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An inverse kinematics solution of a redundant 7R serial chain that mimics the human arm
is presented. Such manipulators are composed of two spherical wrists with one revolute
joint in between. In the case of non-redundant manipulators the inverse kinematics yields
a discrete set of solutions for the joint axes to reach a given end effector position and
orientation. For redundant arms, however, the solution consists of a one parameter set. In
contrast to other solutions to this problem herein a closed form solution is given without
the need of specifying the design, task nor the redundant parameter in the solution
process. That gives the possibility to use the degree of freedom provided by the additional
joint for different applications, such as avoiding singularities, joint limits and collisions or
to apply an optimization algorithm to achieve, for example, minimal joint velocities or joint
movements.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The motivation for studying a redundant anthropomorphic robot arm was to compute a closed form inverse kinematic 
solution that gives the possibility to use all opportunities the redundancy of the arm enables. Herein the inverse kinematics, 
the task of computing the joint parameters to given task poses (position and orientation) in Cartesian space, is solved. 
Overall redundant manipulators offer many advantages over non-redundant ones that can be used in different ways to 
avoid singularities, joint limits or collisions.

As regards collision one may apply any of a variety of “envelope” intrusion detection techniques that surround actual 
links of the device, e.g., sphere “bubbles”. A specific example of these types of avoidance procedures is found in Ketchel 
and Larochelle (2004). Applying these to redundant manipulators is a two-edged sword. On one hand the manipulator is 
better equipped to avoid such problems. On the other, more collision, singularity or joint limit avoidance tests must be 
carried out, again, because of the extra links and joints. The inverse kinematics solution exposed herein permits parametric 
representation of separation distance so once a pose trajectory is selected it is possible to detect regions to be modified 
a-priori rather than carrying out detection computations repeatedly as discrete snap-shots along the way.

Furthermore a good closed form solution can be taken as a starting point for an optimization algorithm to reach, for 
example, minimal joint velocities or joint movements during a motion of the end effector system.

The manipulator dealt with in this article consists of two spherical wrists, each consisting of three perpendicular axes 
intersecting in one point, and a single revolute joint in between. Because of the fact, that in general six joints for a serial 
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List of symbols

ai length of i-th link
di offset on the i-th joint
αi angle from joint i to i + 1
θi joint angle of i-th joint
vi tangent half of θi
W wrist center point
S shoulder center point

EE end effector matrix
ti entries of translation in EE
aij entries of rotation in EE
Mi rotation matrix of joint i
Gi DH transform. i → i + 1
ei rotation quaternion of EE
E center of elbow joint

Table 1
DH parameters of the robot.

i ai di αi (deg)

1 0 0 90
2 0 0 90
3 0 d3 90
4 0 0 90
5 0 d5 90
6 0 0 90
7 0 0 0

manipulator would be enough to handle the Cartesian six degrees of freedom this manipulator with seven revolute axes 
is redundant. Its inverse kinematics can be divided into two tasks, a positioning and an orientational part, similarly to the 
solutions for wrist partitioned 6R manipulators shown in Angeles (1997), Pfurner (2009) and for the positioning part in 
Zsombor-Murray and Gfrerrer (2009).

There exist procedures to solve the inverse kinematics, for example presented in Moore and Oztop (2010) or in Wang 
and Artemiadis (2013). Similarly in Dahm and Joublin (1997), Asfour and Dillmann (2003) or in Singh and Claassens (2010)
different methods for the solution of the inverse kinematics were applied but on a slightly different design in each case. 
In Al-Faiz et al. (2011) a combination of an analytical and a nonlinear optimization was used to solve the problem. Most 
of the articles concerning the issue of inverse kinematics of these types of manipulators apply numerical algorithms to the 
problem, but herein the approach is symbolic.

Using methods presented in aforementioned works one must substitute a numerical value for the redundant parameter 
throughout the solution algorithm to achieve discrete solutions for the inverse kinematics task. To the best of the authors 
knowledge this is the first time where a complete solution is presented without the need of setting a redundancy parameter 
to a special value before calculating the final solution.

This paper will proceed as follows. Section 2 shows the manipulator architecture to be considered. Section 3, together 
with its subsections, deal with the inverse kinematics solution. To demonstrate the power of this solution Section 4 gives 
numerical examples. Section 5 contains conclusions and suggests extension to this work including some problems that 
remain in this regard.

2. Manipulator geometry

The design of the manipulator is given by Denavit Hartenberg (DH) (Denavit and Hartenberg, 1955) parameters as shown 
in Table 1.

All axes of the revolute joints are perpendicular to the adjacent ones. The origin of the base frame (xb, yb, zb) is centered 
in the first wrist center point (intersection of axes one, two and three) and the z-axis coincides with the first axis. The x-axis 
lies perpendicular to the plane spanned by the first and second axis in the home position, i.e., where all joint parameters 
are equal to zero. In this configuration all axes lie in the yz plane. The origin of the end effector (xe, ye, ze) frame is chosen 
on the second wrist center (intersection of axes five, six and seven), the z-axis coincides with axis seven and the x-axis 
is perpendicular to the plane spanned by axes six and seven in the home position. Because of this special choice of the 
end effector frame the last row of Table 1 is zero. This entry is nevertheless retained in the table to permit consistent 
formulation of symbolic expressions to be introduced here. A pictorial schematic of the manipulator is given in Fig. 1, left 
side. Note that in this home configuration the axes of joints one and three as well as the axes of joints five and seven 
coincide.

Without loss of generality one can always choose this base and end effector frame. Other choices invoke transformations 
of the manipulators reference frame and the given end effector pose only and do not effect the solution but incur unnec-
essary computation. These changes of the frames can be embedded into the given end effector pose to achieve the starting 
point of these calculations.

Instead of the joint angles θi sometimes the corresponding algebraic value, using the tangent half angle substitution 
vi = tan(

θi ), is used.
2
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Fig. 1. Schematic sketch and picture of the manipulator in the home configuration.

The redundancy of this special anthropomorphic robot arm is the rotation around the axis connecting the two wrist 
center points. In an arbitrary redundant 7R manipulator all six degrees of freedom would remain even if one of the revolute 
axes is blocked. In contrast the redundancy of this special manipulator is degenerated. It looses a degree of freedom by 
blocking the fourth revolute joint, which would constrain the wrist center point to move on a sphere. In the following 
sections this manipulator will be analyzed.

3. Inverse kinematics

The inverse kinematics is the problem of mapping the task of the robot in Cartesian space into the joint space such that 
the robot can reach the given end effector pose using the joint values thus obtained.

The end effector pose with respect to the base frame is given by

EE =

⎛
⎜⎜⎝

1 0 0 0
t1 a11 a12 a13
t2 a21 a22 a23
t3 a31 a32 a33

⎞
⎟⎟⎠ , (1)

where the first column is the translational part and the lower right 3 × 3 matrix is a proper orthogonal matrix and gives 
the orientation of the end effector frame with respect to the base frame.

Then the problem of the inverse kinematics is to solve the matrix equation

7∏
i=1

Mi(θi)Gi(ai) = EE (2)

with

Mi =

⎛
⎜⎜⎝

1 0 0 0
0 cos(θi) sin(θi) 0
0 − sin(θi) cos(θi) 0
0 0 0 1

⎞
⎟⎟⎠ (3)

and

Gi =

⎛
⎜⎜⎝

1 0 0 0
ai 1 0 0
0 0 cos(αi) sin(αi)

d 0 − sin(α ) cos(α )

⎞
⎟⎟⎠ . (4)
i i i
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Fig. 2. Manipulator in an arbitrary configuration. The dotted lines show the axes of the revolute joints.

The robot under consideration is a combination of two spherical wrists, i.e., two times three mutually intersecting revo-
lute joints and an additional revolute one, joint four, between them to handle the distance of the two wrist center points. 
Subsequently we will call the two spherical joints ‘shoulder’ and ‘wrist’ whereas the intermediate revolute joint will be 
called ‘elbow’. The centers of shoulder and wrist will be denoted by S and W and the common point of axes 3, 4 and 5 by 
E (see Fig. 2).

By reformulating Eq. (2) as

M1G1M2G2M3G3M4G4 = EE G−1
7 M−1

7 G−1
6 M−1

6 G−1
5 M−1

5 (5)

one splits the manipulator in two parts. The left hand side is a 4R-chain, fixed in the base frame of the initial robot, and 
the right hand side is a spherical wrist fixed in the prescribed end effector pose. The left part takes care of the correct 
positioning of the point W and the right part carries out the orientational task. Therefore the inverse kinematics can be 
divided into a positional task using axes one to four and an orientational task by using the remaining three axes.

The following subsections will show the solution process for the inverse kinematics problem of the prescribed mecha-
nism in a sequence, but the solution at the end will be implicit equations for the joint angles depending on an arbitrary 
design, end effector and redundancy parameter, i.e., without setting any numerical value.

3.1. Joint angle four

Because only r4 can alters the distance between wrist centers this joint angle can be computed immediately via triangle 
S E W . If a pose is given all side length of this triangle are known and the tangent half angle of joint four can be calculated 
using the formula

tan
α

2
= ±

√
(s − b)(s − c)

s(s − a)
, (6)

where s is half of the triangle circumference, a, b and c are the lengths of its edges and α is the angle opposite to side a. 
Therefore revolute angle four can be derived as

v4 = ±
√

−d2
3 − 2d3d5 + d2

5 − t2
1 − t2

2 − t2
3

d2
3 + 2d3d5 + d2

5 − t2
1 − t2

2 − t2
3

, (7)

where d3 is the offset on the third and d5 the offset on the fifth axis.

3.2. Joint angles one, two and three

After having adjusted the distance of wrist and shoulder by means of v4 the next task is to guide the wrist center 
to its desired position using the first three revolute axes. Geometrically this means to position W on a sphere. Here the 
redundancy has to be taken into account because for the two degrees of freedom of the task three axes can be used.

Therefore the value of the position of the origin of the moving frame (depending on the first three joint angles vi , 
i = 1, 2, 3), together with the desired position, yields a redundant system of three equations in three unknowns. Using this 
special choice of base coordinate frame the third equation, which is in fact the equation for the z-value of the position, 
is independent of v1. This is clear because this joint only rotates around the z-axis and has therefore no influence on the 
z-value of any point of the manipulator. Using this equation it is possible to compute one of the two angles v2 or v3 in 
dependency on the other one. Without loss of generality we will consider the second joint value v2 as the free parameter 
(vice versa one could also compute v2 as function of v3) and compute v3 as

v3(v2) = ±
√

−k1 + 4d5 v2 v4

k1 − 4d5 v2 v4
(8)

where
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Fig. 3. Top view of the partial solution of angles two, three and four.

k1 = v2
2 v2

4(d3 + d5 − t3) + v2
2(d3 − d5 − t3) + v2

4(−d3 − d5 − t3) − d3 + d5 − t3. (9)

For a discrete value of v2 Eq. (8) gives for each value of v4 two values of v3 which only differ in the sign. As one can see 
in Eqs. (8) and (9) the negative value of v4, to the same value of v2, causes the reciprocal values of v3.

Depending on the free parameter v2 and the solution for angle v3 in Eq. (8) the first revolute angle can be calculated. 
For this purpose one can substitute the solutions of angles two to four into the forward kinematics of the first four axes 
(left hand side of Eq. (5)) and set the first revolute angle to zero. The angle in the top view between the rays

w = 2v2d3

v2
2 + 1

+
(

2(1 − v2
2)(−v2

3 + 1)v4

(v2
2 + 1)(v2

3 + 1)(v2
4 + 1)

− 2v2(1 − v2
4)

(v2
2 + 1)(v2

4 + 1)

)
d5 − 4v3 v4d5

(v2
4 + 1)(v2

3 + 1)
(10)

pointing from the origin to this position W and the desired position t = [t1, t2]T is exactly the revolute angle of the first 
joint, like shown in Fig. 3. This yields

v1(v2) =
4v3 v4d5(v2

2 + 1)(

√
t2

1 + t2
2 + t1) + t2k2

−4v3 v4d5t2(v2
2 + 1) + k2(

√
t2

1 + t2
2 + t1)

(11)

with

k2 =
√

t2
1 + t2

2(v2
2 + 1)(v2

3 + 1)(v2
4 + 1) + 2v4d5(1 − v2

3)(1 − v2
2) + 2(v2

3 + 1)v2(d3(v2
4 + 1) + d5(1 − v2

4)). (12)

If W is located on the axis of the first revolute joint, meaning t1 = t2 = 0, Eq. (11) does not yield a valid solution. In this 
special case the angle for the first revolute axis is not determined uniquely and can be chosen arbitrarily. This gives an 
additional degree of freedom in this special case. If W is located on the axis of the third revolute joint v4 → ∞ which 
means that the angle of the fourth revolute joint is equal to π . This additionally implies that the axes of the third and the 
fifth joint are aligned. In such a configuration the manipulator’s arm is in a stretched position, where v3 can be chosen 
arbitrarily. In general cases Eqs. (7), (8) and (11) yield four one parameter sets of solutions to guide point W in the desired 
position given by the first column of the end effector matrix in Eq. (1). The parameter v2 can, at least theoretically vary in 
the range (−∞, ∞), which corresponds to the range (−π, π) for the joint angle θ2, or practically within its joint limits.

On the other hand Eq. (8) defines for every value of v4 two explicit curves in the v2 v3 plane, altogether 4 curves. 
Because of the structure of this explicit equation the real parts of the two implicit curves to the same sign of v4 meet at 
the v2 axis and are reflections of each other with respect to the same axis. By taking the square of Eq. (8) one can eliminate 
the radical to get

k1(v2
3 + 1) − 4d5 v2(v2

3 − 1)v4 = 0, (13)

with k1 defined in Eq. (9). Therefore for a given value of v4 this single algebraic curve describes the relation between v2
and v3.
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3.3. Joint angles five, six and seven

In the third step one has to substitute the solution for the first four joint angles computed in Subsections 3.1–3.3 in the 
forward kinematics of the chain determined by the first four axes to achieve

M1G1M2G2M3G3M4G4 = FW4. (14)

Then Eq. (2) can be rewritten in the form

M5G5M6G6M7G7 = FW−1
4 EE. (15)

This matrix equation is the mathematical description of the inverse kinematics of a spherical canonical 3R-chain, meaning 
that the common point of intersection is positioned in the center of the base frame and the moving frame, which coincide. 
Using the theory in Husty et al. (2007) it is possible to compute the solutions to this problem right away as

v5 =
e0e2 + e1e3 ±

√
(e2

1 + e2
2)(e2

0 + e2
3)

e0e1 − e2e3
, v6 = ∓

√
(e2

1 + e2
2)(e2

0 + e2
3)

e2
1 + e2

2

,

v7 =
(−e0e2 + e1e3 ±

√
(e2

1 + e2
2)(e2

0 + e2
3)

e0e1 + e2e3
, (16)

where (e0, e1, e2, e3) is a quaternion representing the rotational part of F W −1
4 E E . In the special case of e1 = e2 = 0, which 

means a pure rotation around the z-axis of the base frame, these formulas have to be adapted because they do not yield 
valid solutions. This can be done using the theory in Husty et al. (2007). To every solution for the first four joint angles 
of the manipulator one achieves one matrix equation like Eq. (15). This yields two solutions for the remaining joint angles 
in Eq. (16). Therefore for a discrete value of the redundancy parameter v2 one achieves up to eight real solutions for the 
inverse kinematics problem.

4. Numerical example

First of all a design has to be fixed. Choosing d3 = 3 and d5 = 5 the upper and forearm are established.

4.1. Solution to a discrete pose

To be certain that the algorithm yields correct solutions it is always advisable to start with a known solution obtained 
via direct kinematics and use that end effector pose as a test of the inverse kinematic procedure. But that is only the first 
step. The whole set of solutions is verified by substitution in the forward kinematics to reach the prescribed end effector 
pose. Here this known solution

v1 = − 1

91
, v2 = 7

11
, v3 = 1

5
, v4 = 11

7
, v5 = 1

3
, v6 = 23, v7 = 13

17
(17)

yields the end effector pose

EE =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
99055033
15557737

85256419116
944121269845

2908270221593
4720606349225

948838668
1212588325

− 146433441
77788685

−152385564777
188824253969

477406432716
944121269845 − 73965584

242517665
30432
18785 − 133051168

227993545 − 688479564
1139967725

158961
292825

⎞
⎟⎟⎟⎟⎠ . (18)

Substitution of the design and end effector pose Eq. (18) into the solutions given by Eqs. (11), (8), (7) and (16) yield all 
the one parameter sets of solutions to this discrete end effector pose. One of these solutions is

v1 = 272076123v3v2
2 − 704673970v3v2 − 524113947v3 − 292866882v2

272076123v2
2 + 990550330v2 + 524113947

,

v3 = −
√

−65703v2
2 + 170170v2 − 126567

65703v2
2 − 170170v2 − 126567

, v4 = 11

7
, (19)

however the equations for v5, v6 and v7 are too long to be useful. Each solution set corresponds to implicit curves in 
the joint parameter spaces vi(v2), i ∈ [1, 3, 4, 5, 6, 7]. All these curves are drawn in Fig. 4, where the angles are measured 
in radians and the vertices of the surrounding boxes mark the values of ±π to each angle, which means that for each 
quadrangle the top and the bottom as well as the left and the right vertices have to be identified. In all of these six 
plots the horizontal axis is the θ2 axis. They have to be read in the following manner: to the given end effector pose 
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Fig. 4. All one parameter solutions θi(θ2) in radians, for i = 1,3,4 in the first row and i = 5,6,7 in the second row.

Table 2
All solutions with assumption v2 = 7

11 with w1 = √
7487252803099413873769.

Nr. v1 v3 v4 v5 v6 v7

1 − 20119
70904 − 1

5
11
7

201464672
319666665 − w1

73203666285
w1

9519168409 − 75903633555−w1
41543846912

2 − 20119
70904 − 1

5
11
7

201464672
319666665 + w1

73203666285 − w1
9519168409 − 75903633555+w1

41543846912

3 − 1
91

1
5

11
7

1
3 23 13

17

4 − 1
91

1
5

11
7 −3 −23 − 17

13

5 − 1
91 −5 − 11

7 −3 23 13
17

6 − 1
91 −5 − 11

7
1
3 −23 − 17

13

7 − 20119
70904 5 − 11

7
201464672
319666665 + w1

73203666285
w1

9519168409 − 75903633555−w1
41543846912

8 − 20119
70904 5 − 11

7
201464672
319666665 − w1

73203666285 − w1
9519168409 − 75903633555+w1

41543846912

in Eq. (18) all solutions for a given θ2 can be found by intersecting these curves in Fig. 4 with the line θ2 = const . Of 
course in this direction by using the intersection of the curves one has to figure out which intersection in the first plot 
corresponds to which intersection in the second plot and so on, whereas the formulas in Section 3 yield, of course, the 
correct corresponding tuples for the solution.

To achieve the starting and all corresponding solutions we have to substitute v2 = 7
11 into Eqs. (19) or, on the other 

hand, intersect the curves in Fig. 4 with the corresponding line to the angle θ2 = 22.62◦ . All solutions are shown in Table 2.

4.2. Solution to a motion of the end effector

Maybe the greatest advantage of this inverse kinematics solution is that the end effector pose is general. Therefore it is 
also possible to compute the joint angles to a given motion of the end effector. For example the matrix
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Fig. 5. Solutions to a one parameter motion of the end effector for v1(v2, p) (left), v3(v2, p) (middle), v4(p) (right).

EEmotion =

⎛
⎜⎜⎝

1 0 0 0
p 1 0 0

p + 7 0 1 0
1
2 p − 1 0 0 1

⎞
⎟⎟⎠ (20)

represents a linear motion of the origin of the end effector where the orientation is equal to the identity. This relatively 
simple motion was chosen to offer the possibility to show some of the solutions. It has to be noted that any motion in 
matrix form could be substituted in the closed form solution, but the resulting equations would become quite unwieldy.

Substitution of Eq. (20) into Eqs. (11), (8), (7) and (16) yield the explicit solutions

v1(v2, p) = (9p2 v2
2 w2 + 18p2 v2 v4 w2 + 40pv2

2 w2 + 104pv2 v4 w2 − 9p2 w2 +
160v2

2 w2 − 112v2v4 w2 + 48pv2 − 64pw2 + 336v2 − 112w2)/

(9p2 v2
2 + 40pv2

2 + 9p2 + 48pv2 + 160v2
2 + 64p + 112) (21)

with

w2 =
√

−(9p2 v2
2 − 18p2 v2 v4 + 40pv2

2 − 104pv2 v4 − 9p2 + 160v2
2+

112v2v4 − 64p − 112)/(9p2 v2
2 + 18p2 v2 v4 + 40pv2

2 + 104pv2 v4−
9p2 + 160v2

2 − 112v2v4 − 64p − 112)

v3(v2, p) =
√

−(9p2 v2
2 − 18p2 v2 v4 + 40pv2

2 − 104pv2 v4 − 9p2 + 160v2
2+

112v2v4 − 64p − 112)/(9p2 v2
2 + 18p2 v2 v4 + 40pv2

2 + 104pv2 v4−
9p2 + 160v2

2 − 112v2v4 − 64p − 112) (22)

and

v4(t) =
√

−9p2 + 52p + 184

9p2 + 52p − 56
. (23)

These Eqs. (21), (22) and (23) are implicit representations of surfaces in the three dimensional space defined by the 
coordinates vi , v2 and t for i = 1, 3, 4. Fig. 5 shows these surfaces for v1(v2, p), v3(v2, p) and v4(v2, p) from left to right.

To follow this motion, where p varies in [p0, p1] one has the possibility to choose a curve on one of the surfaces 
vi(v2, p), i ∈ [1, 3, 4, 5, 6, 7], with a starting point in the plane p = p0 and an endpoint in the plane p = p1. If the mecha-
nism should pass the motion with an increasing or strictly increasing parameter p these curves should also be defined in a 
way with an increasing or strictly increasing parameter p. For simplicity the curve could be defined by the implicit param-
eterization v2 = v2(p), which immediately induces a curve on each of the surfaces. The solutions to the inverse kinematics 
problem along this path is then given by the curves vi(v2(p), p). A change of the parameterization of v2 = v2(p) admits 
the possibility to vary the configuration during the motion.

5. Conclusion

A new and efficient algorithm for the solution of the inverse kinematics problem of a redundant anthropomorphic robot 
arm has been revealed herein. It yields a complete closed form solution such that the design and, much more important, 
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the end effector pose remains general. This provides the opportunity to achieve joint functions depending on the redun-
dancy and motion parameter of the end effector. This feature can be used in multiple applications, for example in collision 
avoidance, in motion planning for preventing to run into joint limits or to optimize motion of the mechanism for given 
paths. This article only provides the theoretical tool for solving the inverse kinematics problem of the robot arm. This al-
gorithm will be used in an application involving two such SRS robots executing intricate planned tasks so as to exploit the 
capabilities offered by redundancy.
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