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for analysis-suitable unstructured B-spline spaces. In this setting the parameter domain
has a manifold structure which allows for the definition of function spaces such as,
for instance, B-splines over multi-patch domains with extraordinary points or analysis-
suitable unstructured T-splines. Within this framework, we generalize the concept of dual-
compatible B-splines (developed for structured T-splines in Beirão da Veiga et al. (2013)).
This allows us to prove the key properties that are needed for isogeometric analysis, such
as linear independence and optimal approximation properties for h-refined meshes.
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1. Introduction

Isogeometric analysis (IgA), as it was introduced in Hughes et al. (2005), is a discretization method that directly uses the
geometry models as they are present in CAD for the numerical solution of partial differential equations, without the need of 
generating a mesh. In the basic setting of IgA the physical domain of interest is parametrized by tensor-product B-splines or 
NURBS, therefore it has to be diffeomorphic to a rectangle or hexahedron. In a broader context, the discretization is based on 
the geometry representation as it is implemented in the CAD system. Hence, there is a need for a more flexible geometry 
representation beyond tensor-product splines. Within the CAD community there exist several approaches to enhance the 
geometric flexibility, such as multi-patch representations, unstructured T-splines or subdivision methods, among others. 
These approaches have been also applied in IgA, with the same objective of obtaining more flexible representations of the 
physical domain.

The first attempts to introduce more complicated geometric models in IgA were focused on multi-patch representations, 
already addressed in Cottrell et al. (2009), and developed in several recent contributions (Kiendl et al., 2010; Beirão da 
Veiga et al., 2011; Kleiss et al., 2012; Xu et al., 2013; Jüttler et al., 2014; Scott et al., 2014; Buchegger et al., 2015). The 
idea is to define the domain as the image of several rectangles (or hexahedra), called patches, that have to be glued 
together at the interfaces. In most constructions the basis functions are only C0 across patch interfaces, but we want to 
point out the recent paper (Buchegger et al., 2015), in which the smoothness across patch interfaces is enhanced away from 
extraordinary features by increasing the parametric continuity. Another approach to realize higher order smoothness on 
multi-patch geometries is via geometric continuity, see for instance (Nguyen et al., 2014b, 2016; Groisser and Peters, 2015; 
Kapl et al., 2015a, 2015b; Collin et al., 2015). In all those configurations the starting point is a C0 multi-patch configuration. 
To increase the smoothness across patch interfaces, additional geometric continuity conditions are imposed.
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Another way to handle complex geometries is to use a specific space of non-tensor product functions, such as unstruc-
tured T-splines (Sederberg et al., 2003). In this case, the T-spline functions are defined via their contributions within the 
(quadrilateral or hexahedral) elements of a T-mesh, and the underlying elemental T-mesh has a manifold structure. The 
construction of unstructured T-splines for their use in IgA has been studied in Wang et al. (2011, 2012), reducing the con-
tinuity of the spline functions in the vicinity of extraordinary features, as well as in Scott et al. (2013), in this case raising 
the degree in the elements adjacent to extraordinary points.

Smooth constructions over general meshes can also be introduced by means of subdivision surfaces. They have been 
studied in the context of IgA in, e.g., Barendrecht et al. (2013), Burkhart et al. (2010), Cirak and Ortiz (2001), Cirak et al.
(2000), Nguyen et al. (2014b), Jüttler et al. (2015). While subdivision constructions are based on a manifold, they do not fit 
into our specific spline manifold framework, since we require the functions to be piecewise polynomials on a given mesh. 
Indeed, function spaces based on classical subdivision schemes (e.g., Doo-Sabin (1978) for biquadratics or Catmull-Clark 
(1978) for bicubics) are spanned by B-splines but also by special geometrically continuous functions near extraordinary 
points. These special functions are piecewise polynomials over infinitely many rings of quadrilateral elements.

Despite their differences, all these approaches have in common an underlying manifold structure which allows to handle 
complex geometries with extraordinary points or edges. In this work we propose the use of spline manifold spaces to 
introduce a common general framework that is valid for the definition and the study of these different approaches. We 
note that it is not the purpose of this paper to introduce a new way to define or implement unstructured spline spaces. 
The aim is rather to develop a framework for studying the theoretical properties of a wide range of spline representations 
over non-rectangular parameter domains based on manifolds. Within this framework we focus on the formal definition of 
a basis, a corresponding dual basis and an L2-stable spline projector. This projector is then used to prove approximation 
error bounds on a spline manifold domain. It is worth to remark that an exhaustive, uniform mathematical theory for all 
the approaches mentioned above is still missing. We would also like to point out that we do not address the problem 
of trimming here, even though it is a standard procedure in CAD. The concept of trimming extends the flexibility of the 
geometry representation and it can be generalized straight-forwardly to spline manifolds.

The idea of spline manifolds was first developed in Grimm and Hughes (1995), where the authors present a constructive 
approach to build a manifold from a polyhedral “sketch” using splines. Despite the constructive approach in the paper, 
the method relies on an abstraction of the concept of geometry parametrization, that includes parameter domains with a 
manifold structure. This structure is then inherited by the constructed physical domain. Our framework for the analysis of 
unstructured spline spaces makes use of this abstraction, that we briefly review now.

We consider a domain � ⊂ R
n which can be interpreted as a d-dimensional manifold with d ≤ n, but we mostly fo-

cus on planar surfaces (d = n = 2), three-dimensional surfaces (d = 2, n = 3) and volumetric domains (d = n = 3). In an 
abstract setting, the manifold � is defined by an atlas, i.e., a family of charts �i such that they cover completely the 
domain

� =
N⋃

i=1

�i,

together with a collection of suitable transition maps between intersecting charts �i and � j . In the setting introduced in 
Grimm and Hughes (1995), one first defines a family of open parameter subdomains �i , along with a spline space on each 
subdomain. Then each chart is the image of a spline parametrization Gi : �i → �i . The union of the subdomains �i forms 
an unstructured parameter domain �, and suitable transition functions between the parametric subdomains endow � with 
a manifold structure. Introducing a relation between the spline spaces on the subdomains, this manifold structure is then 
inherited by the physical domain �.

Notice that to cover completely the domain �, the charts �i , and also the open parameter subdomains �i must overlap. 
Hence, in order to cover the extraordinary points (or edges) it is necessary that some of the subdomains �i also have an 
unstructured configuration, and non-tensor product spline functions need to be defined. This is in contrast to traditional 
multi-patch representations, where only the patch boundaries intersect, and the (closed) domain is defined as the union of 
the closure of the patches.

Although the framework of spline manifolds can be used to define and study the constructions mentioned above, namely, 
multi-patch configurations and unstructured T-splines, it is out of the scope of this paper to analyze each of them. Instead, 
we will apply the framework to generalize the concept of dual-compatible T-splines, introduced in Beirão da Veiga et al. 
(2012a, 2013) for structured T-splines, to unstructured T-splines with low continuity in the neighborhood of the extraor-
dinary points. With the dual-compatibility condition it is possible to define a dual basis, which is then used to prove that 
these spaces have the key properties that are needed for their use in IgA, such as linear independence of the basis functions, 
and optimal approximation properties under h-refinement.

The remainder of the paper is organized as follows. In Section 2 we recall in detail the notion of a parameter manifold 
as presented in Grimm and Hughes (1995). We introduce the mesh on the parameter manifold and corresponding mesh 
constraints in Section 3. In Section 4 we introduce spline manifold spaces based on tensor product B-splines and relate 
them to existing constructions (Buchegger et al., 2015; Wang et al., 2011, 2012; Scott et al., 2013). Finally, we develop the 
framework of analysis suitable spline manifold spaces in Section 5, where we extend the notion of dual-compatibility to 
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Fig. 1. Visualization of the cocycle condition.

B-spline manifolds. In the main part of the paper we assume that the manifold has no boundary. For a more detailed study 
of spline manifolds with boundary see Appendix A. We conclude the paper and present possible extensions in Section 6.

2. Parameter manifold

Before we can define unstructured spline spaces on manifolds we need to introduce the abstract representation of the 
parameter domain, the so-called parameter manifold. The following definitions are taken from Grimm and Hughes (1995). 
The definitions are valid for arbitrary dimension d, but we will mostly consider d = 1, 2, 3.

Definition 1 (Proto-manifold). A proto-manifold of dimension d consists of

• a finite set {ωi}i=1,...,N (named proto-atlas) of charts ωi , that are open polytopes ωi ⊂ R
d , line segments for d = 1, 

polygons for d = 2 or polyhedra for d = 3;
• a set of open transition domains {ωi, j}i, j=1,...,N that are polytopes such that ωi, j ⊂ ωi , ωi,i = ωi , and each ωi, j is the 

interior of its closure;
• a set of transition functions {ψi, j}i, j=1,...,N , that are homeomorphisms ψi, j : ωi, j → ω j,i fulfilling the cocycle condition

ψ j,k ◦ ψi, j = ψi,k in ωi, j ∩ ωi,k for all i, j, k = 1, . . . , N;
• For every i, j, with i �= j, for every ζ i ∈ ∂ωi, j ∩ ωi and ζ j ∈ ∂ω j,i ∩ ω j , there are open balls, V ζ i

and V ζ j
, centered at ζ i

and ζ j , such that no point of V ζ j
∩ ω j,i is the image of any point of V ζ i

∩ ωi, j by ψ j,i .

In Fig. 1 we visualize the cocycle condition, depicting three domains ωi , ω j and ωk and respective transition functions 
ψi, j , ψ j,k and ψi,k . The hatched regions represent corresponding transition domains.

The transition domains ωi, j may be empty. It follows directly from the cocycle condition that the transition function ψi,i

is the identity function on ωi,i = ωi and that ψ−1
i, j = ψ j,i for all i, j.

Remark 1. The last condition in Definition 1 is taken from Siqueira et al. (2009). It guarantees that the proto-manifold 
actually represents a manifold, i.e. that there are no bifurcations of the domain. Note that this condition is not necessary for 
the following definitions. However, if the condition is omitted, the resulting object is not a manifold anymore.

By merging and identifying the charts of the proto-manifold we obtain a manifold, which will serve as the parameter 
domain in our setting, thus the name parameter manifold.

Definition 2 (Parameter manifold). Given a proto-manifold, the set

� =
( 


i=1,...,N

ωi

)/
∼ (1)

is called a parameter manifold. Here 
 denotes the disjoint union, i.e.,



i=1,...,N

ωi = {[ζ i, i], ζ i ∈ ωi, i = 1, . . . , N
}

and the equivalence relation ∼ is defined for all ζ i ∈ ωi and ζ j ∈ ω j , as

[ζ i, i] ∼ [ζ j, j] ⇔ ψi, j(ζ i) = ζ j.

We denote by πi(ζ i) ∈ � the equivalence class corresponding to ζ i ∈ ωi .
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In the following we use the notation �i = πi(ωi) and �i, j = πi(ωi, j), where �i, �i, j ⊂ �. Hence we have �i, j = � j,i =
�i ∩ � j . Note that πi is a one-to-one correspondence between each ωi and �i , and plays the role of a local representation.

To motivate the definition (and wording) above, we recall the following result, which states that � is indeed a manifold 
(see Grimm and Hughes, 1995; Siqueira et al., 2009).

Proposition 1. Given a proto-manifold, the set � as in Definition 2 is a topological manifold, where the inverse π−1
i of the mapping 

πi is the coordinate chart corresponding to the set �i ⊂ �.

To be more precise, a parameter manifold is a class of piecewise smooth manifolds, which is a sub-class of topological 
manifolds and a super-class of smooth manifolds. It is similar to the concept of piecewise linear manifolds (see Rourke 
and Sanderson, 1972). Depending on its local structure, the parameter manifold is either C0 or C∞ locally. In general the 
parameter manifold is globally C0 and piecewise C∞ .

We assume that there exists a metric on �, that allows us to introduce the usual Lebesgue space L2(�). In Section 5 we 
present in more detail the function spaces that are necessary for the analysis.

3. Mesh and mesh constraints on the parameter manifold

We introduce the general concept of a mesh T on a parameter manifold � in Section 3.1 and then develop the specific 
configurations we consider in Section 3.2. Following that, we present some example configurations and discuss about the 
meshing of complex geometries in Section 3.3.

3.1. Mesh on a parameter manifold

First we define a proto-mesh on the charts.

Definition 3. A proto-mesh on a proto-manifold is a collection of conforming meshes, i.e. it is a set

{τi}i=1,...,N with τi = {q ⊂ ωi}, (2)

where

• each set τi is composed of open polytopes q, called elements; these are intervals, quadrilaterals, hexahedra, etc., de-
pending on the dimension d = 1, 2, 3, . . . , respectively, and each set τi is a mesh on ωi , i.e. the elements are disjoint 
and the union of the closures of the elements is the closure of ωi ;

• for every i, j, ωi, j is the interior of the union of the closure of elements of τi ; and
• the transition functions ψi, j map elements onto elements, i.e.

∀q ∈ τi, ψi, j(q) ∈ τ j. (3)

Furthermore, we have the following.

Assumption 4. The transition functions are continuous piecewise d-linear mappings with respect to the mesh.

The proto-mesh naturally defines a mesh on �.

Definition 5 (Mesh on �). We define the mesh on the parameter manifold � as

T = {Q ⊂ � : Q = πi(q),q ∈ τi, i = 1, . . . , N}. (4)

Remark 2. Thanks to (3), the set T in (4) is indeed a well defined mesh on �. The elements of T are subsets of � that 
fulfill the standard properties of a mesh, i.e. the elements are disjoint, the union of the closures of the elements is the 
closure of �. Since � is a topological manifold the notion of the closure of elements, boundary edges, faces, etc. is well 
defined and derives from the local definition on each chart and the equivalence relation given by the transition functions.

3.2. Structured and unstructured charts on the parameter manifold

In the following we classify and restrict ourselves to specific but relevant charts, depending on their local mesh topology.
We will say that several objects share a common object A, if A is contained in the closure of each of the objects. Mesh 

objects and properties defined on the charts can be carried over to the mesh T on �. We will not distinguish between the 
mesh T on � and the proto-mesh defined on the charts, unless it is necessary. The relations between vertices, edges, faces 
and elements are stated within the global mesh. Moreover, these geometric objects are always assumed to be open.
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Fig. 2. Examples of meshes on a ring of three conforming segments around a two-dimensional extraordinary vertex of valence 3.

Definition 6 (Structured chart). A d-dimensional chart ωi is called a structured chart if

(a) ωi is a d-box, that is

ωi =
d∏

	=1

]
ai,	,bi,	

[
,

and τi is a box mesh (see, e.g., Dokken et al., 2013);
(b) for every j, ωi, j is a d-box or the union of d-boxes with disjoint closures; and
(c) for every j, if ω j is a structured chart then the transition function ψi, j : ωi, j → ω j,i is an affine mapping (a linear 

polynomial) in each connected component of ωi, j .

Considering unstructured charts we need to distinguish three different types, depending on the dimension and on the 
topological structure.

Definition 7 (Unstructured vertex chart, two-dimensional). A two-dimensional chart ωi is called an unstructured vertex chart
with an associated extraordinary vertex ξ i ∈R

2 of valence ki �= 4 if

(a) ωi is formed by a ring of ki conforming quadrangular segments si,	 , with 	 = 1, . . . , ki , around ξ i , where each segment 
has a mesh σi,	 which is topologically equivalent to a box mesh, and the mesh τi is given as the union of the meshes 
σi,	;

(b) ωi , except for the extraordinary vertex ξ i , is covered by the transition domains ωi, j with structured charts, i.e.⋃
j=1,...,N

ω j structured

ωi, j = ωi \ ξ i,

and the transition domains ωi, j are given by the union of segments; and
(c) if ω j is an unstructured chart with i �= j, then ωi, j = ∅.

To give more insight into the definition of an unstructured vertex chart via its segments, we present some example 
configurations, which are all constructed from the same three conforming segments. Fig. 2(a) depicts a mesh where each 
segment is covered by a single element. Fig. 2(b) depicts a conforming mesh and Fig. 2(c) contains two hanging vertices, 
hence it is a non-conforming mesh. This figure also tells that the non-conformity of the mesh over the unstructured vertex 
chart may have two reasons, either the meshes on two neighboring segments do not match (upper right hanging vertex) or 
the T-node is already present within the mesh σi,	 on the segment (lower left hanging vertex).

Definition 8 (Unstructured edge chart). A three-dimensional chart ωi is called an unstructured edge chart of valence ki �= 4 if

(a) ωi = �
ωi × ω̄i , where the chart �

ωi is a two-dimensional unstructured vertex chart, as in Definition 7 (a), with an ex-

traordinary point 
�
ξ i of valence ki , partitioned into two-dimensional segments �

si,	 for 	 = 1, . . . , ki ; ω̄i is an interval 
ω̄i = ]

ai,3,bi,3
[
; each three-dimensional segment si,	 = �

si,	 × ω̄i has a mesh σi,	 which is equivalent to a three-
dimensional box mesh, and the mesh τi is again given as the union of all meshes σi,	 on the segments;

(b) ωi , except for the extraordinary line
�
ξ i × ω̄i , is covered by transition domains ωi, j with structured charts, i.e.⋃

j=1,...,N
ω structured

ωi, j = ωi \ �
ξ i × ω̄i,
j
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and the transition domains ωi, j are given as the Cartesian product of the union of two-dimensional segments with an 
interval in the third direction;

(c) for structured charts ω j the transition function ψi, j is linear in the third coordinate ζ3; and
(d) if ω j is an unstructured edge chart with i �= j and ωi, j �= ∅, then there exists a structured chart ωk as well as an 

unstructured vertex chart ω	 such that ωi, j ⊆ ωi,k and ωi, j ⊆ ωi,	 .

Definition 9 (Unstructured vertex chart, three-dimensional). A three-dimensional chart ωi is called an unstructured vertex chart
with an associated extraordinary vertex ξ i ∈R

3 of valence ki if

(a) ωi is formed by a ring of ki conforming hexahedral segments si,	 , with 	 = 1, . . . , ki , around ξ i , where each segment 
has a mesh σi,	 which is topologically equivalent to a box mesh, and the mesh τi is given as the union of the meshes 
σi,	 on the segments si,	;

(b) ωi , except for the extraordinary vertex ξ i , is covered by the transition domains ωi, j with structured charts or unstruc-
tured edge charts, i.e.,⋃

j=1,...,N
ω j structured or unstructured edge chart

ωi, j = ωi \ ξ i,

and the transition domains ωi, j are given by the union of segments; and
(c) if ω j is an unstructured vertex chart with i �= j, then ωi, j = ∅.

Note that from Definition 8(b) and Definition 9(b) it follows that for every unstructured vertex chart in 3D the transition 
domains with structured charts cover everything, except for the extraordinary features (union of extraordinary vertex and 
extraordinary edges). In particular, the interior of every element is covered.

Remark 3. We would like to point out that Definitions 7(c), 8(d) and 9(c) are not strictly necessary, but technicalities to 
simplify the definition of spline manifold spaces in Section 4. The conditions in Definitions 7(c) and 9(c) guarantee that 
unstructured vertex charts do not overlap. Considering Definition 8(d), the set ωi, j forms a structured mesh (i.e. it does not 
contain extraordinary features in its interior). Therefore, the condition ωi, j ⊆ ωi,k for some structured chart �k is natural. 
Moreover, unstructured edge charts cover unstructured edges, which meet at unstructured vertices. Hence, we assume that 
whenever two unstructured edge charts overlap, there exists an unstructured vertex chart covering the intersection.

Notice that it is not possible that one element of the mesh T is adjacent to two unstructured vertices. In the context of 
meshing, this is not a severe restriction as we point out in the following section. Moreover, each unstructured vertex and 
each unstructured edge correspond to exactly one unstructured vertex chart or unstructured edge chart, respectively.

Assumption 10. We assume that each chart ωi can be either structured as in Definition 6 or unstructured as in Definitions 7, 
8 and 9.

In the following section we give some example configurations and study in more detail the meshing of complex geome-
tries.

3.3. Example configurations and meshing of complex geometries

For simplicity, in the classification above we have restricted ourselves to a limited number of types of charts, which 
nevertheless contain most mesh configurations of practical interest. We first give a summary of the different types of 
vertices that can occur (depending on the dimension), which motivates our chart classification. Each unstructured chart is 
formally defined in such a way, that it can be used to cover a certain type of unstructured vertex. Following the discussion 
of the types of vertices, we present some simple example configurations and discuss the issues of meshing with manifolds. 
Without being thorough, we present the configurations that can be covered in our framework. Since we do not want to go 
into the details of meshing we refer to the following literature for quad-meshing (Owen, 1998) and hex-meshing (Owen, 
1998; Jüttler et al., 2014; Nguyen et al., 2014a).

3.3.1. Classification of vertices and edges
For 1D domains (intervals, planar or spatial curves) there are only regular vertices, which are equivalent to the knots in 

the classical B-spline language. Hence no unstructured charts are needed.
For 2D domains we consider three types of vertices. A 2D vertex can be a regular vertex, a hanging vertex (a T-node), or 

an extraordinary vertex (see Table 1 and Fig. 3). Both regular and hanging vertices are covered by structured charts, although 
they may also belong to an unstructured chart. Unstructured vertex charts cover a neighborhood of an extraordinary vertex.
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Table 1
Classification of vertices in 2D.

Structured vertex Regular vertex (Fig. 3(a))
Hanging vertex (Fig. 3(b))

Unstructured vertex Extraordinary vertex (Figs. 3(c) and 3(d))

Fig. 3. Different types of vertices in 2D ((a) regular, (b) hanging, (c) extraordinary of valence 3, (d) extraordinary of valence 5).

Table 2
Classification of edges and vertices in 3D.

Structured edge Regular edge
Hanging edge

Unstructured edge Extraordinary edge
Structured vertex Regular vertex

Hanging vertex
Unstructured vertex Partially unstructured vertex

Fully unstructured vertex

Fig. 4. Examples of the different types of edges. Interior edges not highlighted are regular edges.

For 3D domains we have three types of edges and four types of vertices. A 3D edge can be a regular edge, a hanging edge, 
as in Fig. 4(a), or an extraordinary edge of valence k �= 4 as in Fig. 4(b), where the highlighted edges have valence k = 3. 
A 3D vertex is called a regular vertex, if it is shared by regular edges only; or a hanging vertex, if it is shared by regular and 
hanging edges. Otherwise, the vertex is called an unstructured vertex. The notion of unstructured vertices contains both 
vertices of extraordinary edges, so called partially unstructured vertices, as well as fully unstructured vertices. To be precise, a 
partially unstructured vertex is a vertex that is shared by exactly two extraordinary edges that can be covered by a single 
unstructured edge chart. If this is not possible, the vertex is a fully unstructured vertex. For a complete list of types of 
vertices and edges in 3D see Table 2. Regular and hanging edges as well as regular and hanging vertices are covered by 
structured charts. Hence, we have considered two classes of three-dimensional unstructured charts: unstructured vertex 
charts (covering fully unstructured vertices) and unstructured edge charts (covering partially unstructured vertices and 
extraordinary edges). Unstructured edge charts are Cartesian products of an unstructured vertex chart in two dimensions 
and an interval in the third dimension: there is an inner sequence of extraordinary edges and all other interior edges are 
either regular or hanging. Similar to the two-dimensional case, an unstructured vertex chart in 3D covers a neighborhood
of the fully unstructured vertex.
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Fig. 5. Different types of unstructured charts.

3.3.2. Example configurations
Let us consider an unstructured vertex chart ωi composed of ki segments, where each segment is meshed with only one 

element. From Definition 6 it follows that for any structured chart ω j with ωi, j �= ∅ the transition domain ψi, j(ωi, j) = ω j,i
is a box-mesh. The same holds for ωi, j , which is then formed by one or at most two quadrilateral elements. There must be 
(at least) ki subsets ωi, j , each one formed by two adjacent elements, in order to cover ωi \ ξ i .

Fig. 5(a) depicts a two-dimensional unstructured vertex chart ωi of valence 3 and a structured chart, as well as the 
corresponding transition domains. Since the transition domains are open, it can be observed easily, that in this case three 
structured charts are needed to cover ωi , except the extraordinary vertex. Fig. 5(b) depicts a three-dimensional unstructured 
vertex chart ωi of valence 4 as well as an unstructured edge chart of valence 3 and corresponding transition domains. 
Again, we may observe that ωi (except for the extraordinary vertex) can be covered by the transition domains of four 
unstructured edge charts. Moreover, ωi (except for the extraordinary vertex and edges) can be covered with six structured 
charts. Fig. 5(c) depicts an unstructured edge chart of valence 5 and two possible transition domains. Note that all the 
transition domains are mapped box-meshes, due to the definitions above. In all the examples presented here we assume 
that for each unstructured vertex chart each segment is meshed with exactly one element. This is not necessarily the case, 
as we presented in Fig. 2. Note that, by definition, the transition domains with structured charts can cover no more than 
two segments of an unstructured chart.

3.3.3. Meshing
Note that the types of charts we consider are sufficient to represent most meshes of practical interest. Given an arbitrary 

quad- or hex-mesh without hanging vertices or edges, a global bisection of the mesh can be covered by structured charts, 
as in Definition 6, and unstructured charts, as in Definitions 7, 8 and 9.

This statement becomes clear when looking at the types of vertices and edges that can occur in the bisected mesh. 
We consider only 3D meshes in the following. We show that every vertex of the bisected mesh can be covered by a valid 
chart of one of the three categories. Every vertex of the initial hex-mesh is one of the three: a structured vertex, a partially 
unstructured vertex or a fully unstructured vertex. The bisection of the initial mesh introduces new vertices from midpoints 
of edges, faces and hex-elements (one point for each edge, face and element). The midpoints of structured edges, faces and 
elements become structured vertices. The midpoints of unstructured edges become partially unstructured vertices. Hence 
no new fully unstructured vertices are introduced. All structured vertices can be covered by structured charts, all partially 
unstructured vertices can be covered by unstructured edge charts and all fully unstructured vertices can be covered by 
unstructured vertex charts. It is easy to see that, due to the bisection, the closure of any element can contain at most one 
extraordinary vertex. All other assumptions are trivially fulfilled.

4. Spline manifold space on the parameter manifold

In this section we introduce spline spaces over the mesh T on �, in short spline manifold spaces.

4.1. General spline manifold spaces

Again based on Grimm and Hughes (1995), we define a spline space on a parameter manifold using the charts. This 
is achieved by defining proto-basis functions on the proto-mesh (Definition 11) and transferring them onto the parameter 
manifold using the equivalence relation induced by the transition functions (Definition 13). Each chart ωi plays the role of 
a local parameter domain.

Definition 11 (Proto-basis functions). For each i = 1, . . . , N , let
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{
bAi : ωi →R

}
Ai∈Ai

(5)

be a given local basis on the chart ωi such that each function bAi fulfills

lim
ζ→∂ωi

bAi (ζ ) = 0. (6)

The collection of all these local bases for i = 1, . . . , N is called a proto-basis.

Assumption 12. The proto-basis functions bAi with Ai ∈ Ai are piecewise polynomials with respect to τi , i.e. bAi |q is poly-
nomial for all q ∈ τi .

Definition 13 (Spline manifold space). For each i = 1, . . . , N and Ai ∈Ai we define BAi : � →R such that

BAi |�i = bAi ◦ π−1
i

BAi |�\�i = 0,
(7)

and set

Bi = {BAi : � →R,Ai ∈ Ai}. (8)

Furthermore, we introduce the global index set

A =
( 


i=1,...,N

Ai

)/
≈ (9)

where the equivalence relation ≈ is defined as follows: given [Ai, i] and [A j, j] in 
i=1,...,N Ai , then [Ai, i] ≈ [A j, j] if and 
only if the two functions BAi ∈ Bi and BA j ∈ B j coincide. Therefore, BA : � →R is well defined for A ∈ A, and we set

B = {BA,A ∈ A} ≡
⋃

i=1,...,N

Bi . (10)

Finally, we set

B̃i = {BA|�i , A ∈ Ãi}, (11)

where

Ãi = {A ∈ A : supp(BA) ∩ supp(BAi ) �= ∅ for some Ai ∈ Ai}. (12)

The set B̃i is the restriction of B onto �i containing all the functions in Bi and also the restriction of any function whose 
support intersects supp(Bi) but is not included in Bi . The functions in B̃i can be pulled back to the chart ωi . Finally, the 
span of functions in (10) is the spline manifold space, the spline space on the parameter manifold �, denoted by

S = span {BA,A ∈ A} . (13)

With some abuse of notation, for the global index A ∈ A we will say that A ∈ Ai if there exists an index Ai ∈ Ai such 
that its equivalence class [Ai, i] through ≈ is equal to A.

Assumption 14. For each i = 1, . . . , N and each A ∈A we have that if

supp(BA) ⊆ �i

then A ∈Ai ; furthermore we assume⋃
Ai∈Ai

supp(BAi ) = �i . (14)

Remark 4. Equation (6) together with (7) guarantees that the functions are globally continuous. If one wants to allow for 
discontinuous functions, the condition (6) can be omitted.
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4.2. B-Spline manifold spaces

In this section we characterize the B-spline functions as structured and unstructured (of edge or vertex type) ones. To 
classify them, we introduce the notation

As =
⋃

i : ωi is structured

Ai,

Ae =
⎛⎝ ⋃

i : ωi is unstr. edge

Ai

⎞⎠ \As,

Av =
⎛⎝ ⋃

i : ωi is unstr. vertex

Ai

⎞⎠ \ (As ∪Ae) ,

(15)

and we will call As the index set of structured functions, Ae the index set of edge (or partially) unstructured functions and 
Av the index set of vertex (or fully) unstructured functions. It is clear that

As ∩Ae = As ∩Av = Ae ∩Av = ∅. (16)

In the following we do not distinguish between the two- and three-dimensional case. Since unstructured edge charts do not 
exist in 2D, we simply set Ae = ∅ in that case.

Hence we conclude that the set Bi contains all functions that are completely supported in �i and by (12) and (14) the 
set B̃i contains all functions that have a support intersecting with �i .

For simplicity we assume that the functions have the same degree p in each direction on each structured chart.

Assumption 15. If ωi is a structured chart as in Definition 6, then each function BA in B̃i is a tensor-product B-spline of 
degree p when restricted to ωi , i.e., there exist (local) knot vectors �A,i,1, . . . , �A,i,d such that

BA ◦ πi(ζ ) = b[�A,i,1](ζ1) . . .b[�A,i,d](ζd), ∀A ∈ Ãi,∀ζ ∈ ωi, (17)

where b[�](ζ ) is the univariate B-spline with local knot vector �. Moreover, if the support of a function BA is structured, 
then there exists a structured chart that covers the support.

Finally, the previous assumption is extended to unstructured edge charts, since they behave like structured charts along 
the third parametric direction, and like unstructured vertex charts along the first two parametric directions.

Assumption 16. If ωi is an unstructured edge chart as in Definition 8, then each function BA in B̃i is a product of a bivariate 
function and a B-spline of degree p in ζ3 when restricted to ωi , i.e. there exist a function βA,i and a local knot vector �A,i,3
such that

BA ◦ πi(ζ ) = βA,i(ζ1, ζ2)b[�A,i,3](ζ3), ∀A ∈ Ãi,∀ζ ∈ ωi . (18)

Remark 5. From the definition of the unstructured charts ω j , and under Assumption 15, we have that the functions BA , 
with A ∈ A j , are fully defined by their restrictions to the transition domains ω j,i with structured charts. On each ω j,i the 
functions in B j ∩ B̃i are equivalent to (mapped) tensor-product B-splines according to (17). Notice that in practice this limits 
the possible definitions of unstructured functions, but less restrictive versions of Assumption 15 can be introduced to deal 
with other configurations.

4.3. Isogeometric function spaces using spline manifolds

We consider a domain � ⊂ R
n which can be interpreted as a d-dimensional manifold with d ≤ n. The most interesting 

cases, and the ones we focus on, are a two-dimensional planar domain � ⊂ R
2, a surface � ⊂ R

3 or a three-dimensional 
volumetric domain � ⊂ R

3.

Definition 17. � ∈R
n is a spline manifold domain

G : � → � (19)

where � is a (spline) parameter manifold and G ∈ (S)n a spline manifold parametrization.
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In practical situations, this parametrization is defined by associating a control point to each function in B. Notice that the 
geometry � inherits the manifold structure of the parameter manifold �. Indeed, the parametrization G can be considered 
as a piecewise defined function, where Gi : �i → �i is a tensor-product B-spline (or structured T-spline) parametrization for 
every structured chart �i . Then we have

� =
N⋃

i=1

�i,

where the charts �i form an atlas of �.
Then, the isogeometric function space over the manifold � is given as follows.

Definition 18. Given a spline manifold parametrization G ∈ (S)n as in Definition 17, we define on the spline manifold domain 
� the isogeometric function space as

V = { f : � →R, such that f = f̂ ◦ G−1 for f̂ ∈ S}. (20)

The isogeometric space is well-defined, if the geometry parametrization is invertible.

Similar to the spline manifold space S itself, the isogeometric space V can be interpreted as a piecewise defined function 
space. Indeed, each function in Bi can be composed with G−1 to define the corresponding function in �, with its support 
contained in the chart �i .

4.4. Relation to existing constructions

We note that several constructions of unstructured spline spaces existing in the literature fit in the framework of B-spline 
manifolds, in some cases with minor modifications. For instance, the definition of multi-patch B-splines with enhanced 
smoothness as developed in Buchegger et al. (2015), the G1-smooth multi-patch constructions as in Groisser and Peters
(2015), Kapl et al. (2015b), Collin et al. (2015), or unstructured T-splines as presented in Wang et al. (2011, 2012) for 
quad-meshes and hex-meshes, as well as the G1-smooth unstructured T-splines as presented in Scott et al. (2013). The 
development of an abstract framework for the construction of these spaces can serve as the starting point for a deeper 
mathematical analysis of their properties. In the following we detail how these four particular examples fit into the frame-
work of B-spline manifolds. In any case, the idea is to split the set of basis functions into structured and unstructured basis 
functions, and introduce a set of charts covering the whole mesh. In this context, and recalling the definition of the index 
sets in (15), a function is called structured if its support is covered by a structured mesh (possibly with hanging nodes). 
Otherwise it is called unstructured.

Multi-patch B-splines with enhanced smoothness (Buchegger et al., 2015) The authors propose a construction based on a multi-
patch representation of the domain. This can be interpreted as a manifold structure with closed charts (patches), that 
intersect only at the boundary. However, since there is a one-to-one correspondence of parameter directions along any 
shared boundary between two patches, the multi-patch representation can be transformed naturally to a parameter man-
ifold representation by simply enlarging the patches along the parameter direction crossing the boundary to obtain open 
charts. Note that in general it is necessary to define more than one chart to cover one patch. Again, there are unstructured 
functions at the extraordinary vertices, and unstructured vertex charts have to be introduced to cover their support.

G1-smooth multi-patch B-splines (Groisser and Peters, 2015; Kapl et al., 2015b; Collin et al., 2015) The constructions developed 
here are based on a C0-continuous multi-patch representation of the domain. Additional geometric continuity conditions 
are imposed in physical space. Hence, the resulting functions are linear combinations of tensor-product B-splines that are 
G1-smooth with respect to the physical coordinates. In Groisser and Peters (2015) higher order smoothness is also discussed. 
This results in both special (unstructured) G1-smooth functions at the extraordinary vertices as well as special (structured) 
G1-smooth functions along the edges (see Kapl et al., 2015b). Assumption 15 has to be relaxed in order to include these 
special functions as well. As in the C0-case, unstructured vertex charts have to be introduced to cover the support of the 
unstructured vertex functions. The geometric continuity conditions can also be incorporated implicitly as linear conditions 
that need to be satisfied.

T-splines over unstructured meshes (Wang et al., 2011) In this configuration the mesh T we consider on � is the Bézier mesh 
corresponding to the T-splines and not the T-mesh. Then, we can define the set of charts by taking the support of each 
structured function as a single structured chart, while the support of each unstructured function is taken as one unstruc-
tured vertex chart. In the construction of Wang et al. (2011) it may happen that one element contains two extraordinary 
vertices. In this case two unstructured vertex charts overlap, violating Definition 7(c). This condition is a technicality which 
simplifies the mathematical framework, and could be removed. It can also be fulfilled with one level of refinement of the 
T-mesh, as we explained in Section 3.3. In a similar way, the constructions for trivariate functions as presented in Wang et 
al. (2012) fit, with some technical restrictions, into the present framework.
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G1-smooth T-splines over unstructured meshes (Scott et al., 2013) This construction is similar to the construction in Wang et al.
(2011). The support of each structured function can again be interpreted as a single structured chart. For each extraordinary 
vertex we can define one sufficiently large unstructured chart ω j , such that it covers the support of all functions that are 
non-zero at the extraordinary vertex. In this case the degree of the unstructured functions is increased in the vicinity of 
the extraordinary vertex, and their restriction to a structured chart is not a B-spline basis function as in (17), but a suitable 
linear combination of B-splines of higher degree. Therefore, as for the G1-smooth multi-patch configurations, Assumption 15
has to be relaxed in order to accomodate the unstructured functions.

5. Analysis-suitable spline manifold spaces

We introduce in this section the conditions for the construction of analysis-suitable B-spline spaces on manifolds, that is, 
spaces that have good properties for the solution of differential problems. The key tool for this construction is the definition 
of a (stable) dual basis, which is a set of functionals {�A, A ∈A} such that

�A(BA′) = δAA′ , ∀A,A′ ∈ A,

where δAA′ represents the Kronecker delta. A condition for the construction of a dual basis for structured T-splines was 
given in Beirão da Veiga et al. (2012a, 2013), under the name of dual-compatibility.

We present the construction of dual functionals on the parameter manifold � in Section 5.1, starting from a proto-dual 
basis on each chart, and then following the scheme of spline manifold spaces introduced in Section 4.1. To guarantee that 
these dual functionals form a dual basis we need to add some conditions to the spline manifold. In Section 5.2 we give a 
dual-compatibility condition for spline manifolds, which generalizes the condition in Beirão da Veiga (2012a, 2013) to the 
unstructured setting. In this configuration, a global dual basis can be derived from the proto-dual bases defined on the 
charts. Then, in Section 5.3 we present an explicit configuration, with a specific construction of the proto-basis functions 
and the proto-dual basis on unstructured vertex and edge charts. In this configuration, which is only C0-continuous at 
extraordinary features, the dual functionals in � can be derived from the proto-dual basis without any further modification, 
which also guarantees the stability of the dual functionals. Finally, in Section 5.4 we show the typical application of a 
dual basis: we prove optimal approximation properties of the isogeometric space on a simple but interesting example 
configuration.

5.1. The dual basis for spline manifold spaces

In the following we use this well-known fact.

Lemma 1. Given a set of finitely many L2 functions {bα} that are linearly independent, there exist functionals λα : L2 → R that are 
dual to the functions, i.e., λα(bα′ ) = δαα′ .

As for the definition of the basis functions for spline manifold spaces introduced in Section 4.1, the starting point is a 
set of dual-functionals on each chart, that exist thanks to the previous proposition and Definition 11.

Definition 19 (Proto-dual basis). For each i = 1, . . . , N , let the functionals

{λ̂Ai : L2(ωi) →R}Ai∈Ai

form a local dual basis with the proto-basis functions in the chart, that is,

λ̂Ai (bA′
i
) = δAi A′

i
, ∀Ai,A′

i ∈ Ai .

The collection of all these local dual bases for i = 1, . . . , N is called a proto-dual basis.

Note that the existence of a proto-dual basis is guaranteed by Lemma 1, since the proto-basis functions bAi are linearly 
independent by Definition 11. We will assume that the proto-dual functionals satisfy the following.

Assumption 20. For any indices [Ai, i] ≈ [A j, j] that belong to the same equivalence class A ∈ A, defined as in (9), it holds 
that λ̂Ai (φ ◦ πi) = λ̂A j (φ ◦ π j), ∀φ ∈ L2(�).

The assumption that two equivalent indices are associated to the same dual functional is natural, since by (9) they are 
also associated to the same basis function, and it allows the following global definition.

Definition 21 (Manifold functionals). For any A ∈A we define the functional

�̂A(φ) = λ̂Ai (φ ◦ πi), ∀φ ∈ L2(�), (21)

where [Ai, i] is one instance of the equivalence class A.
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From (21), the support of the dual functional �̂A is contained in �i . The most used dual bases for splines, such as the 
one by Schumaker (2007) and the ones by Lee et al. (2001) satisfy the stronger condition that the support of �̂A is the 
same as the support of the corresponding function BA .

Note that in general the dual functionals {�̂A, A ∈ A} do not form a dual basis for B = {BA, A ∈ A}. In the following 
section we introduce a new condition that ensures that a dual basis can be derived by a modification of the dual function-
als �̂A .

5.2. Dual-compatible spline manifold spaces

For the definition of the dual-compatibility condition we follow and extend the recent review paper (Beirão da Veiga et 
al., 2014). Two knot vectors �′ = {ξ ′

1, . . . , ξ
′
p+2} and �′′ = {ξ ′′

1 , . . . , ξ ′′
p+2} overlap if there exists a knot vector � = {ξ1, . . . , ξk}

and two integers k′ and k′′ such that ξ ′
i = ξi+k′ and ξ ′′

i = ξi+k′′ , for i = 1, . . . , p + 2. We generalize the dual-compatibility 
condition to spline manifold spaces in the following definition.

Definition 22 (Dual-compatible spline manifold spaces). Under the previously stated assumptions, the set B defined in (10) is 
dual-compatible if the following conditions hold

(a) for all A ∈ Ai ⊂ As and ∀A′ ∈ Ãi , with A �= A′ , there exists an index l ∈ {1, . . . , d}, such that the knot vectors �A,i,l and 
�A′,i,l as in (17) are different and overlap;

(b) for all A ∈ Ai ∩Ae , with ωi being an unstructured edge chart, and for all A′ ∈ Ai , with A �= A′ , either the knot vectors 
�A,i,3 and �A′,i,3 as in (18) overlap and are different, or βA,i �= βA′,i ;

(c) for all A ∈ Ai ∩ Ae , with ωi being an unstructured edge chart, and for all A′ ∈ (Ãi \ Ai) ∩ (Ae ∪ Av) the knot vectors 
�A,i,3 and �A′,i,3 as in (18) overlap and are different.

Here As , Ae and Av are defined as in (15).

In Definition 22(b) both BA and BA′ are unstructured edge functions from the same unstructured edge chart. In 22(c) BA
is an unstructured edge function and BA′ is an unstructured function from a different chart.

In Beirão da Veiga et al. (2014) (as well as the previous papers (Beirão da Veiga et al. 2012a, 2013)) the authors deal 
only with the structured case, and actually the dual-compatibility condition in Beirão da Veiga et al. (2014) corresponds to 
point (a) in Definition 22. The new definition extends the dual-compatibility condition to an unstructured configuration. As 
in Beirão da Veiga et al. (2014), Definition 22 gives a sufficient condition for the existence of a dual basis. For that, we use 
two technical ingredients: the first is a univariate L2-stable dual functional λ[�], such that, if � and �′ are overlapping,

λ[�](b[�′]) =
{

1 if � = �′,
0 if � �= �′; (22)

see, for example, Schumaker (2007), Lee et al. (2001); the second is the existence of a proto-dual basis on each chart, 
guaranteed by Lemma 1. Our main result follows.

Theorem 2. If the set B is dual-compatible, then there exists a set of functionals

B∗ =
{
�A : L2(�) →R such that A ∈ A

}
,

that is dual to B, i.e.,

∀A,A′ ∈ A, �A(BA′) = δAA′ . (23)

Proof. First, we construct dual functionals for the different types of charts. Let ωi be a structured chart. Given A ∈ Ai ⊂As
we set

λ̂A = λ[�A,i,1] ⊗ . . . ⊗ λ[�A,i,d], (24)

where the knot vectors �A,i,k are given as in (17). Let ωi be an unstructured edge chart. Given A ∈ Ai ∩ Ae , let Ai,A ⊂
Ai ∩Ae be the set of indices A′ such that �A,i,3 = �A′,i,3 as in (18). Since the set Bi is linearly independent, the same holds 
for the set

{βA′,i : A′ ∈ Ai,A} (25)

and by Lemma 1 there exist functionals {λ̂A′,i : A′ ∈ Ai,A} that are dual to (25). We define the proto-dual functional λ̂A :
ωi → R

λ̂A = λ̂A,i ⊗ λ[�A,i,3].
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Finally, let ωi be an unstructured vertex chart. Consider Ai ∩ Av , and again by Lemma 1 the set Bi , which is assumed to 
be linearly independent, admits a proto-dual basis {λ̂A : A ∈ Ai ∩ Av}. Having defined λA for all A ∈ A, we construct the 
corresponding �̂A as in (21).

It is easy to check that, by the construction above and Definition 22, it holds

∀A ∈ As,∀A′ ∈ (As ∪Ae ∪Av), �̂A(BA′) = δAA′ , (26)

∀A ∈ Ae,∀A′ ∈ (Ae ∪Av), �̂A(BA′) = δAA′ , (27)

∀A ∈ Av ,∀A′ ∈ Av , �̂A(BA′) = δAA′ . (28)

From Definition 21 we can also infer

∀A ∈ A,∀A′ ∈ A \ Ãi, �̂A(BA′) = 0. (29)

In general, the set of functionals {�̂A}A∈A is not dual to the set of functions B = {BA}A∈A , but we can easily fix it by 
defining, for all φ ∈ L2(�), the functionals:

∀A ∈ As,�A(φ) = �̂A(φ),

∀A ∈ Ae,�A(φ) = �̂A(φ) −
∑

A′′∈(Ãi\Ai)∩As

�̂A(BA′′)�A′′(φ),

∀A ∈ Av ,�A(φ) = �̂A(φ) −
∑

A′′∈Ãi\Ai

�̂A(BA′′)�A′′(φ).

(30)

By going through all combinations for A, A′ ∈ As, Ae, Av and using (26)–(28) as well as the condition (29), it follows that 
the set {�A}A∈A as defined in (30) fulfills (23). �
5.3. Definition of a basis and corresponding dual basis for a simplified configuration

In Section 5.2, we have generalized the dual compatibility condition in order to ensure the existence of a dual basis to 
a basis of a manifold spline space, in a general setting. In this section we discuss a simplified configuration which allows 
for exactly one extraordinary function in every unstructured vertex chart. For this specific example, we give an explicit 
construction of the dual basis. Moreover, taking advantage of the specific case considered here, we obtain dual functionals 
whose support is the same as the support of the corresponding functions.

In this simplified configuration we restrict ourselves to unstructured vertex charts where each segment corresponds 
to an element of the mesh, and give an explicit representation for the extraordinary vertex functions. Precisely, for each 
unstructured vertex chart ωi , we assume that the mesh τi is the union of the meshes σi,	 on the segments si,	 , where each 
σi,	 contains a single element qi,	 which covers the whole segment, and assume that there exists exactly one unstructured 
vertex function BA ∈ Bi . The extraordinary vertex function is continuous, has the value 1 at the extraordinary vertex, and 
for each element qi,	 ∈ τi there exists a d-linear mapping ψ̂i,	 : qi,	 → ]0, 1[d , such that

BA ◦ πi(ζ ) = b̂d ◦ ψ̂i,	(ζ ), for all ζ ∈ qi,	, (31)

where b̂d is defined as in

b̂d(ζ1, . . . , ζd) = (1 − ζ1)
p . . . (1 − ζd)

p,

= b[�0](ζ1) . . .b[�0](ζd), ∀(ζ1, . . . , ζd) ∈ ]0,1[d, (32)

with �0 = [0, . . . , 0, 1].
For each unstructured edge chart ωi = �

ωi × ω̄i , the mesh of the underlying bivariate chart �
ωi is again given such that 

each segment �
si,	 of the bivariate chart is covered by a single element �

qi,	 , the one-dimensional structured chart ω̄i is 
partitioned into a mesh τ̄i = {q̄1, . . . , ̄qmi }, and the mesh τi on ωi is given via

τi = {�
qi,	 × q̄k : �

qi,	 ∈ �
τi, q̄k ∈ τ̄i}.

Moreover, we assume that for all A′, A′′ ∈ Ai the unstructured edge functions BA′ , BA′′ are given as in (18), where βA′,i =
βA′′,i are equal to the same unstructured vertex function of dimension d = 2. Hence, for each segment �

qi,	 × ]
ai,3,bi,3

[
there 

exists a bilinear mapping 
�
ψi,	 : �

qi,	 → ]0, 1[2, such that

BA ◦ πi(ζ ) =
(

b̂2 ◦ �
ψi,	(ζ1, ζ2)

)
b[�A,i,3](ζ3), for all ζ ∈ �

qi,	 × ]
ai,3,bi,3

[
,

corresponding to the representation in (18).
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Given an unstructured vertex chart ωi this means that, denoting by j(q) a chart index such that ω j(q) is a structured 
chart and q ⊂ ωi, j(q) , there exist knot vectors �A,q, j(q),1, . . . , �A,q, j(q),d of the kind

[ξ ′, . . . , ξ ′︸ ︷︷ ︸, ξ ′′

p+1 times

] or [ξ ′, ξ ′′, . . . , ξ ′′︸ ︷︷ ︸
p+1 times

] (33)

such that

BA ◦ π j(ζ ) = b[�A,q, j(q),1](ζ1) · . . . · b[�A,q, j(q),d](ζd),

for all ζ such that ψ j(q),i(ζ ) ∈ q. We can now define a dual basis explicitly, using this representation. A similar representation 
can be derived for unstructured edge charts.

For each A ∈ As , the dual functional �A is given as the tensor-product of univariate functionals (22). For A ∈ Av , we 
construct the dual functional �A by adding the contributions of each segment of the unstructured vertex chart, each being 
a structured subdomain. For A ∈ Ae , we construct the dual functional �A analogously to the basis function in (18), that is, 
the tensor-product of the dual functional of a bivariate unstructured vertex function with the dual functional of a univariate 
B-spline in the third direction.

Theorem 3. Given a dual-compatible spline manifold space let

B∗ = {�A,A ∈ A}
be a set of functionals �A : L2(�) → R such that:

• for all A ∈Ai ∩As , we have

�A(φ) = (λ[�A,i,1] ⊗ . . . ⊗ λ[�A,i,d])(φ|�i ◦ πi), ∀φ ∈ L2(�), (34)

where the knot vectors �A,i,k are given as in (17);
• for A ∈Ai ∩Av , is the corresponding unstructured vertex function, then let Q i,	 = πi(qi,	) and

�A(φ) = 1

ki

ki∑
	=1

�A,i,	(φ|Q i,	 ), ∀φ ∈ L2(�), (35)

where

�A,i,	(φ) = (λ[�0] ⊗ . . . ⊗ λ[�0])(φ ◦ πi ◦ (ψ̂i,	)
−1),

for all φ ∈ L2(Q i,	), with �0 = [0, . . . , 0, 1]; and
• for A ∈Ai ∩Ae , let Q i,	 = πi(

�
qi,	 × ]

ai,3,bi,3
[
), and

�A(φ) = 1

ki

ki∑
	=1

�A,i,	(φ|Q i,	 ), ∀φ ∈ L2(�), (36)

where

�A,i,	(φ) = (λ[�0] ⊗ λ[�0] ⊗ λ[�A,i,3])(φ ◦ πi ◦ ((
�
ψi,	)

−1, ζ3)),

for all φ ∈ L2(Q i,	).

The set B∗ is dual to B, that is

�A(BA′) = δAA′ , ∀A,A′ ∈ A.

Proof. It is easy to see that the �A fulfill Definition 21, that is, the associated proto-dual functionals associated to (34)–(36)
are a dual basis (in each chart). Then, it is enough to show that

�Ai (BA′
i
) = δAi A′

i
, ∀Ai ∈ Ai, and ∀A′

i ∈ Ãi . (37)

From the dual compatibility condition, it follows that (37) is fulfilled for all A ∈ Ai and A′ ∈ A, where ωi is a structured 
chart. For unstructured charts ωi , it is obvious that

�Ai (BA′
i
) = δAi A′

i
, ∀Ai ∈ Ai, and ∀A′

i ∈ Ai ∪ (A \ Ãi).

What remains to be shown is that �Ai (BA′
i
) = 0 for all A′

i ∈ Ãi\Ai . This becomes clear, as for all unstructured functions BA

the functional �A evaluates to zero for all piecewise polynomials that are zero at the extraordinary features. This concludes 
the proof. �
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For simplicity, we considered only one C0 continuous extraordinary vertex function for each unstructured vertex chart. 
Note that one may also define a collection of extraordinary vertex functions that are discontinuous at all or some of the 
element boundaries within the unstructured vertex chart.

5.4. Approximation properties of spline manifolds on uniform meshes

In the following we show approximation properties for a simplified configuration. The result is based on the construction 
of a stable dual basis, from which one can define a projection operator and use it to prove approximation properties of the 
spline manifold space. In this section we consider uniform, regular meshes as in Lemma 4. Note that the results can be 
extended easily to more general configurations, by suitably extending the scope of Lemma 4.

Here we consider h-refinement: a spline manifold � is given, with an initial mesh Th0 over it. From this we construct 
a family of meshes {Th} by mesh refining each structured chart. The refinement has to be consistent with the manifold 
structure, fulfilling Definition 3, in particular (3), and Definitions 7–9. Note that during h-refinement the structured charts 
and transition functions between them are unchanged, while we modify the unstructured charts in such a way that only the 
elements adjacent to an extraordinary vertex are included in those charts. Accordingly, we assume that a family of nested 
spaces {Sh} is given. The subscript h always denotes the dependence on the refinement level.

A spline manifold domain � is given by a coarse mesh parametrization G ∈ (Sh0 )
3, as in (19). For simplicity, we consider 

a bivariate �, then � is a closed surface in the space R3. During h-refinement G is kept unchanged. This gives a sequence 
of nested isogeometric spaces Vh via (20).

To study the approximation properties of Vh we follow the approach in, e.g., Bazilevs et al. (2006), Beirão da Veiga et al., 
(2012b, 2013) for structured spline spaces, which applies to the present framework as well. To keep it simple, we focus on 
a simple configuration: we consider a manifold obtained by merging tensor-product patches with C p−1 continuity except 
around the extraordinary vertices, where the continuity is only C0. This configuration is referred to as multi-patch B-splines 
with enhanced smoothness as in Buchegger et al. (2015), where it has been first introduced and studied in the context of IgA. 
On the coarsest mesh Th0 , the length of the C0 lines is p + 1 element edges, which corresponds to the condition that a 
function in Sh0 is C0 across the patch interfaces if and only if it has an extraordinary vertex in the closure of its support. 
The structured charts for this configuration can be taken as the union of each pair of patches that have a common interface. 
For each unstructured vertex there exists an unstructured vertex chart composed of all elements in the one-ring around, i.e. 
all elements that contain the unstructured vertex in their closure. This is not the only possibility but it simplifies the next 
steps. In this case each transition function ψi, j between structured charts is the composition of a translation and a rotation 
by a multiple of π

2 . To further simplify, we assume the mesh on each structured chart is uniform with mesh-size h.
We assume by construction that each space Sh is complete. By this, we mean that for every structured chart ωi the set 

B̃i spans all piecewise polynomials of degree p and continuity stated above.
The space L2(�) is defined as

L2(�) =
{
φ : � →R | φ ◦ πi ∈ L2(ωi) for all structured charts ωi

}
,

having the corresponding norm

‖φ‖2
L2(�)

=
∑

Q ∈Th

‖φ ◦ πi,Q ‖2
L2(π−1

i,Q (Q ))
, (38)

where ωi,Q is a structured chart covering Q , i.e. Q ⊆ πi,Q (ωi,Q ). Due to the isometry of the transition function, the 
L2-norm of a function defined on a chart fulfills ‖ϕ‖2

L2(ωi, j)
= ‖ϕ ◦ ψ j,i‖2

L2(ω j,i)
for all structured charts ωi , ω j . Hence, the 

L2-norm on � is well-defined because all elements are covered by structured charts. Moreover, the definition of the L2-norm 
is independent of the level of refinement. We define bent Sobolev spaces Hk(�) in the same fashion. Bent Sobolev spaces 
are piecewise Sobolev spaces with some regularity at the element interfaces, see Bazilevs et al. (2006), Beirão da Veiga et 
al. (2014). For example, the space Hp+1(�) is defined as the closure of the space of piecewise C∞ functions having the 
same continuity at the mesh lines of the space Sh0 , with respect to the norm

‖φ‖2
Hp+1(�)

= ‖φ‖2
L2(�)

+
p+1∑
k=1

|φ|2Hk(�)
, (39)

where

|φ|2Hk(�)
=

∑
Q ∈Th

|φ ◦ πi,Q |2
Hk(π−1

i,Q (Q ))
(40)

and | · |Hk(q) is the usual k-th order Sobolev seminorm. Obviously, all the spaces and norms can be defined accordingly on 
subdomains of � and are independent of the level of refinement.

Using the dual basis defined in Theorem 3 we introduce a projection operator �Sh : L2(�) → Sh onto the B-spline 
manifold space via
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Fig. 6. Possible configuration of a box R and mesh line e for degree p = 2. (For interpretation of the references to color in this figure, the reader is referred 
to the web version of this article.)

φ �→ �Sh (φ) =
∑

A∈Ah

�A(φ)BA (41)

The projector is L2 stable, uniformly with respect to h, i.e.

‖φ − �Sh (φ)‖L2(�) ≤ C‖φ‖2
L2(�)

, ∀φ ∈ L2(�), (42)

which follows directly from the L2 stability of the dual basis as defined in Theorem 3, see for example Beirão da Veiga et 
al. (2014). To prove its approximation properties we use the following Lemma.

Lemma 4. Let SR be the space of all piecewise polynomials with respect to a uniform Cartesian mesh of a box R ∈R
2 , such that

• the mesh is formed by up to 2p + 1 elements per direction with meshsize h;
• the polynomial degree is p in each direction; and
• the continuity is C p−1 globally with the exception of a mesh line e where the continuity is only C0, i.e., SR ⊂ C p−1(R \e) ∩ C0(R).

Let Hp+1(R) be the bent Sobolev space associated to SR . Then for all φ ∈Hp+1(R) there exists a ρ ∈ SR such that

‖φ − ρ‖L2(R) ≤ Chp+1|φ|Hp+1(R) (43)

with a constant C only dependent on p.

Proof. The size of R depends on the number of elements n = (n1, n2) in each direction and the element size h. Given 
φ ∈Hp+1(R) there exists indeed ρ ∈ SR such that

‖φ − ρ‖L2(R) ≤ C(p,h,n,e)|φ|Hp+1(R)

with C(p, h, n, e) independent of φ. The proof is the same as for the classical Bramble–Hilbert lemma, see, e.g., Bazilevs 
et al. (2006). The dependence of the constant with respect to h, that is C(p, h, n, e) = C(p, n, e)hp+1, follows from 
a scaling argument. Finally, there are a finite number of different configurations for n and e, therefore we can set 
C(p) = maxn,e C(p, n, e). �

See Fig. 6 for a possible configuration of R . Here, the line of C0 continuity is shown in blue.
Given Q ∈ Th , we define Q̃ ⊂ � in the following way: for each structured chart ωi , Q̃ ∩�i is the minimal box containing 

all the supports of functions in Bh whose support contains Q . We can now state the local approximation estimate.

Theorem 5. Under the assumptions of this Section, for φ ∈Hp+1(Q̃ ) it holds

‖φ − �Sh (φ)‖L2(Q ) ≤ Chp+1|φ|Hp+1(Q̃ ), (44)

where the constant C depends only on p.

Proof. The first step of the proof is to show that, given φ ∈Hp+1(Q̃ ), there exists ρ ∈ Sh such that

‖φ − ρ‖L2(Q̃ ) ≤ Chp+1|φ|Hp+1(Q̃ ). (45)

We are in one of two cases, either

(a) Q̃ contains an extraordinary vertex, or
(b) Q̃ ⊂ πi(ωi) where ωi is a structured chart.
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Fig. 7. Different types of support extensions Q̃ for p = 2. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

See Fig. 7 for a representation of the two possible cases. In the figure the C0-continuity lines are depicted in blue. The 
dark green element represents Q and the light green region represents its support extension Q̃ . Due to the assumption 
on the length of the C0 lines, case (a) only occurs when Q is adjacent to an extraordinary vertex, i.e., there exists an 
unstructured chart ωi such that Q ⊂ πi(ωi). In this case we can split Q̃ into Q̃ 1, . . . , ̃Q ki such that each Q̃ 	 intersects only 
the segment πi(si,	) (see Definition 7). Each Sh|Q̃ 	

is a standard tensor-product spline space therefore we can use (Beirão da 
Veiga et al., 2014, Section 2.2.2 and Section 4.4) in order to construct splines ρ	 ∈ Sh|Q̃ 	

which approximate φ|Q̃ 	
and match 

continuously in the whole Q̃ . Since on the coarsest mesh the C0 lines at the extraordinary vertex cover p +1 element edges 
(see Fig. 7), each interface between two adjacent sets of Q̃ 1, . . . , ̃Q ki is covered by the C0 continuity lines of ρ ∈ Sh and 
(45) follows. In case (b), we can use Lemma 4, then (45) follows by (43).

Having (45) and recalling the L2 stability of the projector �Sh , (44) is derived in the usual way, i.e.

‖φ − �Sh (φ)‖L2(Q ) = ‖φ − ρ − �Sh (φ − ρ)‖L2(Q )

≤ C‖φ − ρ‖L2(Q̃ )

≤ Chp+1|φ|Hp+1(Q̃ ).

The stability constant as well as the approximation constant only depend on p, which concludes the proof. �
By means of inverse estimates and generalizing (45), (44) can be extended to higher order Sobolev norms. For 0 ≤ q ≤

p + 1 it holds

|φ − �Sh (φ)|Hq(Q ) ≤ Chp−q+1|φ|Hp+1(Q̃ ), (46)

where the constant C depends only on p and q. The details are not reported for the sake of brevity.
We can extend the result to the spline manifold domain �, in this case a closed surface in R3, parametrized by G ∈

(Sh0)
3. We assume that G is regular, that is, there exist constants c, c, with

c ≥ det(∇GT (x)∇G(x)) ≥ c > 0

for all x ∈ Q and for all Q ∈ Th0 . Note that, in general, we cannot define Sobolev spaces of any order on �, due to the lack 
of smoothness of the manifold itself. However the L2 space on � can be defined as

L2(�) = { f : f ◦ G ∈ L2(�)}
and the corresponding norm is given via

‖ f ‖L2(�) = ‖ f ◦ G (det(∇GT ∇G))1/4‖L2(�).

The bent Sobolev spaces can be defined similarly, as in (39)–(40). See Hebey (1996, 2000) for more details about Sobolev 
spaces on manifolds. Then, for all f ∈ L2(�), we can define the isogeometric projector

�Vh ( f ) = �Sh ( f ◦ G) ◦ G−1.

Approximation properties of �Vh easily follow from the ones of �Sh stated in Theorem 5, following the same approach as 
in Bazilevs et al. (2006), Dedè and Quarteroni (2015).

Theorem 6. Under the assumptions of this Section, for all f ∈Hp+1(�)

‖ f − �Vh ( f )‖L2(�) ≤ Chp+1‖ f ‖Hp+1(�), (47)

where the constant C depends only on G and p.
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Note that all the results presented here extend naturally to volumetric domains. In that case, the lines of C0 continuity 
extend to faces of C0 continuity in a vicinity of the extraordinary vertices and edges. In this case it is necessary that the 
spaces obtained after each refinement step are dual-compatible

Remark 6. The same ideas can be applied to extend the convergence results to T-spline manifolds, assuming again that the 
continuity across patches is C0 in the vicinity of the extraordinary vertices, and this continuity is preserved when refining. 
Assuming that the coarsest spline space is a T-spline space, bent Sobolev spaces can be defined according to the T-spline 
characterization in Bressan et al. (2015). It is also necessary that the spaces obtained during refinement are nested and 
dual-compatible, which can be accomplished with the refinement of Morgenstern and Peterseim (2015). We prefer not to 
present the T-spline case here, to avoid explaining all the technical details.

6. Conclusion and possible extensions

We have introduced a general mathematical framework, based on manifolds, for the definition and the analysis of un-
structured spline spaces. As it is done in Grimm and Hughes (1995) the main idea is to decompose the domain into charts, 
which are meshed with quadrilaterals or hexahedra. Then spline basis functions and dual functionals can be defined locally 
on each chart. Unstructured charts are necessary to cover extraordinary vertices and edges of the domain.

We have used this framework to generalize the dual-compatibility condition of Beirão da Veiga et al. (2012a, 2013) to 
unstructured spline spaces, and in particular to analyze the approximation properties of splines with high continuity every-
where except in the vicinity of extraordinary vertices and edges, where the continuity is only C0. Although the analysis was 
restricted to the low continuity case, the framework allows for the definition of spline functions with higher smoothness, 
and their analysis will be the aim of future work.

In our definitions the physical domain is necessarily a manifold. However, since we are defining the charts in the para-
metric domain, and not in the physical domain, it is possible to extend our framework to non-manifold domains using 
special bifurcation charts (such as T-shaped or X-shaped charts for curves, etc.) This could be of interest for certain beam 
or shell formulations, or for the proper representation of the medial axis or medial surface of an object, for instance.

Finally, for the sake of simplicity we have restricted ourselves to B-splines and T-splines on quadrilateral/hexahedral 
meshes. The framework can be generalized to other spline spaces, such as NURBS or trigonometric splines.
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Appendix A. Spline manifolds with boundary

We can extend the definition of a spline manifold to a manifold with boundary. To do so, we first need to extend 
Definition 1, defining a suitable proto-manifold that takes into account the boundary.

Definition 23 (Proto-manifold with boundary). A proto-manifold with boundary is a generalization of a proto-manifold, where 
the charts {ωi}i=1,...,N are given as ωi = interior (ωi)∪γi , such that interior (ωi) are open polytopes forming a standard proto-
manifold (with transition domains interior

(
ωi, j

)
and transition functions ψi, j ) and each γi ⊂ ∂ωi is a part of the boundary 

of the chart interior (ωi). Moreover, the transition domains fulfill ωi, j = interior
(
ωi, j

) ∪ γi, j , with γi, j = γi ∩ ∂ωi, j , and the 
transition functions are the continuous extensions of ψi, j and map γi, j onto γ j,i and interior

(
ωi, j

)
onto interior

(
ω j,i

)
.

Similar to the standard parameter manifold in Definition 2, we can define the parameter manifold with boundary � via 
the equivalence relation induced by the transition functions. Since the transition functions always map the interior onto 
the interior and the boundary onto the boundary, the parameter manifold � can be separated into interior (�) and the 
boundary denoted by �.

This definition of the boundary of the (open) parameter manifold is equivalent to the classical definition of a mani-
fold with boundary, as discussed in Grimm and Hughes (1995). In this case every boundary point of the manifold has a 
neighborhood that is homeomorphic to the half d-ball. Note that the boundary � itself can be interpreted as a topological 
manifold of dimension d − 1.

For the definition of the spline spaces, we assume the following.

Assumption 24. The local boundary γi is conforming with respect to the elements, i.e. there exists a subset of faces of 
elements q ∈ τi that forms a mesh for the boundary γi .
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Fig. A.8. Different types of valid (a)–(c) and non-valid (d) boundary vertices in 2D.

Fig. A.9. Structured charts with boundary (a)–(c) and boundary chart (d) in 2D.

Table A.3
Classification of valid boundary edges and vertices in 3D.

Structured edge Regular boundary edge
Structured vertex Regular boundary vertex

Hanging boundary vertex
Unstructured vertex Partially unstructured boundary vertex

Fig. A.10. Structured charts with boundary (a)–(c) and unstructured edge chart with boundary (d) in 3D.

To be able to define manifolds with boundary containing non-convex features, we need additional types of charts, so 
called boundary charts. To avoid the tedious formal definition of boundary charts, we present figures that should explain the 
ideas behind. In Fig. A.8 we present different types of two-dimensional boundary vertices, regular boundary vertices (a)–(c), 
as well as a non-regular boundary vertex (d). The vertices in Figs. A.8(a) and A.8(b) can be covered by the boundaries of 
structured charts (see Fig. A.9(a)–A.9(c)). For the vertex in Fig. A.8(c) we need a special boundary chart (see Fig. A.9(d)), 
associated with the function which is non-zero at the corner. Note that the boundary vertex in Fig. A.8(d) is discarded since 
it does not allow for functions that are non-zero at the corner.

In the three-dimensional case, there are more different configurations to consider, which are listed in Table A.3. Here, 
we need to consider two different types of boundary charts.

Figs. A.10 and A.11 depict several possible three-dimensional charts with boundary. In Figs. A.10(a)–A.10(c) we show 
several examples of structured charts with boundary. Fig. A.10(d) shows an unstructured edge chart with boundary. In 
Fig. A.11 we show the two different types of unstructured boundary charts that are needed to represent all meshes of 
practical interest. The one in Fig. A.11(a) is the Cartesian product of a two-dimensional boundary chart with an interval 
in the third direction. The chart depicted in Fig. A.11(b) is a boundary chart corresponding to a non-convex vertex at the 
boundary. One can include more complex boundary configurations by introducing unstructured boundary charts, which we 
will not consider for the sake of simplicity.

Concerning spline manifold spaces on parameter manifolds with boundary, we need to adjust the condition on proto-
basis functions in equation (6) to the following one

lim
ζ→∂ω \γ bAi (ζ ) = 0. (A.1)
i i



G. Sangalli et al. / Computer Aided Geometric Design 47 (2016) 61–82 81
Fig. A.11. Boundary charts in 3D.

With this modification, the spline manifold space can interpolate at the boundary. The theory concerning dual-compatibility 
and approximation properties presented in Section 5 can be generalized directly to spline manifolds with boundary. Most 
importantly, both Theorems 5 and 6 extend directly to manifolds with boundary, using the boundary charts introduced here. 
Thus extending the approximation error bounds to manifolds with boundary of general topology.
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