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We extend the quaternionic kinematic mapping of Euclidean displacements of Euclidean 
4-space E4 to the group of equiform transformations S(4). As a consequence the equiform 
motions of basic elements (points, oriented lines, oriented planes, oriented hyperplanes) of 
E4 can be written compactly in terms of 2 × 2 quaternionic matrices. This representation 
is extended to oriented line-elements of E4 and to instantaneous screws of S(4), for which 
a classification (incl. corresponding normal forms) is given. Based on this preparatory work 
we study the relation between instantaneous equiform motions and the geometry of line-
elements (path normal-elements, path tangent-elements) in E4. Finally, we show that the 
line-elements of projective 3-space can be mapped bijectively on the Segre variety �3,2.
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1. Introduction

This paper can be seen as a logical sequel to the author’s work (Nawratil, 2016), which we will reference a few times in 
order to avoid unnecessary replications.

The composition of Euclidean displacements (= orientation preserving congruence transformations) and uniform scalings 
with a scale-factor α yields the group S(n) of equiform transformations of n-dimensional Euclidean space En (Bottema and 
Roth, 1979, §3 of Chapter 12).

The geometric object of a line combined with a point on it is called a line-element. It is a partial flag and also known as 
pointed line in the literature.

The elegance of the quaternion based analytical treatment of kinematics in Euclidean spaces of dimension 2 and 3 was 
pointed out and used by various authors (e.g. Blaschke, 1960; Müller, 1962; Ströher, 1973). Recently Nawratil (2016) ex-
tended this quaternionic kinematic to E4. Based on these results we give a quaternionic kinematic mapping for equiform 
motions in E4 and E3 and study the corresponding point models (cf. Section 2). As a consequence the equiform trans-
formations of points, oriented lines, oriented planes and oriented hyperplanes of E4 can be written compactly in terms 
of 2 × 2 quaternionic matrices. Moreover we show that the transformation of oriented line-elements of E4 can also be 
represented in this way. In Section 3 we proceed with a detailed study of instantaneous equiform motions of E4, which 
results in a quaternionic definition of instantaneous screws of S(4) and their classification (incl. normal forms). Moreover 
the equiform transformation of these screws can also be embedded into the algebra of 2 × 2 quaternionic matrices. Inspired 
by the publication of Odehnal et al. (2006) we investigate the relation between equiform kinematics and the geometry of 
line-elements of E4 in the Sections 4 and 5. In detail we define a linear complex of line-elements and show that it equals 
the set of path normal-elements of an instantaneous screw and vice versa. On this basis we extend some known results 
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on path normal-elements from spatial equiform kinematics to 4 dimensions (see Section 5). Moreover we study the set of 
path tangent-elements of an instantaneous screw in Section 5.1. Finally in Section 6 the representation of finite lines of E4

via so-called minimal coordinates is used to show that the line-elements of the projective closure P 3 of E3 can be mapped 
bijectively on the Segre variety �3,2.

But before we can plunge in medias res we have to provide a literature review on spatial equiform kinematics, as no 
compact survey of this topic, which can be referred to, is known to the author.

1.1. Literature review

Bottema and Roth (1979) noted that “not much attention has been given in the literature to spatial equiform kinematics” 
and therefore they reported some basic facts on pages 455–458. Before that time, the author’s literature research yields 
following results:

• To the best knowledge of the author the first explicit result on spatial equiform kinematics was given by Burmester 
(1878, 1902) and reads as follows: All points, which have instantaneously the same velocity under an equiform motion, 
are located on an ellipsoid of rotation, whose center is the velocity pole and its symmetry axis equals the instanta-
neously fixed line. All other given results of Burmester belong to the more general field of spatial affine kinematics.1

• Seiliger (1892) proved that each spatial equiform motion can be composed of a central similarity and a rotation about 
an axis through its center. Further results on this topic were obtained by Pascal (1932) and Di Noi (1934), inter alia that 
each line has a point with a velocity vector orthogonal to it (Pascal, 1932) and that the tangent complex is a quadratic 
one (Di Noi, 1934).

• Moreover the following special equiform motions were studied: Kowalewski (1930) investigated point paths generated 
by an equiform rolling motion of two cylindro-conical spiral curves.2 Wunderlich (1962) studied spatial equiform mo-
tions, where a line slides through a fixed point and a second line (skew to the first one) slides along itself.

Since 1979 the following results of spatial equiform kinematics were published to the best knowledge of the author:

• A lot of work was done on equiform motions with only planar/spherical trajectories, which are so-called equiform 
Darboux/Bricard motions. All equiform Darboux motions were determined by Karger (1981) and Röschel (1991). In 
contrast a complete listing of equiform Bricard motions is still missing, but a subclassification was obtained by Gfrerrer
(2008), which includes the above mentioned motion of Wunderlich (1962). Moreover equiform bundle motions with 
spherical point paths were discussed by Gfrerrer and Lang (1998).

• Pottmann (1984) studied the envelopes of planes under equiform Schönflies motions. Moreover he discussed global 
kinematic properties of spatial equiform motions in Pottmann (1986, 1987). This work was furthered by Hager (1991)
to n dimensions.

• From the application point of view, equiform motions were studied in context of 3D shape recognition and reconstruc-
tion (e.g. Hofer et al., 2005 and Odehnal et al., 2006). Moreover equiform motions were used by Röschel (2000, 2014)
to construct overconstrained mechanisms and to define a performance index for Stewart–Gough platforms (Lang et al., 
2001). In this context also the article of Hamdoon and Abdel-All (2004) on octahedral Stewart–Gough platforms should 
be noted, where spatial equiform motions were studied with three points moving on three circles possessing coplanar 
axes.

No explicit results on S(4) are known to the author, but there are the following on S(n): Somer (1979a) investigated closed 
equiform motion where some points trace one and the same trajectory. Moreover Somer (1979b) studied linear spaces, 
which are instantaneous invariant under S(n). A more detailed study of first order properties of S(n) was done by Spallek
(1992) by generalizing his approach of glide–glide-kinematics to angle-preserving transformations.

2. Quaternionic formulation and kinematic mapping of S(4) and S(3)

We write quaternions, which are printed in bold letters, just side by side for multiplication instead of introducing an 
extra multiplication sign. q0 is the so-called scalar part of the quaternion Q := q0 + q1i + q2j + q3k and q1i + q2j + q3k its 
pure part. By denoting the pure part by the small letter q, the quaternion can also be written as Q := q0 + q. Finally it 
should be noted that the conjugated quaternion to Q is given by Q̃ := q0 − q. For more basics on quaternions we refer to 
Nawratil (2016, Section 1.1), where the same notation is used.

1 Please see Pottmann (1994, page 149) for references to this topic.
2 These spatial curves can be generated as trajectories of spiral motions, which are the most general uniform equiform motions in E3.
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2.1. Fundamentals

First of all we want to sharpen the definition of equiform motions given in the second paragraph of Section 1. The 
given definition yields for even dimensional spaces a double cover of orientation-preserving similarity transformations if 
α ∈ R \{0} holds.3 This choice of α implies for odd dimensions no double cover but we get in addition the set of orientation-
reversing similarity transformations. Note that different conventions/definitions can be found in the literature; especially in 
E3 the equiform motion group is often identified with the group of orientation-preserving similarity transformations (e.g. 
Odehnal et al., 2006), which is denoted by S+(3) within our notation.

Assume that (x0, x1, x2, x3)
T is the Cartesian coordinate vector of a point X in E4, then its image under an equiform 

mapping η can be written in terms of linear algebra as:

η : (x0, x1, x2, x3)
T �→ (x′

0, x′
1, x′

2, x′
3)

T = αA(x0, x1, x2, x3)
T + (a0,a1,a2,a3)

T

with the scaling factor α ∈R \ {0} and the rotation matrix A ∈ SO(4) (Bottema and Roth, 1979, §3 of Chapter 12).
If we embed the point X of E4 into the set of quaternions by the mapping:

ι4 :R4 →H with (x0, x1, x2, x3) �→ X := x0 + x1i + x2j + x3k

then η ∈ S(4) can be written in terms of quaternions as follows according to Nawratil (2016, Theorem 2.6):

Theorem 1. The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element of S(4) can be written as:

X �→ X′ with X′ := EX̃F − 2ẼT (1)

with the unit-quaternion E and ‖F‖ �= 0. Moreover the mapping of Eq. (1) is an element of S(4) for any triplet of quaternions E, F, T, 
where E is a unit-quaternions and ‖F‖ �= 0.

As both triplets of quaternions ±(E, F, T), where E is a unit-quaternion, correspond to the same equiform motion of 
E4 we consider the homogeneous 12-tuple (e0 : . . . : e3 : f0 : . . . : f3 : t0 : . . . : t3), which can be written abstractly in a 
quaternionic representation as (E : F : T). These 12 homogeneous motion parameters for E4 can be interpreted as a point 
of a projective 11-dimensional space P 11. Therefore there is a bijection – the so-called kinematic mapping – between S(4)

and the set S4 of real points of P 11, which are not located in one of the two 7-dimensional spaces e0 = e1 = e2 = e3 = 0
and f0 = f1 = f2 = f3 = 0, respectively. These spaces need to be removed as E cannot be normalized and ‖F‖ = 0 holds, 
respectively.

If we identify E3 with the hyperplane x0 = 0, the set S3 of all points of S4 fulfilling

f0 : e0 = f1 : e1 = f2 : e2 = f3 : e3 (2)

and the condition that no translation is done in direction of x0 (⇔ a0 = 0), map the hyperplane x0 = 0 onto itself. Note that 
a0 = 0 equals the so-called Study condition

e0t0 + e1t1 + e2t2 + e3t3 = 0. (3)

Therefore there is a bijection – the so-called kinematic mapping – between S(3) and the points of S3, which is studied in 
more detail next. The condition given in Eq. (2) can be formulated algebraically by the set of equations:

ei f j − ei f j = 0 for i < j and i, j ∈ {0,1,2,3} .

The Hilbert-polynomial of the ideal I generated by these 6 equations together with the Study equation (3) can be computed 
as

p(t) = 1
630 t7 + 11

360 t6 + 11
45 t5 + 19

18 t4 + 479
180 t3 + 1409

360 t2 + 433
140 t + 1.

Therefore S3 is an algebraic variety V (I) of dimension 7 and degree4 8 in P 11, which is sliced along the two 7-dimensional 
spaces e0 = e1 = e2 = e3 = 0 and f0 = f1 = f2 = f3 = 0. The first space is completely contained in V (I) in contrast to the 
second one, which intersects V (I) in a quadric given by Eq. (3).

Remark 1. In comparison to S4 the point-model5 S3 for S(3) is much more complicated, but until now no simpler one is 
known to the author. In this context it should be noted that another interesting approach for the description of S(3) was 
done in Combebiac (1902, pages 23–28) based on so-called tri-quaternions. Within this framework Combebiac also defined 
a so-called linear element, which can be viewed as an extension of a line-element as it6 “depends upon a point, a segment 

3 The case α = 0 is excluded as it yields a singular transformation.
4 For p(t) = cntn + o(tn) the degree of the variety is computed by n!cn according to Shafarevich (1988).
5 Bijective mapping between S(3) and points within a projective space.
6 The following is cited from Combebiac (1902, page 15).
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(direction and length), and a coefficient (a mass or tensor)”. Therefore this work of Combebiac (1902) seems worth to be 
revisited in future studies on this topic. 	

As S3 is contained in S4 we can restrict to the discussion of S(4) in the following section.

2.2. Composition and representation of equiform motions

Analogously to Nawratil (2016, Section 2.4) the composition η = η2 ◦ η1 of two equiform motions η1, η2 corresponds to 
the multiplication of lower triangular 2 × 2 quaternionic matrices; i.e.:(

E O
T F

)
=

(
E2 O
T2 F2

)(
E1 O
T1 F1

)
.

Moreover in Nawratil (2016, Section 4) it was also shown that the displacements of the basic geometric elements in E4 can 
be formulated in a unified way using 2 × 2 quaternionic matrices. In the following we extend this representation to S(4). 
We embed a point X ∈ E4 and its image X′ ∈ E4 into the set of 2 × 2 quaternionic matrices by

X =
(−1 X

O 1

)
, X′ =

(−1 X′
O 1

)
.

As for an equiform motion (E, F, T) the scaling factor α is given by ‖F‖ > 0 we can define the following quaternionic 
matrices:

D = 1√
α

(
E O
T F

)
, D̃

T = 1√
α

(
Ẽ T̃
O F̃

)
, D̃

−T = 1

α
√

α

(
α2E −ẼTF

O F

)
, (4)

where D̃
−T

denotes the (left and right) multiplicative inverse of D̃
T

. Based on this notation we can formulate the corre-
sponding theorem to Nawratil (2016, Theorem 4.1):

Theorem 2. The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element of S(4) can be written as follows:

X �→ X′ with X′ := D̃
−T

X D̃
T
.

The proof is just done by a multiplication of the quaternionic matrices. Moreover it can be shown by analogous consid-
erations as given in Nawratil (2016, Section 4) that also the equiform motion of oriented lines, planes and hyperplanes can 
be written in a similar fashion. The corresponding theorems7 given in Nawratil (2016, Section 4) also hold for S(4) with 
respect to the matrices given in Eq. (4). In the following we only repeat the results for oriented lines in more detail, as they 
are needed for the study of line-elements later on.

Geometrically we characterize an oriented line −→y by its pedal point C (given by the quaternion C) with respect to the 
origin and by its direction, which can be written as a unit-quaternion Y. Then we can represent −→y by the pair (Y, ̃YC), 
which is the 4-dimensional analogue of the spear coordinates (oriented line coordinates) of E3. Therefore we call the pure 
quaternion ỸC the moment quaternion m := ỸC. Moreover the expression m can be computed from any point X ∈ −→y with 
X = C + ξY as follows:

1
2

(̃
YX − X̃Y

) = 1
2

(̃
YC + ξ − C̃Y − ξ

) = ỸC. (5)

Now we introduce the following notation:

Y =
(

O Y
−Ỹ m

)
, Y′ =

(
O Y′

−Ỹ′ m′
)

,

where Y′ denotes the unit-quaternion in direction of the transformed spear −→y ′
and m′ its moment quaternion. Then the 

above mentioned analogous result to Nawratil (2016, Theorem 4.3) reads as:

Theorem 3. The mapping of oriented lines −→y of E4 to oriented lines −→y ′
of E4 induced by any element of S(4) can be written as 

follows:

Y �→ Y′ with Y′ := D Y D̃
T
.

7 For oriented lines see Nawratil (2016, Theorem 4.3), for oriented planes see Nawratil (2016, Theorem 4.4) and for oriented hyperplanes see Nawratil 
(2016, Theorem 4.2).
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Now we extend the oriented line coordinates (Y, m) of −→y in E4 to those of an oriented line-element (−→y , X). As the 
scalar part of the moment quaternion m is zero we want to insert the information about the point X ∈ −→y at this position. 
Analogously to the method of Odehnal et al. (2006) we use the distance ξ of X to C in direction of −→y . Under consideration 
that ξ = 〈X, Y〉 holds we can define the oriented line-element coordinates by (Y, ξ + m).

Based on the notation:

Z =
(

O O
−2̃Y ξ + m

)
, Z′ =

(
O O

−2̃Y′ ξ ′ + m′
)

,

with ξ ′ = 〈X′, Y′〉 a straightforward computation shows the following result:

Theorem 4. The mapping of oriented line-elements (−→y , X) of E4 to oriented line-elements (−→y ′
, X′) of E4 induced by any element of 

S(4) can be written as follows:

Z �→ Z′ with Z′ := D Z D̃
T
.

3. Instantaneous equiform motions in Euclidean 4-space

Now X contains the coordinates of X with respect to the moving coordinate frame C and X⊕
τ denotes the coordinates 

of X with respect to the fixed frame C⊕ in dependency of the time τ of the constrained motion. According to Eq. (1) the 
following relation holds:

X⊕
τ = Eτ X̃Fτ − 2Eτ T̃τ , (6)

where Eτ , Fτ and Tτ are functions of the time τ . Eq. (6) can be rewritten in terms of 2 × 2 quaternionic matrices (cf. 
Theorem 2) as follows:

X⊕
τ = D̃

−T
τ X D̃

T
τ .

Without loss of generality (w.l.o.g.) we can change the fixed frame from the old C⊕ into the new one C⊗ by an Euclidean 
motion in a way that at time τ = ∗ the moving frame C and C⊗ coincide. This is achieved by the Euclidean transformation 
(Nawratil, 2016):

X⊗
τ = C̃

T
∗ X⊕

τ C̃
−T
∗

with

C̃
T
∗ =

(
Ẽ∗ T̃∗
0 1

α∗ F̃∗

)
, C̃

−T
∗ =

(
E∗ − 1

α∗ E∗̃T∗F∗
O 1

α∗ F∗

)
.

By introducing the notation ̃B−T
τ = C̃

T
∗ D̃

−T
τ and ̃BT

τ = D̃
T
τ C̃

−T
∗ the constrained motion with respect to the system C⊗ is written 

as:

X⊗
τ = B̃

−T
τ X B̃

T
τ ⇐⇒ X⊗

τ = Gτ XH̃τ − 2Gτ Ũτ (7)

with

Gτ = Ẽ∗Eτ , Hτ = 1
α∗ F̃∗Fτ , Uτ = 1

α∗
(̃
F∗Tτ − F̃∗T∗Ẽ∗Eτ

)
.

The advantage of this coordinate transformation is that the geometric properties can be studied in a more compact way.

3.1. Velocity quaternion and instantaneous screw

According to the calculation rules for the differentiation of quaternions, the time derivative of the normalizing condition 
Gτ G̃τ = 1 with respect to τ yields Ġτ G̃τ + Gτ

˙̃Gτ = 0, where the superior dot denotes the time derivative. Evaluation of this 
formula at τ = ∗ implies ġ0(∗) = 0; i.e. Ġ∗ = ġ∗ . Moreover by differentiation of Eq. (7) we get:

Ẋ
⊗
τ = ˙̃B−T

τ X B̃
T
τ + B̃

−T
τ X ˙̃BT

τ ⇐⇒ Ẋ⊗
τ = Ġτ XH̃τ + Gτ X ˙̃Hτ − 2Ġτ Ũτ − 2Gτ

˙̃Uτ .

Its evaluation at time τ = ∗ yields:

Ẋ⊗∗ = α∗ġ∗X + X ˙̃H∗ − 2 ˙̃U∗, (8)

which we call the velocity quaternion of X implied by the equiform motion at time τ = ∗ with respect to the fixed coordi-
nate system C⊗ . Its norm gives the corresponding velocity.
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Table 1
Table of normal forms of instantaneous equiform motions (α∗ġ∗, ̇H∗, ̇U∗) in E4.

Instantaneous Equiform Motion α∗ġ∗ Ḣ∗ U̇∗ with

2-plane spiraling (rotation for s = 0) wi s + (1 − w)i O w ∈ (0,1)

isoclinic left spiraling (rotation for s = 0) i s O
isoclinic right spiraling (rotation for s = 0) o s + i O
1-plane spiraling (rotation for s = 0) 1

2 i s + 1
2 i O

central scaling o 1 O
translation o O − 1

2

1-plane rotation + translation 
parallel to rotation plane

1
2 i 1

2 i − p
2 p �= 0

The matrix representation of Ẋ⊗
∗ reads as:⎛⎜⎜⎝

ḣ0 −α ġ1 + ḣ1 −α ġ2 + ḣ2 −α ġ3 + ḣ3

α ġ1 − ḣ1 ḣ0 −α ġ3 − ḣ3 α ġ2 + ḣ2

α ġ2 − ḣ2 α ġ3 + ḣ3 ḣ0 −α ġ1 − ḣ1

α ġ3 − ḣ3 −α ġ2 − ḣ2 α ġ1 + ḣ1 ḣ0

⎞⎟⎟⎠
∗

⎛⎜⎜⎝
x0
x1
x2
x3

⎞⎟⎟⎠ + 2

⎛⎜⎜⎝
−u̇0

u̇1
u̇2
u̇3

⎞⎟⎟⎠
∗

. (9)

This affine mapping is singular over R if and only if ḣ0(∗) = 0 and α2∗ ġ∗ġ∗ − ḣ∗ḣ∗ = 0 hold, which can easily be seen on 
closer inspection of the determinant of the above given 4 ×4 matrix. Note that ḣ0(∗) = 0 implies an instantaneous Euclidean 
motion, as the differentiation of Hτ H̃τ = α2

τ with respect to τ and its evaluation at time τ = ∗ yields α∗ḣ0(∗) = α̇∗ .

Definition 1. The triplet (α∗ġ∗, Ḣ∗, U̇∗) is called the instantaneous screw $⊗∗ of the equiform motion (Gτ , Hτ , Uτ ) in E4

with ‖Hτ ‖ = ατ at time τ = ∗ with respect to the fixed coordinate system C⊗ . $⊗∗ is called singular if ḣ0(∗) = 0 and 
α2∗ ġ∗ġ∗ − ḣ∗ḣ∗ = 0 holds; otherwise regular.

It can be shown by analogous considerations as given in Nawratil (2016, Section 5) that equiform transformation of 
instantaneous screws can also be embedded into the algebra of 2 ×2 quaternionic matrices, as Nawratil (2016, Theorem 5.4)
also holds for S(4) with respect to the matrices given in Eq. (4).

Remark 2. Note that the linear space of instantaneous screws is nothing but the Lie algebra of the group of similarity 
transformations. 	

3.2. Classification of instantaneous equiform motions in Euclidean 4-space

For ḣ0(∗) = 0 we are in the Euclidean case thus we can refer to Nawratil (2016, Theorem 5.7) (see also Table 1). For 
ḣ0(∗) �= 0 there exists always a unique velocity pole P (= point with zero velocity) due to Section 3.1. W.l.o.g. we can 
assume that the origin of the moving frame equals P (⇒ U̇∗ = O). Then the velocity quaternion simplifies to:

Ẋ⊗∗ = α∗ġ∗X + X ˙̃H∗ =
(
α∗ġ∗X − Xḣ∗

)
+ Xḣ0(∗). (10)

The second term is implied by an instantaneous scaling with center P and scaling velocity ḣ0(∗) and the first term by an 
instantaneous spherical motion with center P. According to Nawratil (2016) the latter can be an instantaneous

(a) rotation about two total-orthogonal planes (⇔ ġ∗ �= o �= ḣ∗ and α2∗ ġ∗ġ∗ − ḣ∗ḣ∗ �= 0),
(b) rotation about one plane (⇔ ġ∗ �= o �= ḣ∗ and α2∗ ġ∗ġ∗ − ḣ∗ḣ∗ = 0),
(c) isoclinic left resp. right rotation (⇔ ġ∗ �= o = ḣ∗ resp. ġ∗ = o �= ḣ∗),
(d) standstill (⇔ ġ∗ = o = ḣ∗).

For the computation of the rotation planes and corresponding angular velocities we refer to Nawratil (2016, Section 5.2).8

We denote the resulting infinitesimal equiform motions an instantaneous (a) 2-plane spiraling, (b) 1-plane spiraling, (c) iso-
clinic left resp. right spiraling and (d) central scaling, respectively.

Based on equiform transformations of instantaneous screws it can easily be verified that they have the “normal forms” 
given in Table 1. For a complete listing of instantaneous equiform motions in Euclidean 3-space see Odehnal et al. (2006, 
Theorem 2).

8 Alternatively the rotation planes can be computed by the approach of Somer (1979b).
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4. Relation between instantaneous equiform motions and line-elements in Euclidean 4-space

In Section 2.2 we introduced coordinates of oriented line-elements based on the oriented line coordinates (Y, m). In the 
next section we discuss a further representation of lines in E4, namely the Grassmann coordinates.

4.1. Grassmann coordinates

In 3-space the Grassmann coordinates (also known as Plücker coordinates) of a finite line are just the homogenized 
spear coordinates, but in 4-space the situation is different. The Grassmann coordinates of a line in E4 can be written in an 
abstract quaternionic representation as (y : ŷ : Y) with:

y := 1
2

(
ỸC + C̃Y

)
and ŷ := 1

2

(
ỸC − C̃Y

)
. (11)

This can be proven by introducing projective point coordinates for C and Y; i.e.

(ĉ0 : ĉ1 : ĉ2 : ĉ3 : ĉ4) := (c0 : c1 : c2 : c3 : 1),

( ŷ0 : ŷ1 : ŷ2 : ŷ3 : ŷ4) := (y0 : y1 : y2 : y3 : 0).

Then the Grassmann coordinates of lines are defined by li j := ĉi ŷ j − ĉ j ŷi (e.g. Pottmann and Wallner, 2001, Section 2.2 or 
Joswig and Theobald, 2008, Section 12). Now computation shows that following holds:

Y = l40 + l41i + l42j + l43k,

C̃Y + ỸC = 2 (l01i + l02j + l03k) ,

C̃Y − ỸC = 2 (l23i + l31j + l12k) .

Therefore the triplet (y : ŷ : Y) contains all 10 Grassmann coordinates. By the usage of these homogeneous coordinates one 
loses the information on the line’s orientation. This can be avoided by using normalized Grassmann coordinates, where 
the normalization is done with respect to the direction vector of the line, which is represented by the quaternion Y. As Y
already denotes a unit-quaternion the normalized Grassmann coordinates of Eq. (11) can be written as (y, ̂y, Y). Instead of 
this triplet we can use the following one:

Definition 2. The modified Grassmann coordinates of an oriented line −→y in E3, which are called oriented mG line coordi-
nates for short, are defined as (y+, y−, Y) with

y+ := y + ŷ = ỸC, y− := y − ŷ = C̃Y. (12)

If the orientation of the line y is not of importance one can also use homogeneous mG line coordinates (y+ : y− : Y).

Remark 3. Now the question arises, which homogeneous 10-tuples (z+ : z− : Z) �= (o, o, O) represent mG line coordinates. 
According to Pottmann and Wallner (2001, Theorem 2.2.4) and Joswig and Theobald (2008, Corollary 12.22), respectively, 
five conditions have to hold, which read as follows in the quaternionic formulation:

〈z+, z+〉 − 〈z−, z−〉 = 0, z+Z − Zz− = O. (13)

By computing the Hilbert-polynomial of these 5 equations it can easily be seen (cf. footnote 4) that the set of lines 
is a 6-dimensional variety of degree 5 within the projective 9-dimensional space P 9. If we slice the variety along the 
5-dimensional space Z = O we get the set L, which corresponds to lines of E4. 	

Now we can clarify the relation between the oriented mG coordinates (y+, y−, Y) of lines in E4 and the 4-dimensional 
analogue of the spear coordinates (Y, m) given in Section 2.2. The latter are just obtained by the following projection:

(y+,y−,Y) �→ (Y,m) := (Y, ỹ−) (14)

due to Eq. (12). These projected coordinates have only the trivial side condition ‖Y‖ = 1 in contrast to the oriented mG line 
coordinates, which have those of Eq. (13) in addition. This gives rise to the following nomenclature:

Definition 3. The minimal coordinates of an oriented line −→y ∈ E4 are given by (Y, m) and (Y : m) are the homogeneous 
minimal coordinates of an unoriented line y ∈ E4, respectively.

Consequently this implies the following notation:

Definition 4. The minimal coordinates of an oriented line-element (−→y , X) ∈ E4 are defined as (Y, ξ + m) and (Y : ξ + m) are 
the homogeneous minimal coordinates of an unoriented line-element (y, X) ∈ E4.
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As y+ and y− of the oriented mG line coordinates are pure quaternions, we have now two possibilities to insert the 
information ξ = 〈X, Y〉 of the point X ∈ −→y . The connection given in Eq. (14) implies the following definition:

Definition 5. The oriented mG line-element coordinates of an oriented line-element (−→y , X) ∈ E4 are defined as (y+, ξ +
y−, Y). Consequently (y+ : ξ + y− : Y) are the homogeneous mG line-element coordinates of an unoriented line-element 
(y, X) ∈ E4.

Remark 4. Any homogeneous 11-tuple (z+ : ζ + z− : Z) �= (o, O, O) defines a line-element of E4 if and only if Eq. (13) and 
Z �= O hold. Therefore the set of line-elements of E4 corresponds to a 7-dimensional variety E of degree 5, which is sliced 
along the 6-dimensional space Z = O, within the projective 10-dimensional space P 10. 	

4.2. Linear complexes of lines and line-elements in Euclidean 4-space

Let us start this section with the following three definitions:

Definition 6. A linear complex of lines of E4 is the intersection of L (cf. Remark 3) with a hyperplane.

This definition is in accordance with the definition of a linear line complex given in Dolgachev (Section 10.2). Now we 
can extend this definition to line-elements of E4 as follows:

Definition 7. A linear complex of line-elements of E4 is the intersection of E (cf. Remark 4) with a hyperplane.

This definition is in accordance with Odehnal et al. (2006, Definition 3). For the formulation of the next theorem, a fur-
ther definition is needed.

Definition 8. A path normal-element (y, X) of an instantaneous screw consists of a point X ∈ E4 and a path normal y of this 
point with respect to the instantaneous screw.

Theorem 5. The set of path normal-elements of an instantaneous screw $⊗∗ = (α∗ġ∗, Ḣ∗, U̇∗) �= (o, O, O) of E4 is a linear complex of 
line-elements of E4 and vice versa.

Proof. We prove this by showing that the mG line-element coordinates (y+, ξ + y−, Y) fulfill the linear equation:

α∗〈y+, ġ∗〉 + 〈ξ + y−, ˙̃H∗〉 − 2〈Y, ˙̃U∗〉 = 0. (15)

Therefore we investigate the condition that a unit-quaternion Y is orthogonal to the velocity quaternion Ẋ⊗∗ of Eq. (8). The 
corresponding condition 〈Y, Ẋ⊗∗ 〉 = 0 can be rewritten as follows:

α∗〈YX̃, ġ∗〉 − 〈̃XY, ḣ∗〉 + ξ ḣ0(∗) − 2〈Y, ˙̃U∗〉 = 0, (16)

under consideration of Ḣ∗ = ḣ0(∗) + ḣ∗ and ˙̃H∗ = ḣ0(∗) − ḣ∗ . Due to Eq. (5) the expressions of y+ and y− given in Eq. (12)
can be computed as:

y+ = 1
2

(
YX̃ − XỸ

)
, y− = 1

2

(
X̃Y − ỸX

)
. (17)

These relations already imply the validity of the following equalities:

〈YX̃, ġ∗〉 = 〈ỸC, ġ∗〉 = 〈y+, ġ∗〉, 〈̃XY, ḣ∗〉 = 〈̃CY, ḣ∗〉 = 〈y−, ḣ∗〉, (18)

thus summed up we get our required result given in Eq. (15).
The converse statement is also true as the homogeneous coordinates of any linear line-element complex of E4 can be 

identified with an instantaneous screw $⊗∗ up to a real multiple different from zero. �
By setting ḣ0(∗) = 0 we get for the Euclidean case the following result:

Corollary 1. The set of path normals of an instantaneous Euclidean motion $⊗∗ = (α∗ġ∗, ḣ∗, U̇∗) �= (o, o, O) of E4 is a linear complex 
of lines of E4 and vice versa.
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5. Extending known results to 4 dimensions

The 4-dimensional version of Odehnal et al. (2006, Theorem 3) reads as follows:

Theorem 6. The elements of a linear complex K of line-elements in E4, which are contained in a hyperplane are the path normal-
elements of an instantaneous spatial equiform motion.

Proof. W.l.o.g. we can consider the hyperplane given by x0 = 0. As a consequence the mG coordinates of line-elements 
within this hyperplane are given by (̂y, 〈x, y〉 − ŷ, y). Plugging these coordinates into Eq. (15) yields:

〈̂y,α∗ġ∗ + ḣ∗〉 + ḣ0(∗)〈x,y〉 − 2〈y, ˙̃U∗〉 = 0. (19)

Form Eq. (9) it can easily be seen that the velocity vectors are also contained in the hyperplane x0 = 0 if and only if the 
instantaneous screw is of the form (v̇∗, ̇v0(∗) + v̇∗, ẇ∗). By setting v̇∗ = 1

2

(
α∗ġ∗ + ḣ∗

)
, v̇0(∗) = ḣ0(∗) and ẇ∗ = u̇∗ we get 

the instantaneous spatial equiform motion, where the line-elements of K in x0 = 0 are path normal-elements as

2〈̂y, v̇∗〉 + v̇0(∗)〈x,y〉 + 2〈y, ẇ∗〉 = 0

holds due to Eq. (19). �
As a consequence of Theorem 6 and Odehnal et al. (2006, Theorem 3) we get:

Corollary 2. The elements of a linear complex K of line-elements in E4, which are contained in a plane are the path normal-elements 
of an instantaneous planar equiform motion.

The 4-dimensional version of the result of Pascal (1932) (see also Odehnal et al., 2006, Lemma 4.1), which was cited in 
the introduction, reads as follows:

Theorem 7. Under an instantaneous equiform motion $⊗∗ = (α∗ġ∗, Ḣ∗, U̇∗) of E4 with ḣ0(∗) �= 0 each line y ∈ E4 has a unique point 
X ∈ E4 with a velocity vector orthogonal to it. Thus the line-element (y, X) ∈ E4 is in the path normal-element complex of $⊗∗ .

Under an instantaneous Euclidean motion $⊗∗ = (α∗ġ∗, ḣ∗, U̇∗) �= (o, o, O) of E4 the path normal-element complex of $⊗∗ equals 
the set of line-elements in E4, where the lines belong to the path normal complex of $⊗∗ .

Proof. If ḣ0(∗) �= 0 holds then Eq. (16) can uniquely be solved for ξ = 〈X, Y〉. For the case ḣ0(∗) = 0 this equation (16) is 
fulfilled for any point of a path normal (cf. Corollary 1). �

As a consequence of Theorem 6, Corollary 2 and Theorem 7 we get:

Corollary 3. The path normals of an instantaneous Euclidean motion $⊗∗ = (α∗ġ∗, ḣ∗, U̇∗) �= (o, o, O) of E4 , which are contained in a 
hyperplane/plane are the path normals of an instantaneous spatial/planar Euclidean motion.

We proceed by extending the results (Odehnal et al., 2006, Lemma 4.2 and Theorem 4) to 4 dimensions. For their 
formulation we need the following definition of a line-element bundle according to Odehnal (2006, Section 4.6):

Definition 9. The 4-dimensional set B of all line-elements, those lines belong to a bundle of lines in E4, constitute a 
line-element bundle. If the bundle vertex B is an ideal point it is called parallel line-element bundle.

Theorem 8. We consider a bundle B of line-elements in E4 with vertex B. The set of points X such that (y, X) ∈ B is a path normal-
element of the instantaneous screw $⊗∗ = (α∗ġ∗, Ḣ∗, U̇∗) of E4 with ḣ0(∗) �= 0 is a

1. hyperplane if B is an ideal point,
2. hypersphere if B is a finite point. Its diameter is given by BB with B according to Eq. (20).

Proof. We have to distinguish two cases:

1. B is an ideal point: W.l.o.g. we can assume that B is in direction of the identity quaternion 1. Then the line-element 
(y, X) of B has mG line-element coordinates (−x, ̃X, 1) according to Eq. (17). Now Eq. (15) of the path normal-element 
complex simplifies to

〈x,α∗ġ∗ − ḣ∗〉 − x0ḣ0(∗) + 2u̇0(∗) = 0.

As ḣ0(∗) �= 0 holds this linear equation depends on x0 for sure.
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2. B is a finite point: W.l.o.g. we can assume that B is the origin of our reference frame; i.e. B = O. Then the line-element 
(y, X) of B has mG line-element coordinates (o, ‖X‖, Y), where Y is any unit-quaternion. Now Eq. (15) implies:

‖X‖ = 2
ḣ0(∗)

〈Y, U̇∗〉.
Therefore X is the pedal point on y of the point B with

B := B − 1
ḣ0(∗)

Ḃ⊗∗ , (20)

where Ḃ⊗∗ is the velocity quaternion of the point B with respect to $⊗∗ . �
5.1. The set of path tangent-elements

Within this section we extend the result of Di Noi (1934), which is listed in the introduction (cf. Section 1.1), with respect 
to line-elements and the 4th dimension. Therefore we need the following definition:

Definition 10. A path tangent-element (y, X) of an instantaneous screw consists of a point X ∈ E4, which has a velocity 
different from zero with respect to the instantaneous screw, and the resulting path tangent y.

Theorem 9. The 4-dimensional set of path tangent-elements of a regular instantaneous screw $⊗∗ = (α∗ġ∗, Ḣ∗, U̇∗) of E4 has a 
quadratic rational parametrization in terms of minimal coordinates of line-elements of E4.

Proof. Due to the regularity assumption there exists a unique velocity pole P. W.l.o.g. we can assume that P is located in 
the origin, thus we have U̇∗ = O. Therefore the moment quaternion m of a tangent in direction of the velocity quaternion 
Ẋ⊗∗ can be computed according to Eq. (5) as

m = ‖X‖2ḣ∗ − α∗X̃ġ∗X.

Moreover we can solve Eq. (10) with respect to X in a quaternionic way according to Jack (2008, Section “General solution 
to linear problems in quaternion variables”). Plugging the obtained expression for X, which is linear in Ẋ⊗∗ , into 〈X, Ẋ⊗∗ 〉 + m
shows that we have obtained a quadratic rational parametrization of the set of path tangent-elements in terms of the first 
4 entries of the homogeneous 8-tuple of minimal coordinates of line-elements of E4. �
Remark 5. Note that in the case of an instantaneous central scaling the path tangent-elements form a line-element bundle, 
where the velocity pole P is its vertex. 	

The cases excluded from Theorem 9 are treated next:

Theorem 10. The set of path tangent-elements of an instantaneous rotation about one plane in E4 has a quadratic rational 
parametrization in terms of minimal coordinates of line-elements of E4. If this instantaneous motion is additionally composed with 
an instantaneous translation parallel to the rotation plane, then the corresponding rational parametrization is cubic. In the case of a 
pure instantaneous translation the set of path tangent-elements form a parallel line-element bundle, which is a 4-dimensional linear 
subspace of the projective space of minimal coordinates of line-elements in E4.

Proof. We can restrict the proof to the corresponding normal forms given in Table 1.

1. (α∗ġ∗, Ḣ∗, U̇∗) =
(

1
2 i, 1

2 i,− p
2

)
: In this case the velocity quaternion equals p + 0i − x3j + x2k, the resulting moment 

quaternion m = m1i + m2j + m3k reads as:

(px1 + x2
2 + x2

3)i + (x0x3 − x1x2 + px2)j + (px3 − x0x2 − x1x3)k

and ξ equals px0. Now we distinguish two cases:
(a) p �= 0: In this case we can set:

x0 = ξ
p , x1 = m1−x2

2+x2
3

p .

Then the following two equations in the minimal coordinates (p : 0 : −x3 : x2 : ξ : m1 : m2 : m3) of line-elements of 
E4 remain:

x3
2 + x2x2

3 − x2m1 + x3ξ + p2x2 − m2 p = 0,

p2x3 + x3x2
2 + x3

3 − x3m1 − x2ξ − m3 p = 0.

Solving these two equations with respect to m2 and m3 yields a rational cubic parametrization in m1, x2, x3, ξ for a 
given parameter p.
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(b) p = 0: In this case the minimal coordinates (0 : 0 : −x3 : x2 : 0 : m1 : m2 : m3) of line-elements of E4 have to fulfill 
the quadratic equation x2

2 + x2
3 − m1 = 0. Thus we have the following rational quadratic parametrization (0 : 0 : −x3 :

x2 : 0 : x2
2 + x2

3 : m2 : m3) in x2, x3, m2, m3.

2. (α∗ġ∗, Ḣ∗, U̇∗) =
(

o,O,− 1
2

)
: In the case of the instantaneous translation, the resulting minimal coordinates of line-

elements of E4 read as (1 : 0 : 0 : 0 : x0 : x1 : x2 : x3). �
Remark 6. Note that based on the given parametrization of the set of path normal-elements the degree of the corresponding 
variety in the space of mG or minimal coordinates of line-elements of E4 can e.g. be determined via the Hilbert-polynomial 
(cf. footnote 4), where one can restrict to the normal forms given in Table 1. This straightforward computation is left to the 
interested reader. 	

6. Point-models for line-elements in projective 3-space

We start this section with a review of the known two models for line-elements of the projective 3-space P 3, which were 
both given by Odehnal (2006):

(i) Odehnal’s point-model equals the intersection of the Segre variety �3,5, which is a 7-dimensional variety in a 
23-dimensional projective space P 23, and four hyperplanes (Odehnal, 2006, Section 2.2).

(ii) Odehnal’s second model is based on the idea to combine the homogeneous Plücker coordinates (l01 : l02 : l03 : l23 : l31 :
l12) of the line ∈ P 3, which fulfill the Plücker condition

l01l23 + l02l31 + l03l12 = 0, (21)

and the homogeneous point coordinates (l0 : l1 : l2 : l3) to the 10-tuple

(l01 : l02 : l03 : l23 : l31 : l12 : l0 : l1 : l2 : l3).

In this case any line-element is mapped to a 1-parametric set of 10-tuples

(μl01 : μl02 : μl03 : μl23 : μl31 : μl12 : λl0 : λl1 : λl2 : λl3) (22)

with λ, μ ∈ R \ {0}, which corresponds to a line9 in the projective 9-dimensional space P 9, where the two points 
(λ : μ) = (1 : 0) and (λ : μ) = (0, 1) are removed. Therefore all points of this P 9, which correspond to a line-element 
of P 3, form a 6-dimensional10 variety V of degree 5, which is sliced along the two spaces l01 = l02 = . . . = l12 = 0 and 
l0 = . . . = l3 = 0. The 3-dimensional space is completely contained in V in contrast to the 5-dimensional space, which 
intersects V in the quadric given by Eq. (21).

Odehnal noted in (2006, Section 6) that a point-model of line-elements is of interest for the (differential) geometric study 
of so-called ruled surface strips, which are ruled surfaces together with a curve on it. In the following such an improved 
point-model is presented.

6.1. Improved point-model

If we rewrite Odehnal’s 10-tuple in the abstract quaternionic representation (l : l̂ : L) with

l := l01i + l02j + l03k, l̂ := l23i + l31j + l12k, L := l0 + l1i + l2j + l3k,

then it can easily be seen that these are the Grassmann coordinates of a line in E4, as the five conditions given in Eq. (13)
are equal to those given in Odehnal (2006, Eqs. (2) and (7)). Therefore we can also use the minimal coordinates (L : m) of a 
line in E4.

Due to the free parameter in Eq. (22) we can claim additionally that the pedal point C of the line in E4 with respect 
to the origin has distance 1; i.e. the line is tangent to the unit-hypersphere. Under consideration that m = L̃C holds we can 
compute C as Lm‖L‖−2. Then the tangential condition ̃CC = 1 to the unit-hypersphere simplifies to


 : ‖L‖2 − ‖m‖2 = 0. (23)

All real points (L : m) in the projective 6-dimensional space P 6 of minimal coordinates of lines in E4, which are located on 
the quadric 
 of Eq. (23), correspond to a line-element of P 3. This is the case as only points with Y = O or m = o do not 
correspond with line-elements of P 3, but these two linear spaces have with the quadric 
 no real points in common.

9 Therefore it is somehow misleading to speak in this context of a point-model as done in Odehnal (2006, Section 3).
10 And not a 5-dimensional variety as outlined in Odehnal (2006, Section 3).
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The disadvantage of this point-model is that with (L : m) ∈ 
 also (L : −m) ∈ 
 holds, thus we get a double cover of 
the set of line-elements of P 3. We can get rid of this double cover by considering the Grassmann variety of lines spanned 
by (L : m) ∈ 
 and (L : −m) ∈ 
. This is trivially isomorphic to the Segre variety �3,2 defined by the Segre embedding σ : 
P 3 × P 2 → P 11 with

(l0 : l1 : l2 : l3) × (m1 : m2 : m3) �→ (l0m1 : l0m2 : l0m3 : l1m1 : . . . : l3m3).

It is well known that the Segre variety �m,n has degree (m+n)!
m!n! . As a consequence �3,2 is of degree 10 in contrast to the 

above noted point-model (i) based on �3,5, which is of degree 56.
We can even give a rational parametrization of the Segre variety �3,2 by parametrizing the tangents to the unit-

hypersphere of E4, which can be done as follows. By stereographic projection we obtain the set of pedal points in 
dependency of the variables u, v , w as:

C = u2 + v2 + w2 − 1 + 2ui + 2vj + 2wk

D
with D := u2 + v2 + w2 + 1.

As 〈 ∂C
∂ i , 

∂C
∂ j 〉 = 0 holds for i �= j ∈ {u, v, w} and ‖ ∂C

∂u ‖ = ‖ ∂C
∂v ‖ = ‖ ∂C

∂ w ‖ = 2D we can parametrize the directions of the tangents 
e.g. by:

L = 1
2D

(
sin δ1 cos δ2

∂C

∂u
+ sin δ1 sin δ2

∂C

∂v
+ cos δ1

∂C

∂ w

)
,

where the sin and cos functions can be replaced by the half-angle substitution.

Remark 7. In order to catch also the center of the stereographic projection, which is the point (1, 0, 0, 0) of the hyper-sphere, 
we can use the following homogenized parametrization:

C = u2 + v2 + w2 − h2 + 2uhi + 2vhj + 2whk

D
with D := u2 + v2 + w2 + h2,

where h is the homogenizing variable. Then for h = 0 the point C = 1 is obtained. Moreover for a complete covering of �3,2
we also have to replace the half-angle substitution by its homogenized version. 	

7. Conclusion and outlook

In Section 1 we provided a detailed literature review on equiform kinematics in Euclidean spaces of dimension 3 and 
higher. In Section 2 a quaternion based kinematic mapping for equiform transformations of Euclidean spaces of dimension 
3 and 4 was introduced. Based on this mapping and a study on instantaneous equiform motions of E4 in Section 3, we 
discussed the set of path normal-elements and path tangent-elements in the Sections 4 and 5. Moreover in Section 6 we 
presented an improved point-model for unoriented line-elements of the projective 3-space.

Point-models for the set of oriented line-elements of E3 are of practical interest for the motion representation of robots 
with an axial symmetric end-tool (e.g. a milling cutter). Therefore a forthcoming publication of the author is devoted to 
the study and comparison of such models; e.g. the quadric 
 of Eq. (23) sliced along the hyperplane l0 = 0 represents one 
possible point-model.

Acknowledgements

The research is supported by Grant No. P 24927-N25 of the Austrian Science Fund FWF.

References

Blaschke, W., 1960. Kinematik und Quaternionen. VEB Deutscher Verlag der Wissenschaften, Berlin.
Bottema, O., Roth, B., 1979. Theoretical Kinematics. Applied Mathematics and Mechanics. North-Holland Publishing Company, Amsterdam.
Burmester, L., 1878. Kinematisch-geometrische Theorie der Bewegung der affin-veränderlichen, ähnlich-veränderlichen und starren räumlichen oder ebenen 

Systeme I. Z. Math. Phys. 23, 108–131.
Burmester, L., 1902. Kinematisch-geometrische Theorie der Bewegung der affin-veränderlichen, ähnlich-veränderlichen und starren räumlichen oder ebenen 

Systeme II. Z. Math. Phys. 47, 128–156.
Combebiac, G., 1902. Calculus of tri-quaternions. Phd thesis (translated by Delphenich, D.H.). Science Faculty of Paris.
Di Noi, S., 1934. Considerazioni geometriche sul moto di un corpo deformabile che si mantiene simile a se stesso. Rend. Napoli 3 (4), 176–181.
Dolgachev, I. Classical algebraic geometry: a modern view. http://www.math.lsa.umich.edu/~idolga/CAG.pdf.
Gfrerrer, A., 2008. Axial equiform Bricard motions. Grazer Math. Ber. 352, 17–40.
Gfrerrer, A., Lang, J., 1998. Equiform bundle motions in E3 with spherical trajectories I and II. Beitr. Algebra Geom. 39 (2), 307–328.
Hager, G., 1991. Globale Eigenschaften von Zwangläufen in euklidischen und elliptischen Räumen höherer Dimension. Dissertation. Vienna University of 

Technology.
Hamdoon, F.M., Abdel-All, N.H., 2004. An investigation of an octahedral platform using equiform motions. J. Geom. Graph. 8 (1), 33–39.
Hofer, M., Odehnal, B., Pottmann, H., Steiner, T., Wallner, J., 2005. 3D shape recognition and reconstruction based on line element geometry. Proc. 10th IEEE 

Int. Conf. Comput. Vision 2, 1532–1538.

http://refhub.elsevier.com/S0167-8396(16)30083-8/bib626C617363686B655F62756368s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib626F7474656D61s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6275726D657374657231s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6275726D657374657231s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6275726D657374657232s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6275726D657374657232s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib636F6D626562696163s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6E6F69s1
http://www.math.lsa.umich.edu/~idolga/CAG.pdf
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6766726572726572s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6C616E67s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6861676572s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6861676572s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6861s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib686F666572s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib686F666572s1


JID:COMAID AID:1577 /FLA [m3G; v1.180; Prn:27/06/2016; 9:03] P.13 (1-13)

G. Nawratil / Computer Aided Geometric Design ••• (••••) •••–••• 13
Jack, P., 2008. Three Papers on Quaternions 2006–2007. Timefoot Books. https://archive.org/details/ThreePapersOnQuaternions2006-2007.
Joswig, M., Theobald, T., 2008. Algorithmische Geometrie. Springer.
Karger, A., 1981. Similarity motions in E3 with plane trajectories. Apl. Mat. 26 (3), 194–201.
Kowalewski, G., 1930. Rollkurven im Raume. Math. Z. 31 (1), 306–318.
Lang, J., Mick, S., Röschel, O., 2001. The rigidity rate of positions of Stewart–Gough platforms. J. Geom. Graph. 5 (2), 121–132.
Müller, H., 1962. Sphärische Kinematik. VEB Deutscher Verlag der Wissenschaften, Berlin.
Nawratil, G., 2016. Fundamentals of quaternionic kinematics in Euclidean 4-space. Adv. Appl. Clifford Algebras 26 (2), 693–717.
Odehnal, B., 2006. Die Linienelemente des P 3. Österr. Akad. Wiss. Math.-Nat. Kl. S-B II 215 (), 155–171.
Odehnal, B., Pottmann, H., Wallner, J., 2006. Equiform kinematics and the geometry of line elements. Beitr. Algebra Geom. 47 (2), 567–582.
Pascal, M., 1932. Sul moto di un corpo deformabile che si mantiene simile a se stesso. Ann. del Regio Istituto Super. Navale Napoli 1, 224–242.
Pottmann, H., 1984. Spezielle äquiforme Zwangläufe. Apl. Mat. 29 (3), 225–232.
Pottmann, H., 1986. Die Öffnungsstrecken der Bahnregelflächen geschlossener räumlicher äquiformer Zwangläufe. Monatshefte Math. 101, 317–326.
Pottmann, H., 1987. Zur globalen Raumkinematik. Monatshefte Math. 103, 289–302.
Pottmann, H., 1994. Kinematische Geometrie. In: Giering, O., Hoschek, J. (Eds.), Geometrie und ihre Anwendungen. Hanser, pp. 141–175.
Pottmann, H., Wallner, J., 2001. Computational Line Geometry. Springer.
Röschel, O., 1991. Darboux-Zwangläufe und äquiforme Kinematik. Appl. Math. 36 (3), 233–240.
Röschel, O., 2000. Möbius mechanisms. In: Lenarcic, J., Stanisic, M. (Eds.), Advances in Robot Kinematics. Kluwer, pp. 375–382.
Röschel, O., 2014. Overconstrained mechanisms based on planar four-bar-mechanisms. Comput. Aided Geom. Des. 31 (7–8), 595–601.
Seiliger, D., 1892. Theorie der Bewegung eines ähnlich veränderlichen Körpers. Kasan Ber. (2) II. No. 1.
Shafarevich, I., 1988. Algebraic Geometry. Springer.
Somer, J., 1979a. Geschlossene äquiforme Bewegungen der Räume endlicher Dimension. Apl. Mat. 24 (4), 304–314.
Somer, J., 1979b. Lineare invariante Gebilde in äquiformen Bewegungen der Räume endlicher Dimension. Apl. Mat. 24 (1), 56–66.
Spallek, K., 1992. W-Gleitgleitkinematik. Manuscr. Math. 77, 293–319.
Ströher, W., 1973. Sphärische und Räumliche Kinematik. Unpublished manuscript.
Wunderlich, W., 1962. Über eine spezielle Bewegung eines ähnlich-veränderlichen Raumsystems. Anz. Math.-Nat. Kl. Österr. Akad. Wiss. 12, 213–219.

https://archive.org/details/ThreePapersOnQuaternions2006-2007
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6A6F73776967s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6B61726765725F73696D5F646172626F7578s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6B6F77616C6577736B69s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib72696769646974795F72617465s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6D756C6C6572s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6E6177726174696C5F71756174s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6F6465686E616C32s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib6F6465686E616C31s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib70617363616Cs1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib706F74746D616E6E5F7370657A69s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib706F74746D616E6E5F676C6F62616C31s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib706F74746D616E6E5F676C6F62616C32s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib706F74746D616E6E5F726576696577s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib706F74746D616E6Es1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib726F65736368656C31s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib726F65736368656C32s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib726F65736368656C33s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib7368616661726576696368s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib736F6D657232s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib736F6D657231s1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib7370616C6C656Bs1
http://refhub.elsevier.com/S0167-8396(16)30083-8/bib77756E6465726C6963685F65717569666F726Ds1

	Quaternionic approach to equiform kinematics and line-elements of Euclidean 4-space and 3-space
	1 Introduction
	1.1 Literature review

	2 Quaternionic formulation and kinematic mapping of S(4) and S(3)
	2.1 Fundamentals
	2.2 Composition and representation of equiform motions

	3 Instantaneous equiform motions in Euclidean 4-space
	3.1 Velocity quaternion and instantaneous screw
	3.2 Classiﬁcation of instantaneous equiform motions in Euclidean 4-space

	4 Relation between instantaneous equiform motions and line-elements in Euclidean 4-space
	4.1 Grassmann coordinates
	4.2 Linear complexes of lines and line-elements in Euclidean 4-space

	5 Extending known results to 4 dimensions
	5.1 The set of path tangent-elements

	6 Point-models for line-elements in projective 3-space
	6.1 Improved point-model

	7 Conclusion and outlook
	Acknowledgements
	References


