
Computer Aided Geometric Design 47 (2016) 130–149
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

Algorithms for detecting dependencies and rigid subsystems

for CAD ✩

James Farre a,1, Helena Kleinschmidt b, Jessica Sidman b,2, Audrey St. John b,∗,3,
Stephanie Stark b,4, Louis Theran c,5, Xilin Yu b,6

a Department of Mathematics, University of Utah, Salt Lake City, UT, USA
b Departments of Mathematics & Statistics, Computer Science, Mount Holyoke College, South Hadley, MA, USA
c School of Mathematics and Statistics, University of St Andrews, Scotland, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 28 June 2016

Keywords:
Sparsity matroid
Pebble game algorithm
Cad constraints

Automated approaches for detecting dependencies in structures created with Computer
Aided Design software are critical for developing robust solvers and providing informative
user feedback. We model a set of geometric constraints with a bi-colored multigraph and
give a graph-based pebble game algorithm that allows us to determine combinatorially if
there are generic dependencies. We further use the pebble game to yield a decomposition
of the graph into factor graphs which may be used to give a user detailed feedback about
dependent substructures in a specific realization of a system of CAD constraints with non-
generic properties.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we present graph-based algorithms for analyzing and decomposing the underlying combinatorial structure
of a system of geometric constraints, such as those appearing in popular constraint-based Computer Aided Design (CAD)
software. While a generic (essentially random) realization of a given system of constraints may be rigid, a specific realization
may be in a special position which admits internal motions and contains (redundant) dependencies. In such a situation,
our decomposition allows us determine which subsystems of constraints remain independent and which are causing the
dependencies.

✩ An extended abstract of this article appeared as “Detecting dependencies in geometric constraint systems” in the 10th International Workshop on
Automated Deduction in Geometry (ADG 2014), Coimbra, Portugal, 2014.

* Corresponding author.
E-mail addresses: jamesrfarre@gmail.com (J. Farre), klein23h@mtholyoke.edu (H. Kleinschmidt), jsidman@mtholyoke.edu (J. Sidman),

astjohn@mtholyoke.edu (A. St. John), stark23s@mtholyoke.edu (S. Stark), louis.theran@st-andrews.ac.uk (L. Theran), yu25x@mtholyoke.edu (X. Yu).
1 Partially supported by NSF DMS-0849637.
2 Partially supported by NSF DMS-0849637 and the Hutchcroft fund.
3 Partially supported by the Clare Boothe Luce Foundation, NSF DMS-0849637, NSF IIS-1253146 and the Hutchcroft fund.
4 Partially supported by the Mount Holyoke College Lynk Program.
5 Partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant

agreement No. 247029-SDModels, Academy of Finland (AKA) project COALESCE, and the Hutchcroft fund.
6 Partially supported by NSF IIS-1253146, an Aalto Science Institute (AScI) Internship, and the Mount Holyoke College Lynk Program.
http://dx.doi.org/10.1016/j.cagd.2016.06.001
0167-8396/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cagd.2016.06.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:jamesrfarre@gmail.com
mailto:klein23h@mtholyoke.edu
mailto:jsidman@mtholyoke.edu
mailto:astjohn@mtholyoke.edu
mailto:stark23s@mtholyoke.edu
mailto:louis.theran@st-andrews.ac.uk
mailto:yu25x@mtholyoke.edu
http://dx.doi.org/10.1016/j.cagd.2016.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2016.06.001&domain=pdf

J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149 131
(a) SolidWorks’ 2D Sketch environ-
ment identifies the rigid generic em-
bedding as “Fully Defined.’

(b) SolidWorks’ 2D Sketch environ-
ment identifies the flexible special po-
sition as “Under Defined,” but does
not allow the user to explore the re-
sulting motion.

(c) SolidWorks’ 3D Assembly environ-
ment gives a different identification
of “Over Defined” for the same flex-
ible special position embedded in 3D.

Fig. 1. Changing a constraint in a generically rigid system to be dependent (by making the dashed distance constraint parallel to the other distance
constraint) results in a flexible special position.

1.1. Motivation

CAD software allows engineers to create designs using intuitive geometric constraints. When a user adds a constraint
that is dependent, the resulting system is over-constrained. To provide useful feedback, efficient approaches are required to
detect the minimal sub-system containing the dependency.

Fig. 1 shows an example of a system of geometric constraints on 3 bodies constructed in SolidWorks. Bodies A and B are
constrained to lie on the horizontal line; bodies A and C are constrained to lie on the vertical line; there are two distance
constraints between points on bodies B and C . Together these 3 geometric constraints impose 6 independent conditions on
the degrees of freedom of the system of 3 bodies, making the body-and-cad framework generically rigid.

A problem may arise if a specific realization of a system of geometric constraints has special features that imply a de-
pendency that is not present generically. Commercial CAD software, such as SolidWorks, is unreliable when presented with
such a flexible special position. Figs. 1(b) and 1(c) show a special realization of the system. Here, a dependency arises because
the two point–point distance constraints between B and C are along parallel lines. SolidWorks’ 2D and 3D environments
produce different analyses. Although the 2D Sketch environment does identify the system as “Under Defined,” the faded
position in 1(b) was only found by suppressing the dependent constraint, investigating the motion, then unsuppressing it.

Our ultimate goal is to be able to reliably identify such special dependencies that arise in more complicated constraint
systems in terms of the geometry of the constraints as above, e.g., to be able to inform the user that the non-generic
behavior is due to the fact that two bars are parallel.

1.2. Related work

Rigidity theory is applicable to a wide variety of systems of geometric constraints. For example, in bar-and-joint rigidity
theory, constraints are specified by fixing the distance (“bar”) between pairs of points (“joints”) and can be represented by
quadratic equations. In body-and-bar rigidity theory, fixed-length bars are attached to rigid bodies at flexible joints. The
rigidity models of 2D bar-and-joint and d-dimensional body-and-bar are well-known for having combinatorial characteriza-
tions of generically rigid frameworks.

Though it is possible to use algebraic methods to study systems of geometric constraints (see Chou, 1988; Gao et al.,
2005; Geiß and Schreyer, 2009), working algebraically with polynomials is limited because it is computationally intensive.
Hence, much work in rigidity theory instead focuses on infinitesmal rigidity, which is defined in terms of the rank of a matrix
obtained by linearizing the constraint equations. As a matrix drops rank on a closed set, almost every framework with the
same combinatorics is infinitesimally rigid (and therefore rigid).

Infinitesimal rigidity theory may be studied numerically or combinatorially. One may detect generic dependencies nu-
merically, by picking random realizations. This is the approach taken by the “witness method” of Michelucci and Foufou
(2007). The drawback of numerical methods is that fast, stable, algorithms, such as SVD, do not identify the support of a
minimal dependency while those based on Gaussian elimination are not stable. (This can be overcome by using finite fields
and the Schwartz Lemma, as discussed in Gortler et al., 2010.)

For certain structural models more robust combinatorial characterizations of generic rigidity are known, and we focus
on the combinatorial approach in this paper. Particularly relevant here are results for geometric constraints arising in CAD:
2D point–line frameworks (Jackson and Owen, 2014) and body-and-cad frameworks in 2D and 3D (omitting point–point
coincidences) (Lee-St.John and Sidman, 2013). Combinatorial counting conditions arise as necessary conditions for rigid-
ity theory, usually in terms of a family of “sparse matroidal graphs” that are fundamental in generic rigidity theory (see
Whiteley, 1996, Appendix, which reports work of White and Whiteley). Associated pebble game algorithms can be used to
check rigidity and detect components, relying on the matroidal property of Lee and Streinu (2008) and the data structure
from Lee et al. (2005). For body-and-bar (Tay, 1984) and 2D bar-and-joint (Laman, 1970) frameworks, the counting con-
ditions are generically sufficient as well. Jackson and Owen show how to adapt Edmonds’ matroid union algorithm to the

132 J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149
framework of pebble games for 2D point–line frameworks in Jackson and Owen (2014). A combinatorial characterization of
3D bar-and-joint rigidity remains an open problem; while the network flow approach of Sitharam and Zhou (2004) gives a
polynomial time algorithm for the related concept of module-rigidity, the class of module-rigid graphs does not include rigid
nucleation-free graphs (Cheng et al., 2009).

Our approach combines the traditional combinatorial counting techniques with the connections to algebra introduced
by White and Whiteley. White and Whiteley define the pure condition of a body-and-bar framework, a polynomial ob-
tained from taking the determinant of the rigidity matrix in White and Whiteley (1987). They showed how to interpret
the irreducible factors combinatorially and how to describe some special positions using synthetic geometry via the
Grassmann–Cayley algebra. In this paper we extend their philosophy to systems with additional types of constraints where
the connections between the algebraic and combinatorial substructures associated to the constraint system are more intri-
cate.

1.3. Contributions

We present algorithms for detecting dependencies in CAD systems modeled as body-and-cad frameworks. The first is a
pebble game algorithm that can check for generic dependencies via the combinatorial property from Lee-St.John and Sidman
(2013); when a constraint is determined to be dependent, we additionally detect its fundamental circuit (minimal set of
constraints involved in the dependency). To adapt the pebble game to our setting, the algorithm needs to partition the
edges in a graph and maintain (a, a)-sparsity on one part and (b, b)-sparsity on the other; this may require dynamically
adjusting the partitions.

As we saw in Fig. 1, a framework that is rigid with no generic dependencies, or generically minimally rigid, may be
in a flexible special position caused by the special geometry of its realization. Since a special position is indicated by the
vanishing of a polynomial called a framework’s pure condition, we develop algorithms for finding graph minors, which we
refer to as factor graphs, corresponding to its factors. In the body-and-bar setting of White and Whiteley (1987), irreducible
factor graphs correspond to irreducible minimally rigid subframeworks; their corresponding factors can be expressed as the
pure condition of those subframeworks. However, in our setting, we may have irreducible factors that do not have a natural
interpretation as the pure condition of any subframework. Yet, the ability to associate combinatorial structures to the factors
of the pure condition could give a user additional tools to analyze a system of constraints.

1.4. Organization

We begin with an introduction to body-and-cad rigidity theory in Section 2. In Section 3, we analyze a framework and
geometric conditions that lead to special positions, motivating the algorithms for finding generic dependencies (Section 4)
and factor graphs for assisting with analysis of special positions (Section 5). We end with conclusions and open questions
in Section 6.

2. Background

In this section, we review the fundamentals of body-and-cad rigidity theory; for full technical details, refer to Haller et
al. (2012) and Lee-St.John and Sidman (2013).

2.1. The combinatorial model

A body-and-cad framework consists of n full-dimensional bodies with pairwise coincidence, angular, or distance con-
straints between them; these cad constraints are specified between geometric elements which are affine linear spaces (e.g.,
a point, line or plane in 3D) rigidly affixed to the bodies.

The allowed motions of a body-and-cad framework are continuous motions of the bodies that preserve the given con-
straints. A body-and-cad framework is rigid when all of the allowed motions are trivial, i.e., they consist of applying the
same rigid-body motion to each of the bodies; otherwise it is flexible. Note that our model of these systems of constraints
is given solely in terms of collections of affine spaces affixed to the rigid bodies and we do not consider the geometry of
the body in our analysis; only special properties of the constraints affect our analysis. (For example, any special symmetries
the bodies themselves may have does not enter the analysis; however, special symmetries of the constraints do.)

There are 9 different constraint types in 2D and 21 in 3D. Examples of constraints in 2D are: point–point distance
(a bar), point–line coincidence, point–line distance, line–line coincidence, and line–line angular. Each geometric con-
straint represents one or more equations restricting the relative motion of the bodies involved. A constraint can then be
further decomposed into primitive constraints, which correspond to single equations. Let d be the dimension of the ambient
space. Primitive constraints come in two types, which require distinct algebraic treatment: a blind constraint can potentially
restrict any of the

(d+1
2

)
relative degrees of freedom, while an angular constraint restricts only the

(d
2

)
relative rotational

degrees of freedom. Haller et al. (2012) show how to coordinatize infinitesimal Euclidean motions by a
(d+1

2

)
-dimensional

vector in such a way that an angular constraint involves only
(d) of the variables.
2

J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149 133
(a) The framework is composed of
two rigid bodies A (square) and B
(triangle).

(b) Constraint 1 specifies a point–line
coincidence that requires point pB1

on the triangle to lie on line �A1 on
the square.

(c) After the specification of Con-
straint 1, the framework allows inter-
nal motion with 2 degrees of free-
dom.

(d) Constraint 2 specifies a line–
line perpendicular constraint that re-
quires line �B2 on the triangle to
be perpendicular to line �A2 on the
square.

(e) After the specification of Con-
straints 1 and 2, the framework al-
lows internal motion with 1 degree of
freedom.

(f) Constraint 3 specifies a point–
line distance constraint that requires
point pB3 on the triangle to be a fixed
distance from line �A3 on the square.
The resulting framework is minimally
rigid.

Fig. 2. A generically minimally rigid 2D body-and-cad framework.

(a) Constraint I specifies a line–line
distance constraint that requires line
�B1 on the triangle to be a fixed dis-
tance from line �A1 on the square.

(b) After the specification of Con-
straint I, the framework allows inter-
nal motion with 1 degree of freedom.

(c) Constraint II specifies a point–
line distance constraint that requires
point pB3 on the triangle to be a fixed
distance from line �A3 on the square.
The resulting framework is minimally
rigid.

Fig. 3. A 2D body-and-cad framework with different geometric constraints but the same rigidity matrix.

Example 2.1. To give some intuition about body-and-cad rigidity, consider the planar body-and-cad framework in Fig. 2. It is
composed of two rigid bodies A (the square) and B (the triangle); placing three cad constraints, a point–line coincidence,
line–line perpendicular and point–line distance, results in a generically minimally rigid (Definition 2.5) framework.

Now consider the framework in Fig. 3; it is composed of the same two rigid bodies as in Fig. 2, but only includes
two cad constraints, a line–line distance and point–line distance. Because Constraint I (line–line distance) is equivalent to
Constraints 1 and 2 (point–line coincidence and line–line perpendicular), this system of constraints is equivalent to the
figure in Fig. 2 and is generically minimally rigid.

As we just saw (refer to Fig. 3), a single cad constraint may impose restrictions on multiple degrees of freedom in a
framework. Each independent restriction on the degrees of freedom of the framework corresponds to a primitive condi-
tion, whose combinatorics we collect together in an associated primitive cad graph. Fig. 4 shows the original combinatorics
(represented by a cad graph) and the associated primitive cad graph for the frameworks discussed in Example 2.1.

Definition 2.2. A primitive cad graph is a bi-colored graph G = (V , E = R � B) on vertex set [n] = {1, . . . , n} with a vertex for
each rigid body, a red edge (in R) for each angular constraint, and a black edge (in B) for each blind constraint.

In the rest of this paper, we will work with primitive cad graphs.

2.2. The rigidity matrix and infinitesimal rigidity

As is standard in the field, we will linearize the geometric constraint equations and consider infinitesimal rigidity. Here,
the core object of study is a rigidity matrix (derived in Haller et al., 2012), whose kernel consists of the infinitesimal motions
of the framework.

134 J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149
(a) The cad graph (top) for the framework in
Fig. 2 has three edges between the vertices for
bodies A and B . The line–line perpendicular
constraint is associated to a primitive angular
constraint, so the primitive cad graph (bottom)
has one red edge.

(b) The cad graph (top) for the framework in
Fig. 3 has two edges between the vertices for
bodies A and B . Because the line–line distance
constraint is associated to two primitive cad
constraints (one blind, one angular), the primi-
tive cad graph (bottom) has three edges.

Fig. 4. Combinatorics of body-and-cad frameworks in Figs. 2 and 3: both cad graphs (top) are associated to the same primitive cad graph (bottom).

To describe body-and-cad rigidity matrices combinatorially, we use the following concept.7

Definition 2.3. For integers a, b, let k = a + b. We define an [a, b]-frame G(p) to be a bi-colored graph G = (V , E = R � B)

with n = |V | and |E| = kn − k, along with a function p : E → Rk . The function p labels each edge with a k-vector, which is
zero in the last b entries if the edge is in R . The generic [a, b]-frame G(x) has formal indeterminates replacing the nonzero
coordinates of p.

We define the rigidity matrix in terms of [a, b]-frames. We first fix some ordering on the edges of G .

Definition 2.4. The rigidity matrix M(G(p)) of an [a, b]-frame G(p) is a matrix that has k columns for each vertex i and one
row for each edge of G . In the row corresponding to an edge e with endpoints i and j (where i < j), we have p(e) in the
columns corresponding to i, −p(e) in the columns corresponding to j, and zeroes in all other entries. Order the rows of the
rigidity matrix in the order of the edges of G .

Definition 2.5. We say that an [a, b]-frame G(p) is generically minimally rigid if the associated generic [a, b]-frame G(x) has
a rigidity matrix M(G(x)) with rank kn − k for almost all specializations of x.

The generic rigidity matrix for the example in Fig. 3 is shown below.

⎛
⎜⎝

A1 A2 A3 B1 B2 B3

line–line distance (blind part) x1 x2 x3 −x1 −x2 −x3

line–line distance (angular part) y1 0 0 −y1 0 0

point–line distance (non-generic) z1 z2 z3 −z1 −z2 −z3

⎞
⎟⎠

It has 3 columns for each body, corresponding to the one rotational and two translational degrees of freedom for in-
stantaneous rigid body motion in the plane. We order the columns so that they are in groups of 3, with translational
components last: column A1 corresponds to the rotational component, and columns A2 and A3 to the translational compo-
nents, with body B ’s columns ordered analogously. There is a row for each primitive constraint; notice that the row for the
primitive angular constraint associated to the line–line distance constraint (highlighted in red) has zeroes in the columns
corresponding to the translational degrees of freedom.

While the rank of a generically minimally rigid framework is kn − k for almost all realizations, there are realizations for
which the rank drops. These correspond to non-generic realizations, or special positions, of the generically minimally rigid
graph.

Example 2.6. In Fig. 5 we construct a special position of the framework specified by the graph from Fig. 3. By changing
the placement of the line on body A in Constraint II, the resulting framework remains flexible. Its rigidity matrix is shown
below8 and contains a dependency (the third row is the sum of the first two), causing its rank to drop.

7 The [a, b]-frame defined here is equivalent to the (a + b, a)-frame defined in Lee-St.John and Sidman (2013).
8 The coordinates of the framework are determined by the specification from Haller et al. (2012).

J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149 135
(a) As in Fig. 3, we specify a point–
line distance constraint that requires
point pB3 on the triangle to be a fixed
distance from line �A3 on the square.
The resulting (generic) framework is
minimally rigid.

(b) An alternative choice of the line
on body A involved in Constraint II.

(c) The resulting flexible framework
has a dependency and admits an in-
ternal motion with 1 degree of free-
dom.

Fig. 5. A flexible special position of a generically minimally rigid 2D body-and-cad framework.

⎛
⎜⎝

A1 A2 A3 B1 B2 B3

point–line coincidence 1 0 −1 −1 0 1

line–line perpendicular −1 0 0 1 0 0

point–line distance (non-generic) 0 0 −1 0 0 1

⎞
⎟⎠

3. Motivating case study

In this section we analyze in detail the 2D body-and-cad framework consisting of 3 bodies, 2 bars, and 2 line–line
coincidence constraints depicted in Fig. 1. This case study will help motivate the two algorithms that we will subsequently
present that detect generic dependencies (Algorithm 1 in Section 4) and find factor graphs for dependencies arising in
special positions (Algorithm 4 in Section 5).

The associated primitive cad graph, in which an edge corresponds to a linear constraint, is given in Fig. 6(a). In this graph,
each line–line coincidence is represented by two edges: a red edge that corresponds to a line–line parallel constraint (which
restricts only angular motion) and a black edge that corresponds to a point–line coincidence constraint (which restricts one
translational degree of freedom). Each bar eliminates 1 degree of freedom and is represented by a black edge.

Since the framework is in 2D, we will work with the generic rigidity matrix associated to the [1, 2]-frame using edge
labels a, b, c, d, e, f :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A2 A3 B1 B2 B3 C1 C2 C3

a1 a2 a3 0 0 0 −a1 −a2 −a3

b1 0 0 0 0 0 −b1 0 0

c1 0 0 −c1 0 0 0 0 0

d1 d2 d3 −d1 −d2 −d3 0 0 0

0 0 0 e1 e2 e3 −e1 −e2 −e3

0 0 0 f1 f2 f3 − f1 − f2 − f3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

One can check that the rank of this matrix is exactly 6 generically; since k = 3 for 2D frameworks, this implies that the
framework is generically minimally rigid. Any additional constraints would cause a generic dependency. In Section 4, we
present Algorithm 1, which determines generic rigidity via a combinatorial characterization; if a generic dependency is
present, it further identifies the minimal set of dependent constraints, or fundamental circuit.

(a) The primitive cad graph for the
framework in Fig. 1. Red edges rep-
resent angular constraints.

(b) The special position in which
�1‖�2.

(c) The special position in which the
bars are parallel.

Fig. 6. A 2D body-and-cad example on 3 bodies; we assume that body C is tied down.

136 J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149
As we will see in Section 5, it is convenient to work with a polynomial called the pure condition that captures the rank
of the rigidity matrix. We imagine immobilizing body C , which has the effect of removing the last three columns of the
rigidity matrix. The determinant of what remains gives the pure condition and may be expressed as the bracket polynomial
[abc][def] −[abd][cef], where the bracket [abc] denotes the 3 × 3 determinant of the matrix whose rows are a, b and c. This
pure condition is not identically zero, which is expected since the framework is generically minimally rigid. Since special
positions arise when the rank of the rigidity matrix drops, these occur precisely when the pure condition vanishes. We are
particularly interested in identifying subsystems where a dependency occurs, motivating the study of the factors of the pure
condition.

A special position occurs when a factor of the pure condition vanishes. To give a geometric interpretation of the vanishing
of the factors, we must first explain how the edge labels are obtained. We adopt the projective geometry setting of White
and Whiteley (1987), so that the framework is realized (as a set of bodies) in the affine patch of P2 that has coordinates
[1 : x : y]. This apparent complication is justified by the fact that infinitesimal Euclidean motions are then naturally identified
with points in (P2)∗ . Since the infinitesimal constraints implied by the edge labels are, essentially, blocked motions, we
interpret them as points in (P2)∗ as well, allowing us to study their geometry as a point configuration. (See White and
Whiteley (1987) and also Haller et al. (2012) for a detailed treatment and the specific construction.)

We can see from the matrix that the bracket [abc] evaluates to zero, simplifying the pure condition to [abd][cef]. A spe-
cial position exists when either factor of [abd][cef] vanishes. Note that the brackets [abd] and [cef] represent reducible
polynomials in the coordinates of a, . . . , f . In fact, [abd] = b1(a2d3 − a3d2), and [cef] = c1(e2 f3 − e3 f2). Thus, the pure con-
dition is composed of four irreducible factors b1, c1, a2d3 − a3d2, and e2 f3 − e3 f2, whose vanishing characterize the special
positions of this framework.

The next conceptual step is to relate the vanishing of the irreducible factors of the brackets derived above to our
projective geometry setup. First note that since b = [b1 : 0 : 0] is a point in (P2)∗ , b1 cannot be zero. Therefore, if
[abd] = b1(a2d3 − a3d2) = 0 then (a2, a3) = λ(d2, d3) for some nonzero λ.

The point a ∈ (P2)∗ determines a line in P2; we can think of a as a vector in R3 that is normal to a plane that pro-
jectivizes to a line in P2. The intersection of these two lines in P2 (respectively, planes in R3), is given by a system of
equations represented by the matrix(

a1 a2 a3
d1 d2 d3

)

Assuming that a �= d, if a2d3 − a3d2 = 0 this is equivalent to a system of equations of the form(
1 0 0
0 d2 d3

)
.

In other words, the intersection of the lines in P2 corresponding to a and d is a point of the form [0 : −d3 : d2], which is a
point on the line at infinity. Two lines meet at a point on the line at infinity if and only if they are parallel. Hence, we can
conclude that [abd] vanishes when the lines �1 and �2 which are denoted by �1 and �2 in Fig. 6(b) are parallel. The analysis
for the vanishing of the irreducible factors of [cef] is analogous; there is a special position when the lines determined by
the bars e and f are parallel, as in Fig. 6(c).

As this case study shows, finding the factors of the pure condition can provide information about the subframeworks of
a framework in a special position that contain a dependency. The algorithm that we will present in Section 5 (Algorithm 4)
finds a canonical set of graph minors, which we refer to as factor graphs, associated with the factors of the pure condition;
for this example, it produces factor graphs associated with precisely the irreducible factors described above, as depicted in
Fig. 9.

4. Detecting generic dependencies with [a, b]-sparsity

We review the notion of [a, b]-sparsity, used to characterize body-and-cad rigidity, and present the [a, b]-pebble game
algorithm, which characterizes [a, b]-sparsity and consequently addresses generic body-and-cad rigidity. If the addition of
an edge results in a dependency in a generic realization of the system, the pebble game will find its fundamental circuit
(minimal set of constraints involved in the dependency).

4.1. The combinatorics of minimally rigid graphs

A result from Lee-St.John and Sidman (2013) gives a combinatorial characterization of generic minimal rigidity for
2D body-and-cad frameworks (with [1, 2]-frames) and, omitting point–point coincidence constraints, for 3D body-and-cad
frameworks (with [3, 3]-frames):

Theorem 1. An [a, b]-frame with bi-colored graph G = (V , E = R � B) is generically minimally rigid if and only if ∃B ′ ⊆ B such that:

• (V , R ∪ B ′) is the edge-disjoint union of a trees, and

J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149 137
• (V , B \ B ′) is the edge-disjoint union of b trees

Theorem 1 can also be stated in terms of hereditary sparsity, which we now recall. A multigraph G = (V , E) is (k, �)-sparse
if every subset of n′ vertices spans at most kn′ −� edges; if in addition, G has exactly kn −� edges, it is called (k, �)-tight. For
brevity, (k, �)-tight graphs will be called (k, �)-graphs. A subset of vertices of G that induces a (k, �)-graph is a (k, �)-block.
When � ∈ [0, 2k), (k, �)-graphs are the bases of the (k, �)-matroid (Lee and Streinu, 2008).

Definition 4.1. Let G = (V , E = B � R) be a bi-colored graph, a, b be positive integers, and k = a + b. Then G is [a, b]-sparse9

if ∃B ′ ⊆ B such that:

• (V , R ∪ B ′) is (a, a)-sparse, and
• (V , B \ B ′) is (b, b)-sparse

Additionally, if G has exactly kn − k total edges, then G is [a, b]-tight and referred to as an [a, b]-graph.
A subset of vertices of an [a, b]-sparse graph that induces an [a, b]-graph is an [a, b]-block.

That this class is matroidal follows from the Matroid Union Theorem (Brylawski, 1986, Prop. 7.6.14). Therefore, for an
[a, b]-sparse graph G = (V , E) and an edge e not in E , we will say that e is independent of G if G + e is also [a, b]-sparse
and dependent otherwise.

A straightforward application of the Nash-Williams and Tutte Theorem (Tutte, 1961; Nash-Williams, 1961) implies that
generic minimal rigidity of body-and-cad frameworks is characterized by [1, 2]-sparsity in the plane and, omitting point–
point coincidence constraints, [3, 3]-sparsity in 3D (Lee-St.John and Sidman, 2013).

4.2. Pebble games for [a, b]-sparsity

Algorithm 1 describes our [a, b]-pebble game for determining [a, b]-sparsity properties as well as detecting the fundamen-
tal circuit of a dependent edge. This algorithm belongs to a family of pebble game algorithms (Streinu and Theran, 2009;
Lee and Streinu, 2008) that are based on a set of local moves applied to the edges of a directed graph, where the edges and
vertices are covered by pebbles representing degrees of freedom. The specific preconditions for each type of move, which
are related to the sparsity parameters, determine the sparsity family recognized by the game.

One way of intuitively understanding the [a, b]-pebble game is to imagine separate (a, a)- and (b, b)-pebble games played
on sets A and T , which partition the current edge set, respectively. The aqua-colored pebbles track the edges in A as
well as the (a, a)-sparsity of that partition; the tan-colored pebbles do the same for T with (b, b)-sparsity counts.10 The
[a, b]-pebble game relies on moves that permit black edges to move between A and T in a controlled manner, which cor-
responds to collecting additional pebbles of certain colors, using a subroutine described in Algorithm 2. To find a sequence
of these moves, Algorithm 2 specializes Knuth’s matroid union algorithm (Knuth, 1973) to the [a, b]-sparsity matroid using
pebble games. By enqueuing unvisited edges (in F ′ \ F), it uses a breadth-first approach to find the shortest path (stored
with predecessor pointers) to an edge whose pebble color can be exchanged. To help illustrate the algorithm, Fig. 7 shows
some steps of the pebble game.

4.3. Correctness

We show correctness of Algorithm 1.

Theorem 2. A bi-colored graph is [a, b]-sparse if and only if it can be constructed with the [a, b]-pebble game.

We are going to prove that Algorithm 1 correctly characterizes [a, b]-sparse graphs and that it can be used to find
circuits. As mentioned above, we rely on Knuth’s algorithm for matroid union (Knuth, 1973) (see Schrijver, 2003, Sec. 42.3,
for a modern treatment). Before giving the details, we remark that Knuth’s algorithm is a meta-algorithm that relies on
calls to independence oracles for the two matroids underlying the union. Here, these two matroids are the (a, a)- and
(b, b)-sparsity matroids, with appropriately chosen ground sets. Thus, we could simply apply Knuth’s scheme using the
(a, a)- and (b, b)-pebble games as the oracles, instead of developing the [a, b]-pebble game and showing it simulates Knuth’s
search procedure. However, the [a, b]-pebble game presented here saves a factor of O (n) over the more naïve approach, as

9 As we will rely on both concepts of sparsity, we draw the reader’s attention to the use of parentheses to denote the parametrized (k, �)-sparsity of
uncolored graphs (appearing for classical bar-and-joint and body-and-bar rigidity) and the use of square brackets to denote the parametrized [a, b]-sparsity
counts of bi-colored graphs (introduced for body-and-cad rigidity).
10 We chose the colors aqua and tan to be associated with A and T ; in the rigidity setting, the aqua-covered A partition can be thought of as tracking

the angular degrees of freedom of the system, while the tan-colored T partition tracks the translational degrees of freedom.

138 J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149
Algorithm 1 The [a, b]-pebble game algorithm.
Input: A bi-colored graph G = (V , E = R � B), with red R and black B edges.
Output: [a, b]-sparsity property tight, sparse, dependent and contains spanning tight, or dependent.
Setup: Initialize an empty directed graph H on vertex set V . On each vertex, place a aqua pebbles and b tan pebbles.
Allowed moves:

Add red edge i j [Precondition: ≥ a + 1 aqua pebbles on i and j.]
– Add the new edge, cover it with an aqua pebble from i (there is one by the precondition).
– Orient i j out of i.
Add black edge i j [Precondition: ≥ a + 1 aqua pebbles on i and j or ≥ b + 1 tan pebbles on i and j.]
– Add the new edge; cover it with a pebble from i using aqua (if there are a + 1 aqua) or tan (if there are b + 1 tan).
– Orient i j out of i.
Edge reversal [Precondition: vertex j has a pebble on it and an in-edge i j covered by the same color.]
– Reverse the edge by orienting it as ji out of j, covering with the pebble from j and returning the (same color) pebble originally covering i j to i.
Aqua exchange edge reversal [Precondition: vertex j has an aqua pebble on it and a black in-edge i j covered by a tan pebble; i and j do not belong
to the same (a, a)-component of aqua pebble covered edges.]
– Reverse the edge by orienting it as ji out of j, covering with the aqua pebble from j and returning the tan pebble originally covering i j to i.
Tan exchange edge reversal [Precondition: vertex j has a tan pebble on it and a black in-edge i j covered by an aqua pebble; i and j do not belong to
the same (b, b)-component of tan pebble covered edges.]
– Reverse the edge by orienting it as ji out of j, covering with the tan pebble from j and returning the aqua pebble originally covering i j to i.

Method:

1. For each edge e ∈ E
(a) If e is black: attempt to collect b + 1 tan pebbles on its endpoints with Algorithm 2.
(b) If Algorithm 2 returns true: insert e with an add black edge move.
(c) Else, or if e is red: attempt to collect a + 1 aqua pebbles on its endpoints with Algorithm 2.
(d) If Algorithm 2 returns true: insert e with an add black/red edge move.
(e) Else: reject it and highlight the edges returned by Algorithm 2 as the fundamental circuit of the edge (if e is black, this is the union of both calls

to Algorithm 2).
2. If every edge is added: output tight if there are a + b pebbles left and sparse otherwise.
3. Else, there were rejected edges: output dependent and contains spanning tight if there are a + b pebbles left and dependent otherwise.

Algorithm 2 The subroutine for finding pebbles for the [a, b]-pebble game.
Input: An [a, b]-pebble game configuration (a directed bi-colored graph), an edge e, and a desired additional pebble color ce (aqua or tan).
Output: true if a + 1 aqua (if ce is aqua) or b + 1 tan (if ce is tan) pebbles can be collected on the endpoints of e or false otherwise, along with the set of
visited edges.
Method:

1. Initialize set F = ∅.
2. Initialize queue Q = ∅. Entries of Q will be of the form (f , c), recording an edge on which to cover with a pebble of color c.
3. Set e.predecessor = NIL.
4. Enqueue (e, ce) into Q.
5. While Q is not empty

(a) Dequeue (f , c).
(b) If f �= e and f is red, continue to the next iteration of the loop.
(c) Use the basic pebble game rules to try to collect a + 1 (if c is aqua) or b + 1 (if c is tan) pebbles on the endpoints of f ; let F ′ be the set of edges

visited by that search.
(d) If the pebbles were collected

i. Let g = f .
ii. While g.predecessor �= NIL

A. Let d be the color of the pebble covering g , d be the opposite color, u and v the source and target of g .
B. Collect a pebble of color d on v using the basic pebble game rules with edge reversal moves.
C. Perform a d exchange edge reversal move to reverse the edge from v to u, covering it with the d-colored pebble and releasing a d-colored

pebble back onto u.
D. Set g = g.predecessor .

iii. Collect a + 1 (if c is aqua) or b + 1 (if c is tan) pebbles on the endpoints of g(= e).
iv. Output true and F ∪ F ′ .

(e) Otherwise
i. For each edge g ∈ F ′ that is not in F

A. Set g.predecessor = f ; let c be the opposite of color c.
B. Enqueue (g, c) into Q .

ii. Assign F = F ∪ F ′ .
6. Output false and F .

we will see in the complexity analysis. Nonetheless, Lemma 4.2, below, follows from Theorem 3 and the proof of Lemma 4.3,
so the direct argument below is meant to be informative.

In what follows, we describe a pebble game configuration as (H, A, T), where H is a bi-colored directed graph on vertex
set V , with a pebble covering every edge and some free pebbles on vertices; A is the set of edges covered by aqua pebbles
and T is the set of edges covered by tan pebbles. We will also abuse notation slightly and use the same symbols H , A,
and T to describe their underlying undirected graphs. Finally, we will use the notation S + e to denote S ∪ {e} and S − e to
denote S \ {e}.

J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149 139
(a) The input is a primitive cad
graph with 5 black (solid) edges
and 1 red (dashed) edge.

(b) The setup stage places a = 1
aqua (circular) pebble and b = 2
tan (square) pebbles on each ver-
tex.

(c) Since there were at least b +
1 = 3 tan pebbles on its end-
points, the black edge e is in-
serted with an add black edge
move.

(d) Another add black edge move
inserts the edge f . While the
direction is arbitrarily chosen, a
pebble from the source is used to
cover the edge.

(e) Since there were a + 1 = 2
aqua pebbles on its endpoints,
the red edge g is inserted with
an add red edge move.

(f) A few moves later, an aqua
edge exchange reversal move is
possible: B has an aqua pebble
and a tan pebble covered black
in-edge z, whose endpoints are
not in a (1, 1)-component.

(g) The edge z is subsequently
reversed, covered by the aqua
pebble from B , releasing a tan
pebble onto C .

(h) Finally, all edges are success-
fully inserted with exactly a +
b = 3 pebbles remaining; the
output is tight.

Fig. 7. The [a,b]-pebble game (Algorithm 1) played on a primitive cad graph for a generically minimally rigid framework determines that it is [1,2]-tight.

Lemma 4.2. The underlying graph of any pebble game configuration is [a, b]-sparse with A as an (a, a)-sparse graph and T as a
(b, b)-sparse graph.

Proof. We show something slightly stronger, which is that the underlying graph H constructed by applying any sequence
(as opposed to only the ones found by the algorithm) of the pebble game moves is always [a, b]-sparse.

The key invariant is that, after any sequence of moves, A and T both induce pebble game configurations for the basic
(uncolored) pebble game from Lee and Streinu (2008). As an immediate consequence, we obtain that A remains (a, a)-sparse
and B remains (b, b)-sparse. This certifies that H is [a, b]-sparse. The invariant clearly holds at initialization, so we proceed
by induction on the number of moves.

For the inductive step, we first consider all the moves except for the exchange edge reversal moves. We observe that,
assuming the required preconditions, these operate entirely on either A or T as a configuration, so the inductive step for
them follows directly from Lee and Streinu (2008).

To complete the induction, consider the aqua edge exchange reversal move, since the tan one has an analogous proof.
The precondition, that the edge i j ∈ T is not in an (a, a)-component of A, implies that A + i j is (a, a)-sparse. From this, the
pebble game invariants of Lee and Streinu (2008) imply that there are a aqua pebbles (distinct from the one on j) reachable
from i via paths using only edges in A. By induction, A could have been built by the basic (a, a)-pebble game; then i j could
be added to A by basic pebble game searches. Notice that returning the tan-colored pebble to j maintains T as a basic
(b, b)-pebble game configuration. �

The other direction is captured by the following lemma.

Lemma 4.3. If an edge is independent of the underlying graph of a pebble game configuration, then the pebble game will successfully
insert it.

Before giving the proof, we briefly review Knuth’s algorithm and establish some terminology, specialized to our setup.
The algorithm operates on a directed, bipartite graph associated with a pebble game configuration (H, A, T) and an edge e,
which is not in H . This graph, denoted �H+e , has vertex set given by the edges of H , i.e., A � T , along with two terminal
vertices α and τ , and an additional vertex for the edge e. First, we describe the edges originating and terminating at a
vertex x /∈ {e, α, τ }.

There is a directed edge from vertex x to y, written x → y if{
(A − y) + x is (a,a)-sparse if x ∈ T & y ∈ A
(T − y) + x is (b,b)-sparse if y ∈ T & x ∈ A ∩ B , i.e., x is a black edge in the aqua partition

Additionally, there is an edge x → α if x ∈ T and A + x is (a, a)-sparse, and there is an edge from x → τ if x ∈ A ∩ B and
T + x is (b, b)-sparse. The edges originating at e are defined similarly. This case distinction is simply to make it clear that
no edges in �H+e have e as their target.

140 J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149
(a) The fundamental [1, 2]-circuit for rejected
edge g detected by the pebble game is the set
of edges {e, g, y}. The set {e, y} forms an angu-
larly rigid block.

(b) The fundamental [1, 2]-circuit for rejected
edge y detected by the pebble game is the set
of edges {e, g, x, y, z}. The set {x, z} forms a
contextually rigid block due to the presence of
the angular block {e, g}.

Fig. 8. Unlike (k, �)-circuits, removing any edge from a [1,2]-circuit may not produce a [1,2]-graph.

A path x0 → x1 → ·· · → xπ has a shortcut in a graph if there exists a j > i + 1 such that xi → x j is an edge. In particular,
if x0 → x1 → ·· · → xπ is a shortest path in a graph, it does not have a shortcut.

Given a path from e to a terminal vertex, recoloring along the path means putting xi in the part of the partition containing
xi+1, with α always in A and τ always in T .

The main result of Knuth (1973), again specialized for our setup, is:

Theorem 3. Let (H, A, T) be a pebble game configuration and e an edge not in the underlying graph. Then there is a directed path in
�H+e from e to α or τ if and only if H + e is independent. Moreover, given a path e = x0 → x1 → . . . → xπ ∈ {α, τ } in �H+e that
does not have a shortcut, a partition of H + e certifying [a, b]-sparsity can be found by recoloring along this path.

The proof of Lemma 4.3 amounts to showing that Algorithm 2 is simulating Knuth’s algorithm.

Proof of Lemma 4.3. Assume that e is independent of the underlying graph of a pebble game configuration H . We need
to show that Algorithm 2 will succeed in collecting enough pebbles on the endpoints of e. This is done by comparing the
pebble search procedure in Algorithm 2 to Knuth’s algorithm.

First consider, in the main loop of Algorithm 2, the conditional block predicated upon when a + 1 (if c is aqua) or b + 1
(if c is tan) pebbles can be collected on the endpoints of f . Note that a aqua or b tan pebbles can always be collected on
any vertex by Lee and Streinu (2008). The additional pebble can be collected if and only if the edge f can be moved to the
opposite part of the partition without violating sparsity. This is equivalent to there being an edge f → {α, τ } in �H+e .

Otherwise, the pebble search fails. In this case, Lee and Streinu (2008) implies that F ′ + f is the fundamental circuit of
f in the c-colored part of the partition; i.e., g ∈ F ′ if and only if there is an edge f → g in �H+e . Therefore, F ′ is exactly
the set of neighbors of f in �H+e .

By enqueuing those edges in F ′ not already in F , Algorithm 2 is, in fact, searching �H+e in a breadth-first fashion. By
Theorem 3, the assumption that H + e is [a, b]-sparse implies that there is a path from e to a terminal vertex in �H+e .
Therefore, Algorithm 2 will be able to collect a + 1 aqua or b + 1 pebbles on the endpoints of some edge f , implying that
there is an edge from f to a terminal in �H+1. Let p be the path in �H+e defined by following predecessor pointers from f .
Since Algorithm 2 implements breadth-first search on �H+e , p is shortcut free.

Theorem 3 then implies that recoloring along p preserves the (a, a)- and (b, b)-sparsity of A and T at every step. The
main results of Lee and Streinu (2008) then imply that it will always be possible to meet the preconditions of the exchange
edge reversal moves to implement the recoloring by using only basic pebble searches on A or T . Thus, the pebble game
moves implementing the recoloring along p will succeed, and the [a, b]-pebble game will insert e. �
4.4. Circuits

The pebble game also detects [a, b]-circuits, an approach that is perhaps less well-known, but appears before in Lee and
Streinu (2008, Section 6), and has been used in Berardi et al. (2011). Note that the presence of red edges creates the possi-
bility of many types of circuits. Some may be circuits as uncolored (a + b, a + b) graphs, others may be (a, a)-circuits, and
there are yet other types. The examples in Fig. 8 demonstrate a property of circuits that does not arise in the (k, �)-sparsity
matroids. While every (k, �)-circuit is (k, �)-spanning, or “rigid,” an [a, b]-circuit may actually be “flexible.” Dropping an
edge of a (k, �)-circuit always results in a tight graph, but dropping an edge of an [a, b]-circuit can result in a sparse (but
not tight) graph.

Whenever we fail to insert an edge, Algorithm 2 finds its fundamental circuit.

Lemma 4.4. Let F be the set of edges returned by Algorithm 2. The fundamental circuit of e in the configuration graph H is F + e.

J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149 141
Proof. We must show that F + e is dependent and that, for any y ∈ F , F + e − y is independent. Observe that F + e
corresponds to the set of vertices reachable from e in the Knuth graph �H+e . By the definition of F , every directed path in
�H+e that starts at e is contained in �F+e . Therefore, there is no path from e to a terminal in �F+e , and Theorem 3 implies
that F + e is not [a, b]-sparse.

Now, let y ∈ F . By construction of F , y is on a short-cut free directed path starting at e. Therefore, there is an x ∈ F + e
on this path with x → y an edge of �H+e . By definition, removing y results in an edge from x to a terminal, providing a path
from e to a terminal. In other words, F + e − y is [a, b]-sparse for all y ∈ F , which completes the proof of correctness. �
4.5. Complexity analysis

The running time of Algorithm 1 for a graph with n vertices and m edges is O (mn2), which is O (n4). First we observe
that collecting the initial a + b pebbles in Algorithm 1 requires O (n) for each edge (a total of O (mn)) and that the rest of
the steps may be charged to O (m) invocations of Algorithm 2.

The running time of Algorithm 2, which is additionally used to detect the fundamental circuit of a dependent edge,
is O (n2). This is because each of the O (n) edges in the configuration is enqueued at most once in the main loop, and
each edge that is enqueued triggers a (k, k)-pebble game search requiring O (n) steps by Lee and Streinu (2008), after first
copying a configuration of size O (n).

By way of comparison, a direct application of Knuth’s algorithm leads to a more expensive running time. In this approach,
one might build the bipartite graph explicitly and use the basic pebble game to test each possible edge. The graph �H+e

has O (n2) edges, and each check would require an O (n2)-time run of the (k, k)-pebble game; this would result in a total of
running time of O (mn4) = O (n5) (any call to the pebble game would have O (n) edges as the input graph is sparse).

4.6. Finding components

Within an [a, b]-sparse graph, an induced [a, b]-component is a vertex-maximal [a, b]-block. It is straightforward to adapt
Algorithm 1 to maintain and detect induced [a, b]-components, as in the (k, �)-pebble game algorithm with components
described in Lee and Streinu (2008). The running time would remain O (n4).

Note that any edge with vertices contained in an induced [a, b]-component is dependent and will be rejected by
this adapted pebble game in O (1) time. However, an edge may be dependent without being contained in an induced
[a, b]-component, as the circuits in Fig. 8 demonstrate. Therefore, unlike the (k, �)-sparsity case, we do not save a factor in
the running time by maintaining induced [a, b]-components.

5. Analyzing non-generic dependencies with factor graphs

As demonstrated in Section 3, a generically minimally rigid framework may be in a special position that admits internal
motions and contains dependencies. In this section, we develop algorithms that will decompose such a framework into its
factor graphs, permitting analysis of which subframeworks contain the dependencies. We begin by reviewing basic informa-
tion about the pure condition of an [a, b]-graph. We then present a simple algorithm that uses the pebble game to find the
factor graphs of the pure condition of an (uncolored) (k, k)-graph, which correspond to the irreducible factors of its pure
condition. Finally, we provide some technical background required for analyzing the more complicated structure of the pure
condition of an [a, b]-graph and conclude with factor graph algorithms in this setting.

5.1. Structure of the pure condition

In this section, we review the definition of the polynomial called the pure condition that is associated to a body-and-cad
framework. If G is a minimally rigid graph and p is generic, the kernel of M(G(p)) contains exactly the space of trivial
infinitesimal motions of G(p), corresponding to rigid-body motions of the entire framework as a single unit. To remove
these, we choose some i with 1 ≤ i ≤ n, and construct the standard tie-down at body i by appending to M(G(p)) a k × kn
matrix whose only nonzero entries are given by the identity matrix in the k columns associated to body i.11 We denote the
rigidity matrix of G(p) with a tie-down by MT (G(p)).

Definition 5.1. The pure condition P G of a tied down [a, b]-graph G is the determinant of MT (G(x)).

The pure condition depends, a priori, on the choice of tie-down of G . We will show that as in the body-bar setting of
White and Whiteley (1987), this dependence can be removed.

11 The notion of tie-downs can be substantially generalized to generic tie-downs of any [a, b]-sparse graph. For our purposes, this would only complicate
the notation, so we restrict our attention to standard tie-downs.

142 J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149
Theorem 4. The pure condition of a tied down [a, b]-graph G is non-zero for any choice12 of the tie down and has the form P G =
TG · CG , where TG depends on the tie down and CG is independent of the tie down.

The proof is relatively standard and similar to what can be found in White and Whiteley (1987), Whiteley (1988); for
completeness we provide it in Appendix A. This theorem implies that we only need to consider CG , the “critical factor” of
the pure condition; for the remainder of the paper, we will abuse notation and refer to CG as the pure condition of G .

5.2. Factors of the pure condition and factor graphs

We start with the simpler setting arising in body-and-bar, where rigidity is characterized via (b, b)-sparsity counts, before
moving to the more complicated setting of body-and-cad.

5.2.1. Body-and-bar factors
Note that a [0, b]-graph is a (b, b)-graph, and in this case White and Whiteley (1987) showed that there is a one-to-one

correspondence between factors of CG and what we will call factor graphs of G . A graph H is a factor graph of a (k, k)-graph
G if H is a minor,13 and CG = hf , where the variables that appear in h are the edge labels of H . Denote by G/H the minor
obtained by deleting all the edges in H and identifying its vertices. All the factor graphs H in White and Whiteley (1987)
have the same form: H is it itself a (b, b)-graph, and the factor associated with H is the pure condition of H(x). A corollary
of White and Whiteley’s result is that, in fact, every factor of CG arises this way.

The intuition for studying these factor graphs to analyze dependencies arising from special positions is as follows. Sup-
pose that G is a (b, b)-graph and has a subgraph H that is a (b, b)-block. Then M(H(x)) is a submatrix of M(G(x)); thus,
a special position of H(x) is also a special position of G(x), no matter what edge labels we put on the edges of G that are
not between two vertices of H . Similarly, there are special positions of G(x) that remain so after changing the edge labels
of H to anything at all. These come from special positions of (G/H)(x). In general, special positions are characterized by
which factors of the pure condition vanish, so they are associated with specific subgraphs.

Using this foundation, Algorithm 3 finds the factor graphs of a (k, k)-graph recursively.

Algorithm 3 The k-factor graphs algorithm.
Input: A (k, k)-graph G = (V , E).
Output: The factor graphs of the irreducible factors of CG .
Method:

1. Initialize P = ∅ and H = G .
2. Play the (k, k + 1)-pebble game on G to find a maximal (k, k + 1)-sparse graph G ′ .
3. For every edge e that is rejected (there is at least one):

(a) Use the (k, k + 1)-pebble game to detect the fundamental (k, k + 1)-circuit Ge of e in G ′ .
(b) Set P = P + Ge ; set H = H/Ge .

4. If H is not a single vertex:
(a) Recursively use the k-factor graphs algorithm on H to obtain factor graphs P ′ .
(b) Set P = P ∪P ′ .

5. Output P .

5.2.2. Body-and-cad factors
The body-and-cad setting is more complicated than the body-and-bar setting of White and Whiteley (1987). An

[a, b]-graph may have factors that correspond to [a, b]-blocks, factors that correspond to (a, a)- or (b, b)-blocks, and other
factors that do not correspond to any induced block. This requires some additional technicalities, which we now introduce,
before describing our algorithm for finding factor graphs in [a, b]-graphs.

Definition 5.2. Let G be an [a, b]-graph with pure condition CG = f g . We say that the edge support of the factor f is the set
E f of edges e in G such that some variable of x(e) is in f .

We can show that the supports of distinct factors define edge-disjoint subgraphs of G , ultimately leading to a decompo-
sition of G .

Theorem 5. Let CG = f g. Then the edge supports of f and g are disjoint and partition E(G). Moreover, every monomial of a factor
contains exactly one coordinate from each edge in its support.

12 The standard tie-down pins k coordinates of one body, but we can also choose “generic” tie-downs that pin k coordinates chosen from different bodies.
13 Graph minors are obtained by deleting edges and vertices and contracting edges.

J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149 143
The proof is standard and presented in Appendix A for completeness.
Theorem 5 implies that the factor graphs mentioned above are a well-defined concept, which we repeat, since they are

central in what follows.

Definition 5.3. A bi-colored graph H is a factor graph of G if H is a minor of G and CG = hf , with the factor h supported on
H . If h is an irreducible factor of CG , then H is an irreducible factor graph.

If H only contains red edges, we abuse notation and interpret it as an (a, a)-graph labeled by the first a coordinates of
the edge vectors. If H only contains black edges and is a (b, b)-graph whose vertices are contained in a red (a, a)-graph,
then we interpret it as a (b, b)-graph labeled by the last b coordinates of the edge vectors. With this interpretation, we can
make the following definition.

Definition 5.4. The factor graph H is proper, if h = C H (for some tie down of H). Otherwise, it is improper.

To see the difference between proper and improper, consider the [1, 1]-graph graph in Fig. 10. It has three factor graphs:
each diagonal of the outer square is a factor graph, and so is the outer square itself. The two diagonals are both proper;
since a red edge is, trivially, a (1, 1)-graph, their corresponding factors are pure conditions. On the other hand, the factor
corresponding to the outer square is not a pure condition, which can been seen by noting that this factor graph is neither a
(1, 1)-graph nor a [1, 1]-graph; its rigidity matrix is not square after a standard tie-down is applied. Thus, the outer square
is an improper factor graph.

5.3. Detecting factor graphs

Algorithm 4 adapts the k-factor graphs algorithm to account for the different types of factor graphs that can appear in
[a, b]-graphs. It relies on a subroutine, Algorithm 5, that detects the additional types of factors, both proper and improper.

Algorithm 4 The [a, b]-factor graphs algorithm.
Input: an [a, b]-graph G = (V , E = R � B), with a set of red edges R and a set of black edges B .
Output: Proper (irreducible) and improper factor graphs of G that together provide a factorization of G .
Method:

1. Initialize P = ∅; I = ∅; H = G; set k = a + b.
2. Play the (k, k + 1)-pebble game on G to find a maximal (k, k + 1)-sparse graph G ′ .
3. For every edge e that is rejected (there is at least one):

(a) Use the (k, k + 1)-pebble game to detect the fundamental (k, k + 1)-circuit Ge of e in G ′ .
(b) Use the [a, b]-red-factor graphs algorithm on Ge to obtain sets of factor graphs Pe and Ie .
(c) Set P = P ∪Pe and I = I ∪ Ie ; set H = H/Ge .

4. If H is not a single vertex:
(a) Recursively use the [a, b]-factor graphs algorithm on H to obtain sets of factor graphs P ′ and I ′ .
(b) Set P = P ∪P ′ and I = I ∪ I ′ .

5. Output P and I .

Algorithm 5 The [a, b]-red-factor graphs algorithm.
Input: An [a, b]-bi-colored graph G = (V , E = R � B), with a set of red edges R and a set of black edges B , that contains no proper (a +b, a +b)-components.
Output: Proper (irreducible) and improper factor graphs of G that together provide a factorization of G .
Method:

1. Play the (a, a)-pebble game on (V , R) and detect red (a, a)-components.
2. If no (a, a)-components of (V , R) were found, output {G}.
3. Otherwise, let H1, . . . , Ht be the red (a, a)-components.

(a) For each graph (V (Hi), E(V (Hi)) ∩ B), play the (b, b)-pebble game to detect (b, b)-components.
(b) If no (b, b)-components are found, use the a-factor graphs algorithm on each Hi to obtain a set of proper factor graphs P that are the a-factor

graphs of the Hi . Then return P and I = {(V , E \ {E(V (Hi)) : i ∈ [t]})}.
(c) Otherwise, there is a (b, b)-component J in the vertex span of some component Hi . Set H = Hi .

i. Use the a-factor graphs algorithm on H to obtain a set of factor graphs PH .
ii. Use the b-factor graphs algorithm on J to obtain a set of factor graphs P J .

iii. Obtain a pebble game configuration of G by fixing a vertex in v ∈ V (J) and using the [a, b]-pebble game to collect k pebbles on v . Delete
every edge of H with its tail in V (J). Contract V (J) into a single vertex to get a graph G ′ .

iv. Use the [a, b]-factor graphs algorithm on G ′ to get a set of factor graphs P ′ and I ′ .
v. Find the factor graph F H in P ′ that contains an edge of H .

vi. Return PH ∪P J ∪ (P ′ \ {F H }) and I ′ .

We provide an overview of how the [a, b]-factor graphs algorithm performs on a [1, 2]-graph with only proper factors in
Fig. 9 and on a [1, 1]-graph with one improper factor in Fig. 10. A more comprehensive trace of the algorithm is given in
on a [1, 1]-graph in Fig. 11.

144 J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149
Fig. 9. Algorithm 4 finds the proper factor graphs of the [1, 2]-graph underlying Fig. 1: {{e, f }, {a, d}, {b}, {c}}; there are no improper factor graphs. The
pure condition is ±[ef](2,3)[ad](2,3)[b](1)[c](1) . A bracket subscripted by ordered tuple T denotes the determinant of the |T | × |T | matrix with coordinates
specified by T .

Fig. 10. Algorithm 4 on a [1, 1]-graph finds proper factor graphs {{e}, { f }} and an improper factor graph {{a, b, c, d}}. The pure condition is
[e](1)[f](1)(a2b1c1d1 − a1b2c1d1 − a1b1c2d1 + a1b1c1d2) = e1 f1(a2b1c1d1 − a1b2c1d1 − a1b1c2d1 + a1b1c1d2). A bracket subscripted by ordered tuple T
denotes the determinant of the |T | × |T | matrix with coordinates specified by T .

5.3.1. Correctness
The proof of correctness relies on some structural results about the pure condition that we establish first. This result is an

extension of the similar statement from White and Whiteley (1987) that underlies the k-factor-graphs algorithm discussed
above to the setting of [a, b]-graphs, and it has a similar geometric meaning.

Theorem 6. Let G have a proper subgraph H that is an [a, b]-block. Then H and G/H are both proper factor graphs and CG =
C H · CG/H .

For clarity of presentation, we leave the proof for Appendix A. Theorem 6 implies the correctness of Algorithm 3.

Claim 5.5. Every graph returned by Algorithm 3 is an irreducible and proper factor graph.

Proof. Properness comes from Theorem 6. Irreducibility of the pure condition of a (k, k)-graph is characterized by White
and Whiteley (1987, p. 27): the pure condition of a graph is irreducible if and only if the graph contains no proper block.
The graph contains no proper block if and only if, for every proper subgraph with n′ vertices and m′ edges, m′ < kn′ −k (i.e.,

J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149 145
Fig. 11. Algorithm 4 on a [1, 1]-graph detects proper factor graphs: {{a}, {b}, {c}, {i}, { j}, { f }, {h}, {d}{e, g}}. There are no improper factor graphs. The pure
condition is ±[a](1)[b](1)[c](2)[i](1)[j](2)[f](2)[h]1)[d](2)[eg](1,2) .

strict inequality holds on proper subgraphs). Since we are considering a (k, k)-graph with all proper subgraphs (k, k + 1)

sparse, this holds precisely when the graph is a (k, k + 1)-circuit. �
The next few theorems deal with the new cases arising in body-and-cad. Again, for clarity, we leave their proofs for

Appendix A.

Theorem 7. Let G be an [a, b]-graph with a subgraph H that contains only red edges and is an (a, a)-block. Then H is a proper factor
graph of G.

Figs. 9, 10 and 11 depict examples with red (a, a)-blocks appearing as proper factor graphs. The geometric interpretation
of Theorem 7 is that as a sub-framework H is not rigid, but angularly rigid: only translational degrees of freedom are
permitted between the vertices spanned by H . In light of this, we define the following.

Definition 5.6. Let G be [a, b]-sparse. If H is a subgraph that contains only red edges and is an (a, a)-block, we say that it
is an angular block. If G is an [a, b]-graph, then an angular block is an angular factor graph.

A key difference between the situation in Theorem 6 and that of Theorem 7 is that we cannot simply contract H and
obtain another proper factor graph. Indeed, as the example in Fig. 10 shows, G \ H may be an improper factor graph.

The final type of proper factor graph arises as a subset of an angular block. Suppose that G has an angular block H , and
that J � H is a (b, b)-block on t vertices (necessarily) containing only black edges. Angular rigidity of the bodies spanned
by H implies that there are only b(t − 1) translational degrees of freedom remaining among them. Since J is a (b, b)-block
containing only blind constraints, there are, in fact, no remaining internal degrees of freedom in J . We call J contextually
rigid, since it is rigid in the context of G , but not as an induced subgraph. It is possible to continue finding factor graphs
after discovering a contextually rigid block, but the construction is more delicate, in that it requires modifying H after
contracting J .

146 J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149
Step 3 of Algorithm 5 handles detection of contextually rigid components. Theorem 8 ensures its correctness by making
the discussion above precise We need an additional combinatorial definition for the statement.

Definition 5.7. Let G be an [a, b]-graph. An [a, b]-tree decomposition

T = (A1, . . . , Aa, T1, . . . , Tb)

of G is a partition of the edges into k spanning trees such that all the red edges are in the sets Ai .

It follows from the definitions in Section 4.1 that there is an [a, b]-tree decomposition of a bi-colored graph if and only
if it is an [a, b]-graph.

Theorem 8. Let G be an [a, b]-graph with an all red (a, a)-block H as a subgraph and an all black (b, b)-block J with V (J) ⊂ V (H).
Tie down a vertex in J , fix an [a, b]-tree decomposition T of G, and orient all edges towards this root. Define G ′ by removing all of the
edges of H whose tails are in J and then contracting J . Then,

1. H and J are proper factor graphs.
2. CG = C H · C J · f , where f is supported on a subgraph F whose edges are the edges of G that are not in H or J .
3. G ′ is an [a, b]-graph with CG ′ = hf , where h is supported on the red (a, a)-block H ′ = H/ J .

We now show correctness of Algorithm 5.

Claim 5.8. Every graph returned by Algorithm 5 is a factor graph, and the proper factor graphs are irreducible.

Proof. The calls to the a-factor graphs algorithm and b-factor graphs algorithm produce irreducible proper factor graphs by
the correctness of Algorithm 3. In Step 3(c)iii, we obtain a pebble game configuration certifying (a, a)-sparsity of the aqua
partition and (b, b)-sparsity of the tan partition. Via sparsity, we also know that there exists an [a, b]-tree decomposition
consistent with this [a, b]-pebble game configuration if we direct all edges towards the chosen vertex v . Therefore, by
Theorem 8 we know that G ′ is an [a, b]-graph.

Also by Theorem 8, H ′ = H/ J is a (red) (a, a)-block. Thus, after contracting and recursively calling Algorithm 4, there
is exactly one factor graph H ′ containing an edge from H , so Step 3(c)v is well-defined. Finally, removing the factor graph
F H = H ′ from the set of returned factor graphs completes the algorithm’s correctness. �

This, along with Theorem 6, allows us to conclude correctness of our main Algorithm 4:

Claim 5.9. Every graph returned by Algorithm 4 is a factor graph, and the proper factor graphs are irreducible.

We do not know if the improper factor graphs are irreducible, since we do not have a nice representation for them.

Question 9. Are all the factor graphs found by Algorithm 4 irreducible?

6. Conclusions

The approach presented in this paper is part of a larger research path to provide computational tools that will give users
information about dependencies present in CAD structures in terms of the original geometric constraint system. A prototype
of Algorithm 1 has been implemented, with a long-term goal to see the pebble game and factor algorithms incorporated
into commercial CAD software packages. By analyzing the pure condition, we can detect special positions of a generically
minimally rigid body-and-cad structure. However, since CG vanishes when G(p) is infinitesimally flexible, special positions
that we find may not be truly flexible. These positions may still be of interest to a CAD user, as an infinitesimally flexible
framework carries an internal stress, indicative of structural weaknesses. Moreover, we may be able to combine conditions
implying a special position to create degenerate embeddings with true motions. We conclude with a brief discussion of
open questions that arise as we move toward further development of our approach.

Algorithm 4 returns factor graphs of the pure condition of an [a, b]-graph, but it remains open as to whether these
factors are irreducible or not. When b = 0, the results of White and Whiteley (1987) show that irreducible factors of CG

correspond to circuits in G; this correspondence implies that Algorithm 3 produces irreducible factors for body-and-bar
graphs. A better understanding of circuits would allow us to similarly conclude of the factors identified by Algorithm 4 are
always irreducible.

We were able to carry out an analysis in the case study of Section 3 where the pure condition was just a product of
brackets, and its vanishing was implied by either making two bars parallel or two lines parallel. More generally, a geometric
interpretation of the vanishing of a more complicated non-monomial bracket polynomial may be possible via the process of

J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149 147
Cayley factorization, which takes as input a polynomial written in terms of brackets of vectors and outputs an expression
in terms of meets and joins in the Grasmann–Cayley algebra of those points if such an expression exists. There is a Cayley
factorization algorithm due to White (White, 1991; Sturmfels, 2008), and it would be interesting to see if it could be
modified (and sped up) if the input bracket polynomial is known to be a pure condition.

Even when a Cayley factorization does exist, it may be nontrivial to extract geometric information about the original
framework from it. One issue that adds complexity in general is that a single cad constraint may impose multiple linear
constraints, so conditions may need to be expressed in terms of sets of vectors. Furthermore, in 3D, the vectors in the
brackets do not live in a space dual to our realization space (as they do in 2D), complicating translation of the vanishing of
the pure condition into the setting of our original constraints.

Finally, the results in this work rely on the combinatorial characterization of Lee-St.John and Sidman (2013), which
apply to 3D body-and-cad structures without point–point coincidence constraints. While a combinatorial characterization that
incorporates these constraints remains unknown, 3D body-and-cad frameworks with point–point coincidences share similar
properties with presumed barriers to a combinatorial characterization of 3D bar-and-joint frameworks.

Figures and acknowledgements

Some figures created in SolidWorks 2010 and 2012. We thank Ruimin Cai for implementing some of the algorithms pre-
sented here and Josephine Yu for her work in implementing the Cayley factorization algorithm at the Macaulay2 workshop
(Colorado College, Aug. 8–12, 2010; supported by NSF Grant No. 0964128 and NSA Grant No. H98230-10-1-0218). We are
grateful for support from the AIM workshop on Configuration Spaces of Linkages and the BIRS workshop on Advances in
Combinatorial and Geometry Rigidity Theory. This paper has benefited greatly from the thoughtful and constructive feedback
from anonymous reviewers whom we also thank here.

Appendix A. Proofs for Section 5

A.1. Proof of Theorem 4

The proof follows from a combinatorial formula for the pure condition in terms of tree decompositions that we now
derive. To make the connection between tree decompositions and CG we define the tree decomposition monomial xT to be

xT :=
∏

e∈Ai , i∈[a]
x(e)i

∏
e∈T j , j∈[b]

x(e)a+ j

The tree monomials are precisely the monomials appearing in P G .

Theorem 10. If G is a tied down [a, b]-graph

P G =
∑

tree decomps.
T

±xT in R[x]. (A.1)

The signs can be determined using the definition of the determinant of a matrix. The precise formula for the signs is technical and not
needed in what follows, so we do not describe it here.

Proof. We sketch a proof that follows the proof of Theorem 2.18 in White and Whiteley (1987). First we reorder the columns
of MT (G(x)) by the coordinates of p(e) so that we have the n first coordinates, followed by the n second coordinates, etc.
In doing this we can see that if we ignore the last k rows corresponding to the tie down, each successive collection of n
columns is just an incidence matrix for the directed multigraph G whose rows are the edges of G , and whose columns
correspond to the vertices.

We expand the determinant of MT (G(x)) along these successive groups of n columns. To do this, in each set of n
columns, we need to choose n rows. Since this set of n columns is an incidence matrix, if this subdeterminant is nonzero,
then these rows must correspond to a spanning tree plus a row corresponding to the tie down. Moreover, this subdetermi-
nant is actually a monomial as it is possible to expand it row by row, choosing the tie down as the first row, choosing an
edge incident to the tied-down vertex as the next row, and choosing successive rows by taking an edge that was adjacent
to an edge already chosen. Proceeding in this way, each row that we choose only contributes one nonzero entry.

The resulting n × n determinant is multiplied by k others, all chosen in the same way, to obtain a monomial. Since
we cannot permit any row to appear twice in such a product, this product of k n × n determinants corresponds to a
decomposition of G into k edge-disjoint spanning trees.

Moreover, we argue that such a product is nonzero if and only if the k trees form an [a, b]-tree decomposition. To see
this, note that within the last b groups of n columns, the rows corresponding to red edges have only zeroes as entries. So,
all of the red edges are in the a trees corresponding to the first a coordinates. �

148 J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149
Proof of Theorem 4. It follows from Theorem 10 that, since the tree decompositions are independent of the tie-down, P G

is determined up to sign. We can therefore define the critical factor14 CG to be P G with respect to the tie-down that pins
vertex 1, to establish a convention. �
A.2. Proof of Theorem 5

Proof. From Equation (A.1) we can see that every monomial of CG contains exactly one coordinate from each edge. If the
coordinates of x(e) were split between two distinct factors, then their product would have terms divisible by more than one
coordinate of x(e), which would be a contradiction. �
A.3. Proof of Theorem 6

The proof requires the following standard lemma.

Lemma 6.1. Let G be a (k, k)-graph, and let H be a proper block. Then G/H is also a (k, k)-graph.

Proof. Fix a tree decomposition T1, . . . , Tk of G , and let n′ be the number of vertices of H . Since H has m′ = kn′ − k edges,
all of which are covered by one of the trees, |Ti ∩ H | = n′ − 1 for every i. Thus, contracting H involves contracting a subtree
of each of the Ti . Since contracting a connected subtree of any tree T produces a smaller tree T ′ , contracting H produces a
set of k trees that cover the edges of G/H . By the Tutte–Nash-Williams Theorem G/H is also a (k, k)-graph. �
Proof of Theorem 6. Since H is an [a, b]-graph, it has a pure condition C H . Lemma 6.1 then implies that G/H is also an
[a, b]-graph, so CG/H is defined as well. If both C H and CG/H divide CG , then CG = CG · CG/H , since the supports of H and
G/H are disjoint and partition the edges of G .

To see that C H and CG/H divide CG , we will use Equation (A.1), and a small elaboration of the proof of Lemma 6.1. Pick
tree decompositions TH and TG/H of H and G/H . Suppose that the union T of T H

1 and T G/H
1 contains a cycle in G . Since T H

1

is a tree, this cycle is not contained entirely in H . This implies that T /T H
1 = T G/H

1 is not acyclic, which is a contradiction.
Because TH and TG/H were arbitrary, a tree decompisiton of G is determined by picking one of H and G/H indepen-

dently. The desired result then follows from Equation (A.1). �
A.4. Proof of Theorem 7

Proof. Because H is a completely red (a, a)-block, any tree decomposition of G induces a decomposition of H into a edge-
disjoint spanning trees. The trees covering H can be chosen independently of the trees covering the remaining edges, so the
theorem follows from Equation (A.1). �
A.5. Proof of Theorem 8

Proof. That H is a factor graph of G follows from Theorem 7. To see that J also is, observe that, since V (J) ⊂ V (H), all the
edges of J are covered by trees T j (and not Ai). Thus, the decomposition of J into b trees is independent of the rest of any
tree decomposition. Hence, C J (the pure condition of a (b, b)-graph) divides CG , using the same arguments as above.

To show that G ′ is an [a, b]-graph, we will show that T restricts to an [a, b]-tree decomposition of G ′ . In each tree there
was a unique directed path from each vertex in G to the root in J . Since our construction only deletes edges directed out of
J , there is still a unique directed path in each tree from each vertex remaining in G ′ to the root. If an undirected cycle were
created in this process, it is easy to see that there would have also been an undirected cycle in the original tree. Therefore,
the restriction of T to T ′ in G ′ is an [a, b]-tree decomposition.

Finally, we argue that H ′ = H/ J is a red (a, a)-block in G ′ . This will imply that H ′ is a factor graph of G ′ , yielding the
last assertion of the theorem. Above, we argued that the a red trees of T in H restrict to a red trees in T ′ in H ′ . By
Nash-Williams–Tutte, H ′ is a (a, a)-block (of all red edges). By Theorem 7, H ′ is a proper factor graph of G ′ and CG ′ = hf
with h supported on H ′ . �
References

Berardi, M., Heeringa, B., Malestein, J., Theran, L., 2011. Rigid components in fixed-lattice and cone frameworks. In: Proceedings of the 23rd Annual Canadian
Conference on Computational Geometry (CCCG). http://arxiv.org/abs/1105.3234.

Brylawski, T., 1986. Constructions. In: Theory of Matroids. In: Encyclopedia Math. Appl., vol. 26. Cambridge Univ. Press, Cambridge, pp. 127–223.

14 The name comes from the setting of general tie-downs, where ±1 is replaced with the determinant of a k × k matrix.

http://arxiv.org/abs/1105.3234
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib423836s1

J. Farre et al. / Computer Aided Geometric Design 47 (2016) 130–149 149
Cheng, J., Sitharam, M., Streinu, I., 2009. Nucleation-free 3d rigidity. In: Proceedings of the 21st Canadian Conference of Computational Geometry, pp. 71–74.
http://dblp.uni-trier.de/db/conf/cccg/cccg2009.html#ChengSS09.

Chou, S.-C., 1988. Mechanical Geometry Theorem Proving. Mathematics and Its Applications, vol. 41. D. Reidel Publishing Co., Dordrecht. With a foreword
by Larry Wos.

Gao, X.-S., Lei, D., Liao, Q., Zhang, G.-F., 2005. Generalized Stewart–Gough platforms and their direct kinematics. IEEE Trans. Robot. 21 (2), 141. http://
geometrie.uibk.ac.at/institutsangehoerige/husty/dld/Quebec.pdf.

Geiß, F., Schreyer, F.-O., 2009. A family of exceptional Stewart–Gough mechanisms of genus 7. In: Interactions of Classical and Numerical Algebraic Geometry.
In: Contemp. Math., vol. 496. Amer. Math. Soc., Providence, RI, pp. 221–234.

Gortler, S.J., Healy, A.D., Thurston, D.P., 2010. Characterizing generic global rigidity. Am. J. Math. 132 (4), 897–939. http://dx.doi.org/10.1353/ajm.0.0132.
Haller, K., Lee-St. John, A., Sitharam, M., Streinu, I., White, N., 2012. Body-and-cad geometric constraint systems. Comput. Geom. 45 (8), 385–405.
Jackson, B., Owen, J.C., 2014. A characterisation of the generic rigidity of 2-dimensional point–line frameworks. Preprint, arXiv:1407.4675.

http://arxiv.org/abs/1407.4675.
Knuth, D.E., 1973. Matroid partitioning. Tech. rep., Stanford, CA, USA.
Laman, G., 1970. On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340.
Lee, A., Streinu, I., 2008. Pebble game algorithms and sparse graphs. Discrete Math. 308 (8), 1425–1437. http://dx.doi.org/10.1016/j.disc.2007.07.104.
Lee, A., Streinu, I., Theran, L., 2005. Finding and maintaining rigid components. In: Proceedings of the 17th Canadian Conference of Computational Geometry.

Windsor, Ontario. http://cccg.cs.uwindsor.ca/papers/72.pdf.
Lee-St.John, A., Sidman, J., 2013. Combinatorics and the rigidity of cad systems. Comput. Aided Des. 45 (2), 473–482.
Michelucci, D., Foufou, S., 2007. Detecting all dependences in systems of geometric constraints using the witness method. In: Botana, F., Recio, T. (Eds.),

Automated Deduction in Geometry, 6th International Workshop (ADG 2006). In: Lecture Notes in Computer Science, vol. 4869. Springer.
Nash-Williams, C.S.J.A., 1961. Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36, 445–450.
Schrijver, A., 2003. Combinatorial Optimization. Polyhedra and Efficiency, vol. B. Algorithms Comb., vol. 24. Springer-Verlag, Berlin. Matroids, trees, stable

sets, Chapters 39–69.
Sitharam, M., Zhou, Y., 2004. A tractable, approximate characterization of combinatorial rigidity in 3d. In: 5th Automated Deduction in Geometry (ADG).
Streinu, I., Theran, L., 2009. Sparsity-certifying graph decompositions. Graphs Comb. 25, 219–238. http://dx.doi.org/10.1007/s00373-008-0834-4.
Sturmfels, B., 2008. Algorithms in Invariant Theory, 2nd edition. Texts and Monographs in Symbolic Computation. Springer, New York, Vienna.
Tay, T.-S., 1984. Rigidity of multigraphs. I. Linking rigid bodies in n-space. J. Comb. Theory, Ser. B 36 (1), 95–112. http://dx.doi.org/10.1016/0095-8956(84)

90016-9.
Tutte, W.T., 1961. On the problem of decomposing a graph into n connected factors. J. Lond. Math. Soc. 36, 221–230.
White, N.L., 1991. Multilinear Cayley factorization. J. Symb. Comput. 11 (5–6), 421–438. http://dx.doi.org/10.1016/S0747-7171(08)80113-7. Invariant-

theoretic algorithms in geometry (Minneapolis, MN, 1987).
White, N., Whiteley, W., 1987. The algebraic geometry of motions of bar-and-body frameworks. SIAM J. Algebraic Discrete Methods 8 (1), 1–32. http://

dx.doi.org/10.1137/0608001.
Whiteley, W., 1988. The union of matroids and the rigidity of frameworks. SIAM J. Discrete Math. 1 (2), 237–255. http://dx.doi.org/10.1137/0401025.
Whiteley, W., 1996. Some matroids from discrete applied geometry. In: Bonin, J., Oxley, J.G., Servatius, B. (Eds.), Matroid Theory. In: Contemp. Math., vol. 197.

American Mathematical Society, pp. 171–311.

http://dblp.uni-trier.de/db/conf/cccg/cccg2009.html#ChengSS09
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib63686F75s1
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib63686F75s1
http://geometrie.uibk.ac.at/institutsangehoerige/husty/dld/Quebec.pdf
http://geometrie.uibk.ac.at/institutsangehoerige/husty/dld/Quebec.pdf
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib67656973735363687265796572s1
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib67656973735363687265796572s1
http://dx.doi.org/10.1353/ajm.0.0132
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib68616C6C65726574616Cs1
http://arxiv.org/abs/1407.4675
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib4B6E7574683A313937333A4D503A383931393738s1
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib4C3730s1
http://dx.doi.org/10.1016/j.disc.2007.07.104
http://cccg.cs.uwindsor.ca/papers/72.pdf
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib73746A6F686E5369646D616Es1
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib6D696368656C75636369466F75666F75s1
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib6D696368656C75636369466F75666F75s1
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib6E61736857696C6C69616D73s1
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib53303362s1
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib53303362s1
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib736974686172616D5A686F7532303034s1
http://dx.doi.org/10.1007/s00373-008-0834-4
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib737475726D66656C73s1
http://dx.doi.org/10.1016/0095-8956(84)90016-9
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib7475747465s1
http://dx.doi.org/10.1016/S0747-7171(08)80113-7
http://dx.doi.org/10.1137/0608001
http://dx.doi.org/10.1137/0401025
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib77686974656C65793A4D6174726F6964733A31393936s1
http://refhub.elsevier.com/S0167-8396(16)30081-4/bib77686974656C65793A4D6174726F6964733A31393936s1
http://dx.doi.org/10.1016/0095-8956(84)90016-9
http://dx.doi.org/10.1137/0608001

	Algorithms for detecting dependencies and rigid subsystems for CAD
	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.3 Contributions
	1.4 Organization

	2 Background
	2.1 The combinatorial model
	2.2 The rigidity matrix and inﬁnitesimal rigidity

	3 Motivating case study
	4 Detecting generic dependencies with [a,b]-sparsity
	4.1 The combinatorics of minimally rigid graphs
	4.2 Pebble games for [a,b]-sparsity
	4.3 Correctness
	4.4 Circuits
	4.5 Complexity analysis
	4.6 Finding components

	5 Analyzing non-generic dependencies with factor graphs
	5.1 Structure of the pure condition
	5.2 Factors of the pure condition and factor graphs
	5.2.1 Body-and-bar factors
	5.2.2 Body-and-cad factors

	5.3 Detecting factor graphs
	5.3.1 Correctness

	6 Conclusions
	Figures and acknowledgements
	Appendix A Proofs for Section 5
	A.1 Proof of Theorem 4
	A.2 Proof of Theorem 5
	A.3 Proof of Theorem 6
	A.4 Proof of Theorem 7
	A.5 Proof of Theorem 8

	References

