, let C1 be the parabola defined by f1 = x2

2 − ix1 and C2 be
the line defined by f2 = y2 + iy1 + 1. Since ‖∇ f2‖ = ‖( i ,1)‖ = 0, applying Definition 2.1, we get that A = ∅, and hence
Bis(C1,C2) = ∅. Let us see what happens if we do not consider the last equation in the definition of A. Then, the variety A
is ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
(x,y, z) ∈ C6

∣∣∣∣∣∣∣∣∣∣

x2
2 − ix1 = 0

y2 + iy1 + 1 = 0
− i x2 + i z2 − 2x2x1 + 2x2z1 = 0.

i y2 − i z2 − y1 + z1 = 0.

(x1 − z1)
2 + (x2 − z2)

2 = (y1 − z1)
2 + (y2 − z2)

2.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Computing a suitable Gröbner basis, one gets that the z-elimination ideal of A is

< i z1 + z2 + 1,−21 i z4
1 + 8z5

1 + 31 i z2
1 − 34z3

1 − 5 i + 18z1 >

Therefore, the bisector is

Bis(C1,C2) =
{

z ∈C2
∣∣∣∣ i z1 + z2 + 1 = 0
−21 i z4

1 + 8z5
1 + 31 i z2

1 − 34z3
1 − 5 i + 18z1 = 0

}

=
{(

5

8
i,−3

8

)
,

(
i

2
± 1

2

√
3,−1

2
∓ i

2

√
3

)}

Thus, if we exclude the last equation of the definition of A, then dim(Bis(C1,C2)) = 0. We observe that
(

i
2 ± 1

2

√
3,

− 1
2 ∓ i

2

√
3
)

∈ C1 ∩ C2, and that P :=
(

5
8 i,− 3

8

)
∈ C2 \ C1, but there exists a point in C1, namely Q :=

(
− i

4 , 1
2

)
such that

‖P − Q ‖2 = 0. �
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3. Untrimmed bisectors: parametric case

In Definition 2.1, we have introduced the notion of bisector of two plane curves, independently of the representation.
Nevertheless, in many situations, the used curves are rational, and hence admit a rational parametric representation. In
the following we see how to adapt the incidence variety A to the parametric case, such that the bisector computation is
simplified.

Let C1 and C2 be rational, and P1(t1) and P2(t2) be (non-necessarily proper) rational parametrizations of C1 and C2,
respectively. We assume that P1(t1) and P2(t2) are expressed as

P1(t1) =
(

a1(t1)

c(t1)
,

a2(t1)

c(t1)

)
, P2(t2) =

(
b1(t2)

d(t2)
,

b2(t2)

d(t2)

)
,

where gcd(a1,a2, c) = 1 and gcd(b1,b2,d) = 1. Besides ∇ f i , we consider

T1 =
(

−∂ f1

∂x2
,
∂ f1

∂x1

)
, T2 =

(
− ∂ f2

∂ y2
,
∂ f2

∂ y1

)
.

Associated with Pi , we introduce the incidence variety AP defined as (we write t = (t1, t2))

AP =

⎧⎪⎪⎨
⎪⎪⎩(t, z, W ) ∈C5

∣∣∣∣∣∣∣∣
(z1 c(t1) − a1(t1), z2 c(t1) − a2(t1)) · T1(P1(t1)) = 0,

(z1 d(t2) − b1(t2), z2 d(t2) − b2(t2)) · T2(P2(t2)) = 0,

num(‖z −P1(t1)‖2 − ‖z −P2(t2)‖2) = 0,

�(t)W = 1

⎫⎪⎪⎬
⎪⎪⎭ , (5)

where num(R) denotes the numerator of the rational function R and where

�(t) = c(t1)d(t2)num(‖∇ f1(P1(t1))‖2)num(‖∇ f2(P2(t2))‖2) .

Denoting πti (t, z, W ) = ti , we have the following diagram.

C1 ⊂ C2 �P1
C C

P2� C2 ⊂ C2

AP

π t 2

�

�
π
t1

Bis(C1,C2)

πz

�

(6)

In the following theorem we assume that the parametrizations are normal. We recall that a parametrization is normal if the
map that it defines is surjective over the curve, that is, if all (affine) points are reachable by at least one parameter value.
There are two remarkable facts: any rational affine curve can always be parametrized normally over the algebraic closure
of the ground field; and, if the parametrization is not normal, there is only one missing point that is, indeed, the point
corresponding via the parametrization to the infinity of the parameter line (see Section 6.3 in Sendra et al., 2007 for details
on normal parametrizations).

Theorem 3.1. Let P1(t1), P2(t2) be normal. Then Bis(C1,C2) = πz(AP ).

Proof. Consider the rational map

ϕ : AP → C7

(t, z, W ) �→
(
P1(t1),P2(t2), z,

W

c(t1)d(t2)

)
.

Observe that, because of the last equation of AP , ϕ is well-defined on all points of AP . Moreover, ϕ(AP ) ⊂ A (see
the definition of A (1)). So, since the z component is invariant under ϕ , πz(AP ) = πz(ϕ(AP )) ⊂ πz(A). Conversely, let
z0 ∈ πz(A). Then, there exist x0,y0, W0 such that (x0,y0, z0, W0) ∈A. Moreover, since Pi are normal, there exist t0,h0 such
that x0 = P1(t0),y0 = P2(h0). Furthermore, since x0,y0 are not isotropic and their first component is nonzero, �(t0,h0) is
not identically zero. Therefore, (t0,h0, z0,1/�(t0,h0)) ∈AP . So, z0 ∈ πz(AP ). Thus, πz(AP ) = πz(A). �
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Remark 3.2. We observe the following

1. Every rational curve can be parametrized properly and normally (see Theorem 6.26 in Sendra et al., 2007).
2. If we use non-normal parametrizations, it may happen that πz(AP ) � πz(A), and hence the parametrization may not

compute the whole bisector (see Example 3.3). If this happens, the missing subset is included in the union of the
normal lines to C1 and C2 at the critical points of the parametrizations (see Corollary 6.23 in Sendra et al., 2007 for the
notion of critical point).

Proof. If P1(t1) is not normal (similarly for P2(t2)) then exactly one point on C1 is not reachable by P1, namely, the
critical point. So, the argument of the inclusion πz(A) ⊂ πz(AP ), in the proof of Theorem 3.1, may fail, and one can
only ensure that πz(AP ) ⊂ πz(A). Indeed, the argument fails if for z0 ∈ Bis(C1,C2) it holds that πx(π

−1
z (z)) = ∅ for

almost all z in the components of Bis(C1,C2) that contains z0. In this situation, if a is the critical point of P1, by the
definition of A, almost all points, in those components of Bis(C1,C2), belong to the normal line to C1 at a. Now, the
result follows using that dim(Bis(C1,C2)) = 1 (see Theorem 2.12) and that the normal line is unique. �

3. If one does not want to use normal parametrizations, because of the previous remark, one can directly check whether
the normal lines to the critical points are included in Bis(C1,C2).

4. In the definition of AP one can replace ∇ f i(Pi) by (Pi)
′ , where (Pi)

′ denotes the velocity vector. However, in this case
a similar phenomenon to the normality can happen if the parametrization has singular points not being singular points
of the curve. Nevertheless, this case may be avoided by checking whether the corresponding normal lines are in the
bisector.

Example 3.3. Let C1 be the circle x2
1 + x2

2 = 1 and C2 be the line y1 + 1 = 0. Using directly the definition of bisector, we get
that Bis(C1,C2) is the line and the parabola defined as z2(−z2

2 + 4z1 + 4) = 0. We consider now the parametrizations

P1(t1) =
(

−t2
1 + 1

t2
1 + 1

,
2t1

t2
1 + 1

)
, P2(t2) = (−1, t2).

Note that P1(t1) is not normal, and its critical point is (−1,0); P2(t2) is normal. The computation returns the correct an-
swer. However, if we take P2 as the non-normal parametrization P2(t2) = (−1,1/t2), the computation returns the parabola
−z2

2 + 4z1 + 4 = 0, and the line z2 = 0 is missed. Note that the missing line is the normal line to both, C1,C2, at (−1,0).

Analogously, if only one of the curves, say C1, is expressed parametrically, we can consider the incidence variety

AI
P =

⎧⎪⎪⎨
⎪⎪⎩(t,y, z, W ) ∈C6

∣∣∣∣∣∣∣∣
(z1 c(t1) − a1(t1), z2 c(t1) − a2(t1)) · T1(P1(t)) = 0
(z − y) · T2(y) = 0
num(‖z −P1(t)‖2 − ‖z − y‖2) = 0
�(t)W = 1

⎫⎪⎪⎬
⎪⎪⎭ ⊂ C5,

where �(t) = c(t)num(‖∇ f1(P1(t))‖2)‖∇ f2(y)‖2. Reasoning similarly, we have the following theorem.

Theorem 3.4. Let P1(t) be normal. Then Bis(C1,C2) = πz(AI
P ).

4. Parametric representation of the untrimmed bisector

Throughout this section, we consider that C1,C2 are rational, and we keep the notation used in Section 2. It is clear that,
using the fact that Bis(C1,C2) is algebraic, the untrimmed bisector can be represented by means of its implicit equations.
Nevertheless, these equations can be huge, and hence hard to manage (see e.g. Examples 2.6, 2.7). An alternative would
be to use rational parametric representations of the bisector. However, in general, the bisector can be reducible (see e.g.
Examples 2.4, 2.5, 2.6, 2.7). Furthermore, some of the bisector components have positive genus (see e.g. Example 2.6). In
Elber and Kim (1998), an alternative representation for irreducible bisectors, based on the parameters space, is introduced.
They assume the curves C1 and C2 to be rational, regular and C1-continuous. Here, in this section, we formally extend this
representation to the general case.

In this situation, let us consider the following diagram (see (5) in Section 3 for the definition of AP )

AP

2
�

πz

2

π
t

�
(7)
C ⊃ Bis(C1,C2) ⊃ πz(AP ) πt(AP ) ⊂C
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where πz(t, z, W ) = z, and πt(t, z, W ) = t. We denote by MP the Zariski closure of πt(AP ), that is

MP := πt(AP ).

In the following theorem we analyze the previous diagram. We prove that πz is birational over each irreducible compo-
nent. Also, we analyze the cardinality and dimension of the fiber of πt; the underlying geometric idea is that if two curves
touch non-transversally at a common point, then there exists a linear family of circles touching both curves at that point.

Theorem 4.1. Let � ⊂MP be an irreducible component. Then,

1. If dim(�) > 0 then πt : π−1
t (πt(AP ) ∩ �) → � is a birational map.

2. If dim(�) = 0, say � = {(α,β)} then
(a) If P1(α) 
=P2(β), π−1

t ((α,β)) has cardinality 1.
(b) If P1(α) =P2(β) and ∇ f1(P1(α)),∇ f2(P2(β)) are not parallel, π−1

t ((α,β)) has cardinality 1.
(c) If P1(α) =P2(β) and ∇ f1(P1(α)),∇ f2(P2(β)) are parallel, then π−1

t ((α,β)) has dimension 1.

Proof. Let dim(�) > 0. Since πt is rational, we only need to prove that the generic fiber of πt on � has cardinality 1. For
this purpose, we consider the set 	 of all t such that P1(t1) = P2(t2). Since C1 
= C2, 	 is finite, and since dim(�) > 0
and irreducible, then �∗ := (πt(AP ) ∩ �) \ 	 is non-empty and dense in �. Let us study π−1

t (t0), for t0 = (α,β) ∈ �∗ .
Since �∗ ⊂ πt(AP ), the fiber is non-empty. Moreover, since W only appears in one equation, and with degree 1, the
cardinality π−1

t (t0) is equal to the number of z solutions of the first three equations. Because of the last equation of
AP , ‖∇ f1(P1(α))‖2 
= 0,‖∇ f2(P2(β))‖2 
= 0. So, the first and second equations of AP imply that the corresponding z in
the fiber are in the intersection of the normal lines to C1 at P1(α) and to C2 at P2(β). If ∇ f1(P1(α)),∇ f2(P2(β)) are not
parallel, the two lines intersect at a point, and hence the fiber has cardinality 1. Let us assume that ∇ f1(P1(α)),∇ f2(P2(β))

are parallel. We know that the fiber is not empty, hence both normal lines must be equal. So, since P1(α) 
=P2(β), the only
z = P1(α) + λn = P2(β) + μn, such that ‖z −P1(α)‖2 = ‖z −P2(β)‖2, where n = ∇ f1(P1(α))/‖∇ f1(P1(α))‖, is the point
z =P1(α) + 1

2 (P2(β) −P1(α)).
Now, let � = {(α,β)}. If P1(α) 
= P2(β), then �∗ = � and the above reasoning is valid, and hence the fiber has car-

dinality 1. If P1(α) = P2(β) and ∇ f1(P1(α)),∇ f2(P2(β)) are not parallel, again, the reasoning is also valid. However, if
P1(α) = P2(β) and ∇ f1(P1(α)),∇ f2(P2(β)) are parallel then π−1

1 ((α,β)) have dimension 1; namely the lifting to AP of
the normal line at P1(α). �
Remark 4.2. In Theorem 4.1 we have considered zero-dimension components of MP . However, in all checked examples
MP has none zero-dimensional component. �

Based on the previous theorem, we introduce the following definition.

Definition 4.3. Let � ⊂ MP be irreducible of positive dimension. We associate with � the rational map ϒ� : � →
Bis(C1,C2), where

ϒ� = πz ◦ (πt|�)−1.

Remark 4.4. If � is a rational curve, and Q is a parametrization, then � ◦ Q is a parametrization of the component
πz(π

−1
t (�)) of the bisector. �

Remark 4.5. From the computational point of view, if dim(�) = 1 and its defining polynomial is γ (t), then T1(P1(t1)),

T2(P2(t2)) are parallel in C(�)2 iff γ divides the numerator of the determinant of the matrix whose rows are Ti(Pi(ti)). �
Remark 4.6. If � is an irreducible component of MP with dim(�) = 0, say � = {(α,β)}, then

1. if ∇ f1(P1(α)),∇ f2(P2(β)) are not parallel,

πz(π
−1
t (�)) =

{(
T1(P1(α))

T2(P2(β))

)−1 (
P1(α) · T1(P1(α))

P2(β) · Th(P2(β))

)}
.

2. If ∇ f1(P1(α)),∇ f2(P2(β)) are parallel, and P1(α) 
=P2(β) then

πz(π
−1
t (�)) =

{
P1(α) + 1

2
(P2(β) −P1(α))

}
.
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3. If ∇ f1(P1(α)),∇ f2(P2(β)) are parallel, and P1(α) =P2(β) then

πz(π
−1
t (�)) = {P1(α) + λ∇ f1(P1(α)) |λ ∈C}. �

Based on the previous result we introduce the following representation of the bisector.

Definition 4.7. We define the parametric representation of Bis(C1,C2) as the set

PBis(P1,P2) =
⋃

�∈M+
P

{(�,ϒ�(t))}
⋃

�∈M0
P

{(�,πz(π
−1
t (�)))}

where M+
P denotes the set of all irreducible components of positive dimension of MP , and M0

P denotes the set of all
irreducible 0-dimensional components of MP .

If a component � is rational, and Q(h) a parametrization of � (see Remark 4.4), we will write (C,ϒ�(Q(h))), instead of
(�,ϒ�(t)).

Remark 4.8. We observe that PBis(P1,P2) is a finite union of pairs; say that (A, B) is one of these pairs. A will be either
an irreducible plane curve or a finite collection of points. Let us describe each case

• If A is a finite collection of points, then B is also a finite collection of points; namely, the points on the bisector
associated to the points in A.

• If A is a curve, then B is a rational map from A on the bisector. So, if A is a curve, then B is a pair of rational functions.
In addition, we may distinguish two cases:
– If A is not rational, then B is defined by means of a pair of bivariate rational functions.
– If A is rational, then A is birational to C. So, we replace A by C, and we replace B by the composition of B with any

rational parametrization of A. Therefore, in this case, B is a pair of univariate rational functions. �
Remark 4.9. If a normal to the original curves appears in the bisector, this line may be lost in the parametric representation;
see Example 4.11. The reason is that πt ◦π−1

z may send the whole line onto a point on a 1-dimensional component of MP .
Nevertheless, analyzing the points of MP where the tangent vectors Ti(Pi) are parallel, and applying Remark 4.6, one can
reach these lines; see again Examples 4.11 and 4.13. �

We illustrate these ideas with some examples.

Example 4.10. We consider Example 2.4. We take

P1(t1) =
(

4t1

t2
1 + 1

,
2(t2

1 − 1)

t2
1 + 1

)
, P2(t2) =

(
2t2

t2
2 + 1

,
t2

2 − 1

t2
2 + 1

)
.

Then, MP = �1 ∪ �2, where �1 ≡ t1t2 + 1 = 0 and �2 ≡ t1 − t2 = 0. On the other hand,

det

(
T1(P1(t1))

T2(P2(t2))

)
= −16(t1t2 + 1)(−t2 + t1)

(t2
1 + 1)(t2

2 + 1)

that is zero in C(�1) and in C(�2). So, T1(P1(t1)),T2(P2(t2)) are parallel on both components. Therefore,

ϒ�i : �i → Bis(C1,C2); t �→ P1(t1) + 1

2
(P2(t2) −P1(t1)).

Furthermore, since �i is rational, composing ϒ�i with the parametrization Q1(h) = (h,1/h) of �1 and Q2(h) = (h,h), we
get (see Fig. 5)

PBis(P1,P2) =
{(

C,

(
h

h2 + 1
,

1

2

h2 − 1

h2 + 1

))
,

(
C,

(
3h

h2 + 1
,

3

2

h2 − 1

h2 + 1

))}
.

Recall that Bis(C1,C2) is defined by (4z2
1 + 4z2

2 − 1)(4z2
1 + 4z2

2 − 9) = 0.

Example 4.11. We consider Example 2.5. Taking P1(t1) = (t1, t2
1) and P2(t2) = (t2,0), we get that MP is the rational curve

� defined as t4
1 + t1t2 − t2

2 = 0. On the other hand, the determinant of the tangent vectors is 2t1 that is not zero over C(�).
So, they are not parallel. Therefore,

ϒ� : � → Bis(C1,C2); t �→
(

t2,
2t3

1 + t1 − t2

2t1

)
.
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Fig. 5. PBis(P1,P2) in Example 4.10.

Furthermore, since � is rational, composing ϒ� with the parametrization

Q(h) =
(

h

h2 − 1
,

−h

h4 − 2h2 + 1

)

of � we get

PBis(P1,P2) =
{(

C,

( −h

h4 − 2h2 + 1
,

(h2 + 1)h2

2(h4 − 2h2 + 1)

))}
.

See the implicit equation of Bis(C1,C2) in Example 2.5. One may observe that the parametric representation is missing the
line z1 = 0 that is the normal line at (0,0) of both initial curves C1 and C2. What happens is that π−1

t (πz(0, λ)) = {(0,0)} ⊂
�; compare to Remark 4.9. Now, we consider the intersection of � with the determinant of the tangent vectors Ti(Pi),
namely 2t1. This gives, precisely the point (α,β) = (0,0), and applying Remark 4.6, we get

πz(π
−1
t ((0,0))) = {P1(0) + λ∇ f1(P1(0)) |λ ∈C} = {(0, λ) |λ ∈ C}.

So, we have

PBis(P1,P2) =
{(

C,

( −h

h4 − 2h2 + 1
,

(h2 + 1)h2

2(h4 − 2h2 + 1)

))
, (C, (0,h))

}
.

Example 4.12. We consider Example 2.6. Taking P1(t1) = (t2
1, t1) and P2(t2) = (t2, t2

2), we get that MP = �1 ∪ �2 where
�1 is the line t1 = t2 and �2 is the genus 4, 5-degree, curve defined as (observe that one component of Bis(C1,C2) has
genus 4)

4t4
1t2 + 4t3

1t2
2 + 4t2

1t3
2 + 4t1t4

2 − 4t2
1t2

2 − 3t3
1 − 3t2

1t2 − 3t1t2
2 − 3t3

2 + 2t1t2 − t1 − t2 = 0

On the other hand, the determinant of the tangent vectors is 4t1t2 − 1 that is not zero over C(�i). So, they are not parallel.
Therefore,

ϒ�i : �i → Bis(C1,C2); t �→
(

t2
(
4t1

3 − 2t2
2 + 2t1 − 1

)
4 t2 t1 − 1

,
−t1

(−4t2
3 + 2t1

2 − 2t2 + 1
)

4 t2 t1 − 1

)
.

Furthermore, since �1 can be parametrized by (h,h), we can take ϒ�1(h,h) that is(
(2 h + 1)h2

2 h2 + 1
,
(2 h + 1)h2

2 h2 + 1

)
∼ (h,h).

Thus (see Fig. 6),
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Fig. 6. PBis(P1,P2) in Example 4.12.

PBis(P1,P2) =
{

(C, (h,h)) ,

(
�2,

(
t2

2
(
4 t1

3 + 2 t1
2 − 2 t2 − 1

)
4 t2

2t1
2 − 1

,− t1
2
(−4 t2

3 − 2 t2
2 + 2 t1 + 1

)
4 t2

2t1
2 − 1

))}
.

Observe that this representation is much simpler than the implicit equation of Bis(C1,C2) (see details in Example 2.6).

Example 4.13. We consider Example 2.7. Taking P1(t1) = (t1, t2
1) and P2(t2) = (t2, t3

2), we get that MP = � where � is the
genus 10, 8th-degree, curve defined as

3t2
8 + 6t1

2t2
5 − 10t1t2

6 − 9t1
4t2

2 + 8t1
3t2

3 + 2t1
5 − 3t1

2t2
2 + 4t1t2

3 − t2
4 + 2t1

2t2 − 2t1t2
2 = 0

On the other hand, the determinant of the tangent vectors is 3t2
2 − 2t1 that is not zero over C(�). So, they are not parallel.

Therefore,

ϒ� : � → Bis(C1,C2); t �→
(

− t1t2
(−6 t2

4 + 6 t1
2t2 + 3 t2 − 2

)
−3 t2

2 + 2 t1
,
−3 t2

5 + 2 t1
3 + t1 − t2

−3 t2
2 + 2 t1

)
.

One may observe that the parametric representation is missing the line z1 = 0 that is the normal line at (0,0) of both
initial curves C1 and C2. The reason for this is that π−1

t (πz(0, λ)) = {(0,0), (0, (1/3)33/4), (0, (1/3i)33/4), (0,−(1/3)33/4),

(0,−(1/3i)33/4)} ⊂ �; compare with Remark 4.9. Now, we consider the intersection of � with the determinant of the
tangent vectors Ti(Pi), namely 3t2

2 − 2t1. This gives, 7 points in � of the form (0, β), and applying Remark 4.6, we get

πz(π
−1
t ((0, β))) = {P1(0) + λ∇ f1(P1(0)) |λ ∈C} = {(0, λ) |λ ∈C}.

So, we have

PBis(P1,P2) =
{(

�,

(
− t1t2

(−6 t2
4 + 6 t1

2t2 + 3 t2 − 2
)

−3 t2
2 + 2 t1

,
−3 t2

5 + 2 t1
3 + t1 − t2

−3 t2
2 + 2 t1

))
, (C, (0,h))

}
.

Observe that this representation is much simpler than the implicit equation of Bis(C1,C2)

5. Generalization to hypersurfaces

In this section we comment on the generalization of the ideas and results in this paper to the case of hypersurfaces.
The definition of (untrimmed) bisector given in Definition 2.1 generalizes directly to hypersurfaces. In this new setting,
let x = (x1, . . . , xn),y = (y1, . . . , yn), z = (z1, . . . , zn) and let H1,H2 be the real hypersurfaces defined by f1(x) = 0 and
f2(y) = 0. Then, the incidence variety would be defined as
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Fig. 7. Offset surface of a sphere and a cylinder.

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x,y, z, W ) ∈C3n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(x) = 0
f2(y) = 0

rank

(
z − x

∇ f1(x)

)
= 1

rank

(
z − y

∇ f2(y)

)
= 1

‖x − z‖2 = ‖y − z‖2

‖∇ f1(x)‖2‖∇ f2(y)‖2W = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Let πz : A ⊂ C3n+1 → Cn; (x,y, z, W ) �→ z. Then, the (untrimmed) bisector of H1,H2 is the Zariski closure of πz(A), i.e.
πz(A). The computation of the hypersurface bisector works identically as in the curve case (see Remark 2.3), as a conse-
quence of the Closure Theorem. The following example illustrates how it works for n = 3.

Example 5.1. Let S1 and S2 be the sphere and cylinder defined by x2
1 + x2

2 + x2
3 = 4 and (y3 + 5)2 + y2

1 = 1, respectively (see
Fig. 7). The incidence variety is defined by

{x2
1 + x2

2 + x2
3 − 4, (y3 + 5)2 + y2

1 − 1,2z1x2 − 2z2x1,2z1x3 − 2z3x1,2z2x3 − 2z3x2,

−2(z2 − y2)y1, (z1 − y1)(2y3 + 10) − 2(z3 − y3)y1, (z2 − y2)(2y3 + 10),

(z1 − x1)
2 + (z2 − x2)

2 + (z3 − x3)
2 − (z1 − y1)

2 − (z2 − y2)
2 − (z3 − y3)

2,

(4x2
1 + 4x2

2 + 4x2
3)(4y2

1 + (2y3 + 10)2)W − 1}.
Considering W > x1 > x2 > x3 > y1 > y2 > y3 > z1 > z2 > z3, and computing a Gröbner basis w.r.t. the lex order, we obtain

(−z4
2 + 20z2

2z3 + 36z2
1 + 68z2

2 − 64z2
3 − 320z3 − 256)

(−z4
2 + 20z2

2z3 + 4z2
1 + 52z2

2 − 96z2
3 − 480z3 − 576).

From the four sheets that one can see in Fig. 7, only one is the set of points equidistant from the sphere and the cylinder.
It can be easily checked that three of these components, either touch or intersect the sphere or the cylinder. A method for
computing parameterizations of the four components, containing square roots, is presented in Adamou (2013), section 3.4.

Note that in this example it is easy to find the equations of the generic offsets Oi(z,d) and see that they have degree 2
in zi and d. Hence the degree bound in (4) is verified.

The proofs of the Theorem 2.8 and Corollary 2.9 hold true similarly. However, the proof of Theorem 2.12 uses the fact
that there is no point belonging to almost all offsets (i.e. for almost all values of the distance variable) of a curve. This is
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proved for curves in San Segundo and Sendra (2005). This, up to our knowledge, is an open question even for surfaces.
Nevertheless, since Corollary 2.9 holds, the bound of the bisector given in Remark 2.10 is valid; note that formulas for
computing the degree of the offset to a (rational) surface can be found in San Segundo and Sendra (2012).

The concepts and results in Section 3 are also valid for hypersurfaces, but one needs to work with normal hypersurfaces,
and this is not a trivial property (for the case of surfaces, see e.g. Sendra et al., 2014, 2015). The results in Section 4,
although theoretically correct for hypersurfaces, need a deeper analysis since the irreducible composition of the variety
MP will include, in general, components whose whole dimension varies in {1, . . . ,n}.

6. Conclusions and future work

While all previous work about bisectors is mainly motivated by applications, in this article a general theoretical study of
the untrimmed bisector of two real algebraic plane curves has been presented. It remains as an open question to prove that
the parametric representation of the untrimmed bisector presented in Section 4 does not produce isolated points ever.

In the near future, we aim to devise a trimming method within the framework of the present paper.
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