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1. Introduction

Curves and surfaces which possess rational offsets are important for many practical applications in robotics, CAD/CAM 
systems, animations, manufacturing, etc. In the curve case, rational offsets can be assigned to the so-called Pythagorean 
hodograph (PH) curves. These curves have first been introduced in Farouki and Sakkalis (1990) and have been widely 
examined since then (see Farouki, 2008 and the references therein). The condition that characterizes a PH curve is 
a (piecewise) polynomial norm of its hodograph. Although, this condition connects the coefficients of the polynomial 
curve in a nonlinear way, an elegant construction that uses univariate polynomials with quaternion (complex) coeffi-
cients in a spatial (planar) case enables us to construct PH curves in a simple way. Moreover, interpolation schemes 
with these curves are easier to handle if the quaternion (complex) representation is used (see, e.g. Farouki, 1994;
Farouki and Neff, 1995; Farouki et al., 2003, 2002; Pelosi et al., 2005; Kwon, 2010; Han, 2008; Choi et al., 2008; Bastl 
et al., 2014b, 2014a).

Surfaces with rational offsets are much less investigated than their curve counterparts. A surface with a rational field 
of unit normal vectors is called a Pythagorean normal vector (PN) surface, and such a surface clearly has rational offsets. 
Based on a dual approach PN surfaces were derived in Pottmann (1995) as the envelope of a two-parametric family of 
tangent planes with unit rational normals. Unfortunately, dual construction leads in general to rational surfaces and no 
algebraic criteria for a reduction of rational PN surfaces to polynomial ones is known yet. Also, to design a curve from its 
dual representation is not very intuitive and it is hard to avoid singularities and points at infinity.

One way to construct surfaces with rational offsets is to use surfaces with linear field of normal vectors, the so-called LN 
surfaces (see, e.g. Jüttler, 1998; Sampoli and Jüttler, 2000; Peternell and Odehnal, 2008a, 2008b). It is shown in Jüttler (1998)
that one can find a rational reparameterization that converts the linear field of normal vectors to the one satisfying the PN 
property. The disadvantage of this approach is that we are limited to only linear normals and that the reparameterization 
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raises the degree of the surface and its offset. In Lávička and Bastl (2007) it was shown that all non-developable quadratic 
triangular Bézier surfaces admit a rational convolution with any arbitrary rational surface. One direct consequence is that the 
offset surfaces of quadratic triangular Bézier surfaces are rational surfaces. An algorithm for computing the parameterization 
of these offsets can be found in Bastl et al. (2008). Moreover, in Peternell and Odehnal (2008a) it is proven with geometric 
reasons that the quadratic triangular Bézier surfaces are LN-surfaces, and the way to reparameterize the surfaces so that 
the normals obtain linear coordinate functions is demonstrated. For polynomial PN surfaces not much results can be found 
in the literature (see, e.g. Lávička and Vršek, 2012; Ueda, 1998; Lávička and Bastl, 2008). A family of cubic polynomial 
PN surfaces has been derived in Lávička and Vršek (2012). The authors introduce three different cubic surfaces as the 
generators of the whole family of cubic PN surfaces with birational Gauss mapping up to the translation, rotation and linear 
reparameterization. Two of these generators turn out to present a parameterization of the well known Enneper minimal 
surface with orthogonal parameter lines. The third one is a rotational surface based on a Tschirnhausen cubic curve.

A wide class of PN surfaces are the isothermal surfaces, defined by the property that the coefficients E, F , G of the first 
fundamental form satisfy E = G , F = 0. Isothermal surfaces belong to a family of scaled Pythagorean-hodograph preserving 
mappings distinguished by the property that for every PH curve in the surface domain the image curve is a PH curve too 
(Kim and Lee, 2008). A simply connected surface S : � → R

3 with zero mean curvature is called a minimal surface and it is 
known that it can be represented by the Enneper–Weierstrass parameterization which includes such a surface into the class 
of isothermal ones (see, e.g. Oprea, 2007). The Enneper–Weierstrass parameterization is of the form

S(u, v) =
(

Re
∫

f (1 − g2)dz, Re
∫

i f (1 + g2)dz, Re
∫

2 f g dz

)T

,

where z = u + i v , f and f g2 are holomorphic and g is meromorphic on �. As in the cubic case the Enneper–Weierstrass 
parameterization could also be used to compute different generators for polynomial PN surfaces of higher degrees. Unfortu-
nately, such a representation might not be suitable if PN surfaces are to be used for design purposes.

In this paper a new approach to derive polynomial PN surfaces, which is based on bivariate polynomials with quaternion 
coefficients, is presented. It shares many similarities with the curve case but also has some important differences. One of 
them is that the quaternion coefficients may not be chosen completely free but are connected with particular relations. 
A simple closed form solution is derived that offers as much as possible degrees of freedom for both even and odd degrees. 
Namely, an explicit construction of polynomial PN surfaces of degrees 2n + 1 and 2n + 2, n ≥ 1, is presented based on 
bivariate polynomials of degree n with quaternion coefficients. One of the main advantages of this new representation 
is that it can be applied to design approximation and interpolation schemes with PN surfaces in a simple way. Beside 
interpolation with LN surfaces (Sampoli and Jüttler, 2000) no other scheme involving surfaces with rational offsets can 
be found in the literature. The examination of curvature properties shows that the members of the derived family of PN 
surfaces have a vanishing mean curvature. For degrees three and four also the PN surfaces with nonzero mean curvature 
are constructed, but they offer less parameters of freedom and involve more complicated expressions. For higher degrees no 
such PN surfaces were found and their existence remains an open problem.

The paper is organized as follows. In Section 2 some basic properties of PN surfaces and quaternions are outlined. 
Section 3 presents a general approach to construct polynomial PN surfaces from bivariate polynomials with quaternion 
coefficients. In Section 4 and Section 5 PN surfaces of an odd and even degree are considered and some examples are 
presented. Section 6 reveals the curvature properties of the derived surfaces. In the last two sections a simple interpolation 
scheme and some future work considerations are given.

2. Preliminaries

Consider a surface given by a parametric representation

S : � ⊆ R
2 →R

3, (u, v) �→ S(u, v).

The surface normal vector field is equal to

N = Su × S v

‖Su × S v‖ ,

where ‖ · ‖ denotes the Euclidean norm, and Su , S v are partial derivatives with respect to parameters u and v . Rational 
(polynomial) surface S is called a Pytha gorean normal (or shortly PN) surface if its normal vector field N is rational in u
and v . Such a surface has a property that its offset surface has a rational parametric representation, given by

Sδ = S + δN, δ ∈R.

Rational PN surfaces are constructed in Pottmann (1995) using the dual approach. Namely, a non-developable surface S
is determined as the envelope of the two-parametric family of tangent planes

N(u, v) · S(u, v) − f (u, v) = 0,
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where N = (N1, N2, N3) is a unit normal vector field and f , called a support function, denotes at each (u, v) the signed 
distance of the tangent plane from the origin. From a dual representation L = (− f , N1, N2, N3) one obtains a homogeneous 
point representation by computing a wedge product (Kozak et al., 2014)

P = (P0, P1, P2, P3) = L ∧ Lu ∧ Lv ,

and a surface follows as

S = 1

P0
(P1, P2, P3) .

This construction naturally leads to rational PN surfaces provided N and f are rational. The most common way to obtain 
rational vector field N is to use stereographic projection (see Pottmann, 1995). But another approach, described in this 
paper, is to use bivariate polynomials with quaternion coefficients.

Space of quaternions H is a 4-dimensional vector space with a standard basis {1, i, j, k},

1 =
(

1, (0,0,0)T
)

, i =
(

0, (1,0,0)T
)

, j =
(

0, (0,1,0)T
)

,k =
(

0, (0,0,1)T
)

.

Quaternions can be written as A = (a,a), where the first component is called a scalar part, and the remaining three 
components form a vector part of the quaternion, i.e.,

scal (A) = a, vec (A) = a.

A quaternion with a zero scalar part is called a pure quaternion, and such quaternions are identified with vectors in R3, i.e., 
A ≡ a for A = (0, a). A quaternion sum and product are defined as

A+ B = (a + b,a + b), AB = (ab − a · b,ab + ba + a × b),

where B := (b, b). Equipped with these two operations H becomes an algebra. Every nonzero quaternion has its inverse, 
which is equal to

A−1 = 1

‖A‖2
A,

where A= (a,−a) denotes the conjugate of A, and ‖A‖ =
√
AA is its norm.

Bivariate polynomials with coefficients in H form a ring denoted by H[u, v]. The elements of this ring will shortly be 
called quaternion polynomials. Let

A(u, v) =
n∑

i=0

n−i∑
j=0

Ai, ju
i v j, Ai, j ∈H, (1)

be a quaternion polynomial of degree n. Then A is associated with three mappings ei : R2 →R
3,

ei = hi

‖A‖2
, i = 1,2,3, h1 := A i A, h2 := A j A, h3 := A k A. (2)

Note that the multiplication in (2) yields pure quaternions which are then considered as vectors. Moreover it follows that 
ei · e j = δi, j , where δi, j is the Kronecker delta function.

The next section reveals the construction of polynomial PN surfaces from a quaternion polynomial (1) with some addi-
tional conditions on its coefficients.

3. General approach to polynomial PN surfaces

Suppose that a quaternion polynomial A of the form (1) is given. The goal is to construct a polynomial parametric 
surface S : � ⊆R

2 → R
3, such that its normal N is equal to

N = e3,

where e3 is defined in (2). If such a surface exists it is a PN surface and (e1, e2, e3) is the so-called adapted moving frame
of the surface S . Further, the tangent plane of S is at each parameter (u, v) spanned by the vectors h1(u, v) and h2(u, v). 
Therefore Su and S v are of the form

Su = ϕ1h1 + ϕ2h2 =: g1, S v = ϕ3h1 + ϕ4h2 =: g2 (3)

for some polynomial functions ϕi or for some rational functions ϕi for which g1 and g2 reduce to polynomials. Moreover, 
the condition
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∂ g1

∂v
= ∂ g2

∂u
(4)

is clearly satisfied. In the next lemma, it is shown that the condition (4) is also sufficient for a polynomial PN surface to 
exist.

Lemma 1. Suppose that two polynomial mappings g1 and g2 are given such that (4) holds true. Then a surface S with the property 
that Su = g1 and S v = g2 exists and is of the form

S(u, v) = 1

2

u∫
0

(
g1(u, v) + g1(u,0)

)
du + 1

2

v∫
0

(
g2(u, v) + g2(0, v)

)
dv + S(0,0). (5)

Proof. From the condition S u = g1 it follows that

S(u, v) =
u∫

0

g1(u, v)du + C(v),

where C is a univariate function of v . If we differentiate this equation with respect to v and use the assumption (4) we 
obtain

S v(u, v) =
u∫

0

∂ g1

∂v
(u, v)du + C ′(v) =

u∫
0

∂ g2

∂u
(u, v)du + C ′(v) =

= g2(u, v) − g2(0, v) + C ′(v).

Since S v = g2 it follows that

C(v) =
v∫

0

g2(0, v)dv + const,

and thus

S(u, v) =
u∫

0

g1(u, v)du +
v∫

0

g2(0, v)dv + const. (6)

Similarly, by starting from S v = g2 we derive that

S(u, v) =
v∫

0

g2(u, v)dv +
u∫

0

g1(u,0)du + const. (7)

Formula (5) follows then by averaging the equations (6) and (7), which concludes the proof. �
The next lemma reveals the closed form expression of the surface S defined in Lemma 1.

Lemma 2. Suppose that

g�(u, v) =
m∑

i=0

m−i∑
j=0

B[�]
i, j u

i v j, � = 1,2. (8)

Then (4) holds true iff

( j + 1)B[1]
i, j+1 = (i + 1)B[2]

i+1, j, i = 0,1, . . . ,m − 1, j = 0,1, . . . ,m − 1 − i, (9)

and the surface S , defined in (5), is equal to

S(u, v) =
m+1∑
i=0

m+1−i∑
j=0

S i, ju
i v j, (10)

with
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S i,0 = 1

i
B[1]

i−1,0, S0,i = 1

i
B[2]

0,i−1, i = 1,2, . . . ,m + 1,

S i, j = 1

i
B[1]

i−1, j = 1

j
B[2]

i, j−1, i = 1,2, . . . ,m, j = 1,2, . . . ,m + 1 − i,
(11)

and S0,0 an arbitrary constant.

Proof. The proof of (9) is straightforward. By computing the integrals and changing the summation indexes we obtain from 
(5) that

S(u, v) = S(0,0) + 1

2

m+1∑
i=1

m+1−i∑
j=0

1

i
B[1]

i−1, ju
i v j + 1

2

m+1∑
i=1

1

i
B[1]

i−1,0ui +

+ 1

2

m∑
i=0

m+1−i∑
j=1

1

j
B[2]

i, j−1ui v j + 1

2

m+1∑
j=1

1

j
B[2]

0, j−1 v j = S(0,0)+

+
m∑

i=1

m+1−i∑
j=1

1

2

(
1

i
B[1]

i−1, j + 1

j
B[2]

i, j−1

)
ui v j +

m+1∑
i=1

1

i
B[1]

i−1,0ui +
m+1∑
j=1

1

j
B[2]

0, j−1 v j,

which by considering (9) completes the proof. �
Lemma 1 and Lemma 2 provide a way to construct a polynomial PN surface from a quaternion polynomial (1) provided 

(4) is fulfilled. The degree of such a surface is

2 deg (A) + max
i=1,2,3,4

(deg (ϕi)) + 1.

In particular, choosing ϕi as constants implies polynomial PN surfaces of degree 2 deg (A) + 1. Note that the same relation 
between degrees holds in the curve case since degree n quaternion polynomials of one variable imply spatial PH curves of 
degree 2n + 1. Moreover, if ϕi are constants, then any coordinate curve on the surface is a PH curve. More precisely, for 
r(u) = S(u, v0), v0 = const, the norm of the hodograph is equal to

‖r′(u)‖ = ‖ϕ1h1(u, v0) + ϕ2h2(u, v0)‖ =
√

ϕ2
1 + ϕ2

2 ‖A(u, v0)‖2,

which is a polynomial expression for constant ϕi , i = 1, 2. Similarly for curves of the form r(v) = S(u0, v), u0 = const. To 
construct polynomial PN surfaces of an even degree one must choose ϕi as polynomials of an odd degree. In particular, 
linear functions ϕi imply polynomial PN surfaces of degree 2 deg (A) + 2.

Unfortunately, the condition (4) is not satisfied for arbitrary functions ϕi and arbitrary quaternion polynomials (1). In the 
following sections the conditions on quaternion coefficients that imply (4) to be true if ϕi are constants or linear functions 
are presented, which gives the construction of polynomial PN surfaces of an arbitrary degree.

4. Construction of polynomial PN surfaces of odd degree

Suppose that a quaternion polynomial A is given by (1) and hi , i = 1, 2, 3, are the associated mappings defined by (2). 
Let us define two quaternions

U1 := ϕ1i + ϕ2j, U2 := ϕ3i + ϕ4j, (12)

and let us assume first that

ϕi(u, v) = αi, αi ∈R, i = 1,2,3,4.

Then the partial derivatives from (3) are expressed as

g1 = ϕ1h1 + ϕ2h2 = AU1A, g2 = ϕ3h1 + ϕ4h2 = AU2A, (13)

which follows from (2) and some basis properties of the quaternions. Moreover, g1 and g2 can be expressed in a standard 
basis as in (8) with m = 2n and

B[�]
i, j :=

min{i,n}∑
k=max{0,i−n}

min{ j,n−k}∑
r=max{0, j+i−n−k}

Ak,rU�Ai−k, j−r, � = 1,2.

By Lemma 1 and Lemma 2 the quaternion polynomial A defines a PN surface if n(2n + 1) vector equations (9) with m = 2n
are satisfied. These equations present nonlinear relations between 

(n+2) quaternion coefficients and four parameters αi , 
2
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i = 1, 2, 3, 4. It seems that for n ≥ 2 no solution exists since we have 3n(2n + 1) scalar equations, but only 4
(n+2

2

) + 4 free 
parameters. However, it turns out that some solutions can still be found. Note that the mixed derivatives of the surface to 
be constructed are of the form

∂ g1

∂v
= AvU1A+AU1Av = 2 vec

(
AvU1A

)
,

∂ g2

∂u
= AuU2A+AU2Au = 2 vec

(
AuU2A

)
,

and the condition (4) is fulfilled iff

vec
(
(AvU1 −AuU2)A

) = 0. (14)

The relation (14) thus holds true iff

AvU1 −AuU2 = ψA (15)

for some scalar function ψ . Since the left hand side of (15) is a quaternion polynomial of degree n − 1, function ψ must 
be rational with the degree of the numerator being one less than the degree of the denominator. A particular case ψ ≡ 0
provides a nice closed form solution given in the following theorem.

Theorem 1. If the coefficients of the quaternion polynomial (1) satisfy

( j + 1)Ai, j+1U1 = (i + 1)Ai+1, jU2, i = 0,1, . . . ,n − 1, j = 0,1, . . . ,n − 1 − i, (16)

then a parametric surface S defined by (5) and (13) is a PN surface of degree 2n + 1 with

Su × S v = (α1α4 − α2α3)‖A‖2h3, N = e3.

Proof. The conditions (16) follow directly from

AvU1 −AuU2 =
n−1∑
i=0

n−1−i∑
j=0

(
( j + 1)Ai, j+1U1 − (i + 1)Ai+1, jU2

)
ui v j

and (15) by choosing ψ ≡ 0. Then (4) is fulfilled and the surface (5) has partial derivatives S u = g1 and S v = g2. Moreover

Su × S v = (α1α4 − α2α3)h1 × h2 = (α1α4 − α2α3)‖A‖2h3

which completes the proof. �
Theorem 1 provides only the sufficient conditions for a PN surface to exist. But these conditions turn out to be the 

most simple ones and clearly provide as much degrees of freedom as possible. Furthermore, the computations show that 
choosing

ψ(u, v) = 1

ψ0,0 + ψ1,0u + ψ0,1 v

gives no solution for n = 1 and n = 2.
In the following lemma the explicit solution of equations (16) is provided. The proof follows by some straightforward 

computation.

Lemma 3. The conditions (16) are fulfilled iff

A� m
2 +�,� m

2 �−� =
(�m

2 )! (�m
2 �)!(�m

2 � − �
)! (�m

2  + �
)!Qm

(
U1U−1

2

)�

, � = −
⌈m

2

⌉
, . . . ,

⌊m

2

⌋
,

for m = 1, 2, . . . , n, where Qm are arbitrary quaternions and 0! := 1.

In practical applications, one tends to use low degree polynomial objects. In the following subsections PN surfaces of 
degrees 3 and 5 are considered in more detail and illustrated by some numerical examples.
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4.1. Cubic polynomial PN surfaces

To construct a cubic polynomial PN surface we have to choose a linear quaternion polynomial A defined in (1) for n = 1
with control points defined in Lemma 3. For a symmetry reasons, we redefine a free quaternion Q1 to Q1U−1

2 and obtain 
that the control points must be equal to

A0,0, A1,0 = Q1U−1
2 , A0,1 = Q1U−1

1 . (17)

Then g1 and g2 are of the form (8) with m = 2,

B[�]
0,0 = A0,0U�A0,0,

B[�]
1−k,k = 2vec

(
A0,0U�A1−k,k

)
,

B[�]
1,1 = 2vec

(
A0,1U�A1,0

)
,

B[�]
2−2k,2k = A1−k,kU�A1−k,k,

(18)

for k = 0, 1, � = 1, 2, and a cubic PN surface is given in Lemma 2. The complete construction is summarized in Algorithm 1:

Algorithm 1 Construction of a cubic PN surface.

Input: Quaternions A0,0, Q1, parameters (αi)
4
i=1, and P ∈R

3.
Output: A cubic PN surface S .
1: Set U1 = (

0, (α1,α2,0)T
)
, U2 = (

0, (α3,α4,0)T
)
;

2: Compute A1,0 and A0,1 by (17);

3: Compute B[�]
i, j for � = 1, 2 and 0 ≤ i + j ≤ 2 by (18);

4: Set S0,0 = P , m = 2;
5: Compute S i, j for 1 ≤ i + j ≤ 3 by (11);
6: Compute S by (10).

Note that there are 15 free parameters in Algorithm 1, but a family of the derived cubic PN surfaces is only 14-parametric. 
Namely, by multiplying a quaternion polynomial by some constant factor, we can fix one of the (nonzero) parameters αi to 
a fixed value.

As an example let us choose

A0,0 =
(

1, (0,0,0)T
)

, Q1 =
(

−1

2
,

(
1,−1

4
,

2

3

)T
)

,

α1 = 1

4
, α2 = −3

4
, α3 = 1

2
, α4 = −1

2
.

Then

A(u, v) = 1

60

(
3(25u + 14v + 20), (2(−5u − 18v),2(−35u − 26v),3(15u + 22v))T

)
and

g1(u, v) =

⎛⎜⎜⎝
33u2

32 + 83uv
72 + 7u

4 + 7v2

72 + 2v + 1
4

− 341u2

288 − 5uv
72 − 3u

2 + 107v2

120 − v
2 − 3

4
55u2

24 + 29uv
6 + 5u

6 + 61v2

30 + 4v
3

⎞⎟⎟⎠ ,

g2(u, v) =

⎛⎜⎜⎝
83u2

144 + 7uv
36 + 2u − 11v2

36 + 9v
5 + 1

2

− 5u2

144 + 107uv
60 − u

2 + 1309v2

900 + 2v
5 − 1

2 ,

29u2

12 + 61uv
15 + 4u

3 + 33v2

25 + 22v
15

⎞⎟⎟⎠ .

The PN surface (see Fig. 1) equals

S(u, v) =

⎛⎜⎜⎝
11u3

32 + 83u2 v
144 + 7u2

8 + 7uv2

72 + 2uv + u
4 − 11v3

108 + 9v2

10 + v
2

− 341u3

864 − 5u2 v
144 − 3u2

4 + 107uv2

120 − uv
2 − 3u

4 + 1309v3

2700 + v2

5 − v
2

55u3

72 + 29u2 v
12 + 5u2

12 + 61uv2

30 + 4uv
3 + 11v3

25 + 11v2

15

⎞⎟⎟⎠ (19)

and

‖(Su × S v) (u, v)‖ =
(
1265u2 + 2024uv + 900u + 1012v2 + 504v + 360

)2

518400
,

which confirms the PN property.
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Fig. 1. A cubic PN surface (19) for (u, v) ∈ [−3,3] × [−3,3].

Construction of cubic PN surfaces has already been considered in Lávička and Vršek (2012). The authors derived the 
family of PN surfaces of the form

S(u, v) = c1 P 1(u, v) + c2 P 2(u, v) + c3 P 3(u, v) + C ,

where

P 1(u, v) =
(

−u3

3
+ uv2 + u,−u2 v + v3

3
− v, u2 − v2

)T

,

P 2(u, v) =
(

u2 v − v3

3
− v,−u3

3
+ uv2 − u,−2uv

)T

,

P 3(u, v) =
(

u − 1

3
u

(
u2 + v2

)
, v − 1

3
v

(
u2 + v2

)
, u2 + v2

)T

,

and ci ∈ R, i = 1, 2, 3, C ∈ R
3, are free constants. Let us examine how the generators P i , i = 1, 2, 3, can be constructed 

based on our approach. Observe first that the unit normals N of all three surfaces are equal to

1

1 + u2 + v2

(
2u,2v, u2 + v2 − 1

)T
.

Therefrom we obtain that a quaternion polynomial A must be chosen as A(u, v) = (−v, (1,0, u)T
)
. Moreover, it can easily 

be checked that P 1 follows by choosing

U1 =
(

0, (1,0,0)T
)

, U2 =
(

0, (0,1,0)T
)

,

and to obtain P 2 we must take

U1 =
(

0, (0,1,0)T
)

, U2 =
(

0, (−1,0,0)T
)

.

But it turns out that P 3 can not be derived from A by any constant quaternion U1 and U2. In this case we observe that a 
combination

v

1 + u2 + v2
h1(u, v) + u

1 + u2 + v2
h2(u, v) = (v,−u,0) =: ĥ(u, v)

gives a linear mapping. Moreover, on can check that P 3 follows from (3) by choosing

g1 = −4

3
ĥ + h1, g2 = 4

3
ĥ − h2

or equivalently

U1(u, v) =
(

0,

(
3 + 3u2 − v2

3(1 + u2 + v2)
,− 4uv

3(1 + u2 + v2)
,0

)T
)

,

U2(u, v) =
(

0,

(
4uv

3(1 + u2 + v2)
,− 3 + 3v2 − u2

3(1 + u2 + v2)
,0

)T
)

.

This example indicates that cubic PN surfaces can be obtained from linear quaternion polynomial also by choosing ϕi , 
i = 1, 2, 3, 4, as particular quadratic rational functions. Let us examine such possibilities for a general linear quaternion. The 
next lemma reveals linear combinations of h1 and h2 that result in a linear vector field orthogonal to h3.
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Lemma 4. Let A be a linear quaternion defined in (1) for n = 1 and let

p1(u, v) = w · vec
(
A−1

0,0 A j
)

, p2(u, v) = −w · vec
(
A−1

0,0A i
)

,

where w = vec
(
A−1

0,0A1,0

)
× vec

(
A−1

0,0A0,1

)
. Then

ĥ =
∥∥A0,0

∥∥4

‖A‖2 (p1h1 + p2h2) (20)

is a linear polynomial mapping.

Proof. By using rotations we can without loosing generality assume that

A0,0 =
(

1, (0,0,0)T
)

.

Let us denote the components of the remained control quaternions as

A1,0 =
(

a0, (a1,a2,a3)
T
)

, A0,1 =
(

b0, (b1,b2,b3)
T
)

.

A straightforward computation yields

p1(u, v) = w ·
(
(0,1,0)T + (−a3,a0,a1)

T u + (−b3,b0,b1)
T v

)
,

p2(u, v) = w ·
(
(−1,0,0)T + (−a0,−a3,a2)

T u + (−b0,−b3,b2)
T v

)
.

Furthermore, one can check that

p1h1 + p2h2 = ‖A‖2

⎛⎜⎜⎜⎝
w ·

(
(0,1,0)T + (a3,a0,a1)

T u + (b3,b0,b1)
T v

)
w ·

(
(−1,0,0)T + (−a0,a3,a2)

T u + (−b0,b3,b2)
T v

)
w ·

(
(0,0,2a3)

T u + (0,0,2b3)
T v

)
⎞⎟⎟⎟⎠ ,

which completes the proof. �
By using the result of Lemma 4 the additional cubic PN surfaces can be constructed as follows. Choose g1 and g2 as a 

combination

g1(u, v) = ϕ̂1(u, v )̂h(u, v) + α1h1(u, v) + α2h2(u, v),

g2(u, v) = ϕ̂2(u, v )̂h(u, v) + α3h1(u, v) + α4h2(u, v)
(21)

for some linear functions ϕ̂1 and ϕ̂2. The condition (4) results in nine scalar linear equations for six coefficients of ϕ̂1, ϕ̂2
and four parameters αi . We can choose to fix one of αi and all the other coefficients can then be expressed only with the 
coefficients of quaternions A1,0 and A0,1. The solution is not inserted in the paper since the expressions are quite involved. 
Instead, let us demonstrate a construction on a particular example. For

A(u, v) =
(

2, (−16,2,0)T
)

+
(
−2, (2,2,1)T

)
u +

(
−4, (0,1,2)T

)
v

expression (20) simplifies to

ĥ(u, v) = (2(183u + 50v − 880),124(u + v + 9),8(u + 2v + 28))T ,

and by fixing α4 = 342, we compute

ϕ̂1(u, v) = 95 + 5v, ϕ̂2(u, v) = 50 − 5u, α1 = 78, α2 = 156, α3 = 171.

The PN surface derived from (21) is then equal to

S(u, v) =

⎛⎜⎜⎝
1404u3 + 5574u2 v + 19170u2 + 7708uv2 − 14200uv − 314432u + 4902v3 − 12100v2 − 132224v

520u3 + 2180u2 v + 17708u2 + 2800uv2 + 27232uv + 124680u + 1140v3 − 2008v2 − 79920v

208u3 + 1288u2 v + 10120u2 + 2656uv2 + 39600uv + 21344u + 1824v3 + 38420v2 − 24112v

⎞⎟⎟⎠ (22)

and is presented in Fig. 2 together with its offset. Note that different values of α4 imply different scalings of the obtained 
surface.
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Fig. 2. A cubic PN surface (22) and its offset (gray) for (u, v) ∈ [−4,4] × [−4,4].

4.2. Quintic polynomial PN surfaces

A quintic polynomial PN surface can be constructed from a quadratic quaternion polynomial A, defined in (1) for n = 2, 
with control quaternions being equal to (17) at linear terms, and to

A1,1 = Q2, A2,0 = 1

2
Q2U1U−1

2 , A0,2 = 1

2
Q2U2U−1

1 (23)

at additional quadratic ones. Recall that Q1 in (17) and Q2 in (23) are free quaternions that represent some of the degrees 
of freedom in a PN surface construction. Then g1 and g2 are of the form (8) with m = 4,

B[�]
0,0 = A0,0U�A0,0,

B[�]
1−k,k = 2vec

(
A0,0U�A1−k,k

)
,

B[�]
1,1 = 2vec

(
A0,1U�A1,0 +A0,0U�A1,1

)
,

B[�]
2−2k,2k = A1−k,kU�A1−k,k + 2vec

(
A0,0U�A2−2k,2k

)
,

B[�]
3−3k,3k = 2vec

(
A1−k,kU�A2−2k,2k

)
, (24)

B[�]
2−k,1+k = 2vec

(
A1−k,kU�A1,1 +Ak,1−kU�A2−2k,2k

)
,

B[�]
2,2 = A1,1U�A1,1 + 2vec

(
A0,2U�A2,0

)
,

B[�]
4−4k,4k = A2−2k,2kU�A2−2k,2k,

B[�]
3−2k,1+2k = 2vec

(
A1,1U�A2−2k,2k

)
,

for k = 0, 1, � = 1, 2, and a quintic PN surface is given in Lemma 2. The construction is summarized in Algorithm 2:

Algorithm 2 Construction of a quintic PN surface.

Input: Quaternions A0,0, Q1, Q2, parameters (αi)
4
i=1, and P ∈R

3.
Output: A quintic PN surface S .
1: Set U1 = (

0, (α1,α2,0)T
)
, U2 = (

0, (α3,α4,0)T
)
;

2: Compute A1,0 and A0,1 by (17);
3: Compute A2,0, A1,1 and A0,2 by (23);

4: Compute B[�]
i, j for � = 1, 2 and 0 ≤ i + j ≤ 4 by (24);

5: Set S0,0 = P , m = 4;
6: Compute S i, j for 1 ≤ i + j ≤ 5 by (11);
7: Compute S by (10).

To demonstrate the results let us choose

A0,0 =
(

1, (0,0,0)T
)

,Q1 =
(

−1

2
,

(
1,−1

4
,

2

3

)T
)

,Q2 =
(

0,

(
−1

8
,

1

3
,

1

10

)T
)

,

α1 = 1

4
, α2 = −3

4
, α3 = −1

2
, α4 = −1

2
, P = (0,0,0)T . (25)

The surface is shown in Fig. 3 together with its triangular Bézier patch.
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Fig. 3. A quintic PN surface, determined by (25), for (u, v) ∈ [−1,1] × [−1,1] (left) and its triangular Bézier patch (right).

5. Construction of polynomial PN surfaces of even degree

Let a quaternion polynomial A be of the form (1). To obtain a PN surface of an even degree, we must choose ϕi in (3)
to be functions of an odd degree. In particular, let us examine the case when

ϕi(u, v) = αi + βiu + γi v, αi, βi, γi ∈R, i = 1,2,3,4, (26)

are linear functions. Moreover, g1 and g2 are given by (13) with U1, U2 defined by (12). The condition (4) is now fulfilled 
iff

vec
(
(2AvU1 − 2AuU2 +A ((U1)v − (U2)u))A

) = 0,

or equivalently, it must hold that

2AvU1 − 2AuU2 +A ((U1)v − (U2)u) = ψA (27)

for some scalar function ψ . Since the left hand side of the expression in (27) is a polynomial of degree n in variables 
(u, v), we choose ψ = ψ0 as a constant. Then (27) represents 4

(n+2
2

)
equations that connect 4

(n+2
2

)
coefficients of A and 12

coefficients that appear in U1, U2. Let us denote

U�(u, v) = U [�]
0,0 + U [�]

1,0u + U [�]
0,1 v, � = 1,2,

where

U [�]
0,0 =

(
0, (α2�−1,α2�,0)T

)
, U [�]

1,0 =
(

0, (β2�−1, β2�,0)T
)

,

U [�]
0,1 =

(
0, (γ2�−1, γ2�,0)T

)
.

(28)

First, the case when n = 1 is analyzed which leads to quartic polynomial PN surfaces.

5.1. Quartic polynomial PN surfaces

For n = 1 the relation (27) represents three quaternion equations which can be, by evaluating the value for (u, v) = (0, 0)

and by applying ∂
∂u and ∂

∂v , written as

2A0,1U [1]
0,0 − 2A1,0U [2]

0,0 +A0,0

(
U [1]

0,1 − U [2]
1,0 − ψ01

)
= 0, (29)

2A0,1U [1]
i,1−i − 2A1,0U [2]

i,1−i +Ai,1−i

(
U [1]

0,1 − U [2]
1,0 − ψ01

)
= 0, i = 0,1.

The last two equations simplify to

U [1]
1,0 = −1

2
C

(
U [1]

0,1 − 3U [2]
1,0 − ψ01

)
= 0,

U [2]
0,1 = 1

2
C−1

(
3U [1]

0,1 − U [2]
1,0 − ψ01

)
= 0,

(30)

where C = (
c0, (c1, c2, c3)

T
) :=A−1A1,0. Using (28) one can compute from (30) that
0,1
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β1 = c1 ‖C‖2 ψ0

2
(
c2

1 + c2
2

) , β2 = c2 ‖C‖2 ψ0

2
(
c2

1 + c2
2

) , β3 = (2c0c1 + c2c3)ψ0

4
(
c2

1 + c2
2

) ,

β4 = − (c1c3 − 2c0c2)ψ0

4
(
c2

1 + c2
2

) , γ1 = (2c0c1 − c2c3)ψ0

4
(
c2

1 + c2
2

) , γ2 = (2c0c2 + c1c3)ψ0

4
(
c2

1 + c2
2

) , (31)

γ3 = c1ψ0

2
(
c2

1 + c2
2

) , γ4 = c2ψ0

2
(
c2

1 + c2
2

) ,

provided c2
1 + c2

2 �= 0. The first equation in (29) is then equal to(
0, (α1,α2,0)T

)
− C

(
0, (α3,α4,0)T

)
+ ψ0D = 0,

where

D =
(

d0, (d1,d2,d3)
T
)

:= 1

2
A−1

0,1A0,0

(
−1,

c3

2
(
c2

1 + c2
2

) (−c2, c1,0)T

)
,

and it is straightforward to compute

α1 = c0α3 − c3α4 − d1ψ0, α2 = c3α3 + c0α4 − d2ψ0, (32)

α3 = −ψ0
c1d0 + c2d3

c2
1 + c2

2

, α4 = ψ0
c1d3 − c2d0

c2
1 + c2

2

.

Note that the parameter ψ0 does not bring any additional degrees of freedom and can be set to one. Namely, ψ0 affects 
only the magnitude of g1 and g2, which can be changed also by multiplying a quaternion polynomial A by some constant 
factor. Note also that g1 and g2 are by (26), (31) and (32) expressed with 12 free parameters.

Let us consider now a particular case where c2
1 + c2

2 = 0. From (30) it follows that ψ0 = 0. Furthermore, it is easy to see 
that the equations (29) are satisfied iff

A1,0 = A0,1C, C =
(

c0, (0,0, c3)
T
)

,

and

U [2]
1,0 = CU [2]

0,1, U1 = CU2, (33)

or equivalently

U [2]
0,0 =

(
0, (α3,α4,0)T

)
, U [2]

0,1 =
(

0, (γ3, γ4,0)T
)

, U [2]
1,0 = C

(
0, (γ3, γ4,0)T

)
,

U [1]
0,0 = CU [2]

0,0, U [1]
0,1 = CU [2]

0,1, U [1]
1,0 = CU [2]

1,0.

(34)

This shows that a particular case where c2
1 + c2

2 = 0 provides much simpler solution with more degrees of freedom in 
comparison to a solution given by (31) and (32). The results are summarized in a following lemma.

Lemma 5. Let a quaternion polynomial be of the form

A(u, v) = A0,0 +A0,1Cu +A0,1 v, C =
(

c0, (c1, c2, c3)
T
)

∈H.

Suppose that U1 , U2 are given by (12), (26), (31) and (32) in the case when c2
1 + c2

2 �= 0, and suppose that for c1 = c2 = 0

U2(u, v) =
(

0, (α3,α4,0)T
)

+ C
(

0, (γ3, γ4,0)T
)

u +
(

0, (γ3, γ4,0)T
)

v,

U1(u, v) = CU2(u, v)

for arbitrary α3, α4, γ3, γ4 ∈R. Then a parametric surface S , defined by (5) and (13) is a PN surface of degree 4 with N = e3 .
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If the suppositions of Lemma 5 hold true, then g1 and g2 are of the form (8) with m = 3, where

B[�]
0,0 = A0,0U [�]

0,0A0,0,

B[�]
1−k,k = vec

((
A0,0U [�]

1−k,k + 2A1−k,kU [�]
0,0

)
A0,0

)
,

B[�]
2−2k,2k = vec

((
A1−k,kU [�]

0,0 + 2A0,0U [�]
1−k,k

)
A1−k,k

)
,

B[�]
1,1 = 2vec

(
A0,1U [�]

0,0A1,0 +A1,0U [�]
0,1A0,0 +A0,1U [�]

1,0A0,0

)
,

B[�]
3−3k,3k = A1−k,kU [�]

1−k,kA1−k,k,

B[�]
2−k,1+k = vec

((
A1−k,kU [�]

k,1−k + 2Ak,1−kU [�]
1−k,k

)
A1−k,k

)
,

(35)

for k = 0, 1, � = 1, 2. The construction of a quartic PN surface is given in Algorithm 3:

Algorithm 3 Construction of a quartic PN surface.
Input: Quaternions A0,0, A0,1, parameters c0, c1, c2, c3 ∈R, and P ∈R

3.
Output: A quartic PN surface S .

1: Set C = (
c0, (c1, c2, c3)T

)
;

2: Set A1,0 = A0,1C;
3: if c2

1 + c2
2 �= 0 then

4: Set ψ0 = 1;
5: Compute (βi)

4
i=1 and (γi)

4
i=1 by (31);

6: Compute (αi)
4
i=1 by (32);

7: Compute U [�]
0,0, U [�]

1,0, U [�]
0,1 for � = 1, 2 by (28);

8: else
9: Choose α3, α4, γ3, γ4;

10: Compute U [�]
0,0, U [�]

1,0, U [�]
0,1 for � = 1, 2 by (34);

11: Compute B[�]
i, j for � = 1, 2 and 0 ≤ i + j ≤ 3 by (35);

12: Set S0,0 = P , m = 3;
13: Compute S i, j for 1 ≤ i + j ≤ 4 by (11);
14: Compute S by (10).

As an example let us choose

A0,0 =
(

1, (0,0,0)T
)

, A0,1 =
(

2, (1,3,4)T
)

, P = (0,0,0)T , (36)

and

C = 1

12

(
−3, (−4,2,3)T

)
. (37)

The surface is shown in Fig. 4 (left). By choosing (36) and

C = 1

4

(
−1, (0,0,1)T

)
, α3 = 1

2
, α4 = −1

3
, γ3 = 1

4
, γ4 = 1

3
(38)

we obtain a surface presented in Fig. 4 (right).

5.2. Particular even degree polynomial PN surfaces

Suppose now that A is of degree n and let us try to find some simple relations between the coefficients Ai, j , i =
0, 1, . . . , n, j = 0, 1, . . . , n − i, that guarantee (27) to hold true. Following a particular case for n = 1 let us assume that 
ψ0 = 0 and that linear quaternion polynomials U1 and U2 satisfy (33) for some quaternion C = (

c0, (0,0, c3)
T
) �= 0. Then 

also (U1)v = (U2)u and (27) simplifies to

AvU1 = AuU2,

which holds true if

AvC = Au .

The next result follows by some straightforward computation.
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Fig. 4. A quartic PN surface determined by (36) and (37) for (u, v) ∈ [−1, 1] × [−1, 1] (left), and a quartic PN surface determined by (36) and (38) for 
(u, v) ∈ [−1, 1] × [−1, 1] (right).

Theorem 2. Suppose that the coefficients in a quaternion polynomial (1) satisfy

( j + 1)Ai, j+1C = (i + 1)Ai+1, j, i = 0,1, . . . ,n − 1, j = 0,1, . . . ,n − 1 − i,

for some nonzero quaternion C = (
c0, (0,0, c3)

T
)
, and let

U2(u, v) =
(

0, (α3,α4,0)T
)

+ C
(

0, (γ3, γ4,0)T
)

u +
(

0, (γ3, γ4,0)T
)

v,

U1(u, v) = CU2(u, v).

Then a parametric surface S , defined by (5) and (13) is a PN surface of degree 2n + 2 with N = e3 .

6. Mean curvature of the derived PN surfaces

The coefficients of the first and the second fundamental form of PN surfaces derived from (3) are equal to

E = ‖U1‖2 ‖A‖4 , F = U1 · U2 ‖A‖4 , G = ‖U2‖2 ‖A‖4 ,

L = 2vec
(
(AuU1 +A (U1)u)A

) · N,

M = 2vec
(
(AvU1 +A (U1)v)A

) · N,

N = 2vec
(
(AvU2 +A (U2)v)A

) · N,

where N is the unit normal. The next lemma reveals the values of the mean curvature for particular PN surfaces given in 
Theorem 1 and in Theorem 2.

Lemma 6. Let a PN surface be given by Theorem 1 for an odd degree or by Theorem 2 for an even degree surface. Then its mean 
curvature is identically zero.

Proof. It is easy to see that the mean curvature is identically zero iff

E N + GL − 2F M ≡ 0. (39)

Note that AvU1 =AuU2 for both types of the PN surfaces. Then

E N = 2‖U1‖2 ‖A‖4 vec
((

AvU1 (U1)
−1 U2 +A (U2)v

)
A

)
· N

= 2‖A‖4 vec
((
AvU1U1U2 +A (U2)v

)
A

) · N,

GL = 2‖U2‖2 ‖A‖4 vec
((

AuU2 (U2)
−1 U1 +A (U1)u

)
A

)
· N

= 2‖A‖4 vec
((
AuU2U2U1 +A (U1)u

)
A

) · N

= 2‖A‖4 vec
((
AvU1U2U1 +A (U1)u

)
A

) · N,
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and thus

E N + GL − 2F M =
2‖A‖4 vec

(
AvU1

(
U1U2 + U2U1 − 2

(
U1 · U2,0T

))
A

)
· N +

+ 2‖A‖4 vec
(
A

(
‖U1‖2 (U2)v + ‖U2‖2 (U1)u − 2U1 · U2 (U1)v

)
A

)
· N .

It is straightforward to see that

U1U2 + U2U1 − 2
(
U1 · U2,0T

)
= 0.

For odd degree surfaces the quaternions U1 and U2 are constant and (39) holds true. For even degree surfaces relations 
(U1)v = (U2)u and U1 = CU2 imply

‖U1‖2 (U2)v + ‖U2‖2 (U1)u − 2U1 · U2 (U1)v =(
‖U2‖2 (

C + C
) − 2

(
U1 · U2,0T

))
(U2)u = 0

which completes the proof for even degrees too. �
By Lemma 6 cubic PN surface (19), quintic PN surface determined by (25) and degree four PN surface determined by 

(36)–(37) belong to a class of minimal surfaces. Note that there exist also minimal PN surfaces which are not defined 
by Theorem 1 or by Theorem 2. Such surfaces can be for example constructed by choosing functions ϕi of higher degrees. 
Examples of PN surfaces that are not minimal are a P 3 surface, surface (22) and a quartic PN surface given by (36) and (38).

7. Interpolation example

To show the practical value of the derived surfaces an interpolation scheme with PN surfaces of degree four and five is 
proposed. Suppose that three points P i , i = 0, 1, 2, and three normal directions N i , ‖N i‖ = 1, i = 0, 1, 2, are given. The task 
is to find the PN surface S , such that

S(ui, vi) = P i, N(ui, vi) = N i, i = 0,1,2,

where (u0, v0) = (0, 0), (u1, v1) = (1, 0), (u2, v2) = (0, 1). Suppose first that S is of degree five, obtained by Theorem 1. 
From the interpolation of normal directions one obtains

A(ui, vi) = λiX (N i, φi), φi ∈ [−π,π), i = 0,1,2, (40)

where

X (N i, φi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√‖N i‖

N i‖N i‖ + k∥∥∥ N i‖N i‖ + k
∥∥∥ (cosφi + k sin φi) ,

N i‖N i‖ �= −k

√‖N i‖ i (cosφi + k sin φi) ,
N i‖N i‖ = −k

is a solution of a well known ‘star-equation’ (Farouki et al., 2002). Therefrom, A0,0, Q1 and Q2 are expressed by four 
parameters αi and six new free parameters, i.e., normal lengths λi and the angles φi , i = 0, 1, 2. Interpolation of a point P 0
is obtained by setting S(0, 0) = P 0. The remaining two points imply six nonlinear scalar equations.

As an example let us choose

P 0 = (0,0,0)T , P 1 = (−24,24,−18)T , P 2 = (−27,−42,10)T ,

N0 = 1√
437

(−6,1,20)T , N1 = 1√
113

(−10,−3,2)T , N2 = 1

3
√

11
(−7,7,1)T .

We can fix four parameters and compute the remaining by a Newton method. Namely, by choosing φ0 = 0, λi = 7, i = 0, 1, 2, 
one of the solutions is

α1 = 0.5783, α2 = −0.608535, α3 = 0.181048,

α4 = 1.09587, φ1 = 0.218641, φ2 = −0.300473,
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Fig. 5. Interpolating PN surface of degree five (left) and four (right).

which yields

A0,0 =
(

0, (−1.01561,0.169269,6.92386)T
)

,

Q1 =
(

3.01248, (0.932408,−2.24853,−2.30311)T
)

,

Q2 =
(
−0.0481767, (5.40034,−0.948083,2.2529)T

)
.

The corresponding quintic PN surface is shown in Fig. 5, left.
The above interpolation problem can be solved also by quartic PN surfaces, obtained by Theorem 2. In this case two of 

the parameters, coming from (40), can be fixed. By choosing φ0 = 0, λ0 = 5, one of the solutions computed by a Newton 
method is

α1 = 0.158866, α2 = 1.46099, α3 = 2.03928, α4 = 0.234132, λ1 = 7.1611,

λ2 = 5.4437, φ1 = 0.258336, φ2 = 0.179764, c0 = 0.434869, c3 = −1.12697,

A0,0 =
(

0, (−0.725438,0.120906,4.94562)T
)

,

Q1 =
(
−0.721999, (−1.35286,2.88051,−0.972605)T

)
and the corresponding quartic PN surface is shown in Fig. 5, right.

Since nonlinear equations are involved the analysis of both interpolation schemes is beyond the scope of this paper and 
might be an interesting topic for future research. Note also that cubic PN surfaces unfortunately do not offer enough degrees 
of freedom to tackle this interpolation problem.

8. Conclusion

Although polynomial surfaces with rational field of unit normal vectors are important in practical applications, not much 
results about these surfaces is known. The present paper introduces a new approach for a construction based on bivari-
ate quaternion polynomials. Particular relations between the quaternion coefficients are derived that allow us to construct 
polynomial PN surfaces of degrees 2n + 1 and 2n + 2 from degree n quaternion polynomial. As in the curve case such a rep-
resentation could be particularly useful if the interpolation with PN surfaces is considered. The analysis of the interpolation 
scheme with quartic and quintic PN surfaces, proposed in Section 7, is left for a future research. Also the extension to inter-
polating PN G1 splines over triangulations might be a useful topic to study. It would also be interesting for the future work 
to examine whether polynomials g1 and g2, defined in (3), that satisfy (4), could be constructed using ϕi being rational 
functions or polynomials of higher degrees. This may lead to find a full description of all polynomial PN parameterizations 
at least for some low degrees, which is still an open problem.
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Bastl, B., Jüttler, B., Kosinka, J., Lávička, M., 2008. Computing exact rational offsets of quadratic triangular Bézier surface patches. Comput. Aided Des. 40 (2), 
197–209.
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Lávička, M., Vršek, J., 2012. On a special class of polynomial surfaces with Pythagorean normal vector fields. 6920, 431–444.
Oprea, J., 2007. Differential Geometry and Its Applications, 2nd edition. Classroom Resource Materials Series. Mathematical Association of America, Wash-

ington, DC.
Pelosi, F., Farouki, R.T., Manni, C., Sestini, A., 2005. Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics. Adv. Comput. Math. 22 (4), 

325–352.
Peternell, M., Odehnal, B., 2008a. Convolution surfaces of quadratic triangular Bézier surfaces. Comput. Aided Geom. Des. 25 (2), 116–129.
Peternell, M., Odehnal, B., 2008b. On generalized LN-surfaces in 4-space. In: ISSAC 2008. ACM, New York, pp. 223–230.
Pottmann, H., 1995. Rational curves and surfaces with rational offsets. Comput. Aided Geom. Des. 12 (2), 175–192.
Sampoli, M.L., Jüttler, B., 2000. Hermite interpolation by piecewise polynomial surfaces with rational offsets. Comput. Aided Geom. Des. 17 (4), 361–385.
Ueda, K., 1998. Pythagorean-hodograph curves on isothermal surfaces. In: The Mathematics of Surfaces, VIII. Birmingham, 1998. Info. Geom., Winchester, 

pp. 339–353.

http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4661726F756B692D4D616E6E692D53657374696E692D47312D47322D50482D7175696E746963732D32303033s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib48616E2D6E6F6E6578697374656E6365s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4A7574746C657231393938s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4A7574746C657231393938s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4B696D4777616E67504870726573657276696E67s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib52504843757276657332303134s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4B776F6E2D5048s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4B776F6E2D5048s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4C617669636B615F426173746C5F726174696F6E616C5F636F6E766F6C7574696F6E73s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib504E73757266616365735F426173746C5F4C617669636B615F32303038s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4C617669636B61567273656B32303132s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4F707265615F446966666572656E7469616C5F67656F6D746572795F626F6F6Bs1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4F707265615F446966666572656E7469616C5F67656F6D746572795F626F6F6Bs1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4661726F756B692D65742D616C6C2D7370617469616C2D5048s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4661726F756B692D65742D616C6C2D7370617469616C2D5048s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib436F6E766F6C7574696F6E537572666163657332303038s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4C4E696E347370616365s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib506F74746D616E6E5F525048s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib4A7574746C657253616D706F6C6932303030s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib556564615F49736F746865726D616C5375726661636573s1
http://refhub.elsevier.com/S0167-8396(16)30054-1/bib556564615F49736F746865726D616C5375726661636573s1

	A quaternion approach to polynomial PN surfaces
	1 Introduction
	2 Preliminaries
	3 General approach to polynomial PN surfaces
	4 Construction of polynomial PN surfaces of odd degree
	4.1 Cubic polynomial PN surfaces
	4.2 Quintic polynomial PN surfaces

	5 Construction of polynomial PN surfaces of even degree
	5.1 Quartic polynomial PN surfaces
	5.2 Particular even degree polynomial PN surfaces

	6 Mean curvature of the derived PN surfaces
	7 Interpolation example
	8 Conclusion
	References


