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The theory of the isoptic curves is widely studied in the Euclidean plane E2 (see Cieślak 
et al., 1991 and Wieleitner, 1908 and the references given there). The analogous question
was investigated by the authors in the hyperbolic H2 and elliptic E2 planes (see Csima and 
Szirmai, 2010, 2012, submitted for publication), but in the higher dimensional spaces there
are only few results in this topic.
In Csima and Szirmai (2013) we gave a natural extension of the notion of the isoptic
curves to the n-dimensional Euclidean space En (n ≥ 3) which is called isoptic hypersurface. 
Now we develope an algorithm to determine the isoptic surface HP of a 3-dimensional 
polyhedron P .
We will determine the isoptic surfaces for Platonic solids and for some semi-regular
Archimedean polytopes and visualize them with Wolfram Mathematica (Wolfram Research,
Inc., 2015).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G be one of the constant curvature plane geometries, either the Euclidean E2 or the hyperbolic H2 or the elliptic
E2. The isoptic curve of a given plane curve C is the locus of points P ∈ G where C is seen under a given fixed angle α
(0 < α < π). An isoptic curve formed by the locus of tangents meeting at right angles is called orthoptic curve. The name 
isoptic curve was suggested by Taylor (1884).

In Cieślak et al. (1991, 1996) the isoptic curves of the closed, strictly convex curves are studied, by use of their support 
function. The explicit formula for the isoptic curve of the triangle can be found in Michalska and Mozgawa (2015). The pa-
pers Wunderlich (1971a, 1971b) deal with curves having a circle or an ellipse by an isoptic curve. Further curves appearing 
as isoptic curves are well studied in the Euclidean plane geometry E2, see e.g. Loria (1911), Wieleitner (1908). Isoptic curves 
of conic sections have been studied in Holzmüller (1882) and Siebeck (1860). Isoptic curves of Bézier curves are considered 
in Kunkli et al. (2013). A lot of papers concentrate on the properties of the isoptics e.g. Miernowski and Mozgawa (1997), 
Michalska (2003), and the references given there. The papers Kurusa (2012) and Kurusa and Ódor (2015) deal with inverse 
problems.

In the hyperbolic and elliptic planes H2 and E2 the isoptic curves of segments and proper conic sections are determined 
by the authors Csima and Szirmai (2010, 2012, 2014). In Csima and Szirmai (submitted for publication) we extended the 
notion of the isoptic curves to the outer (non-proper) points of the hyperbolic plane and determined the isoptic curves of 
the generalized conic sections.

It is known, that the angle between two half-lines with the vertex A in the plane can be measured by the arc length 
on the unit circle around the point A. This statement can be generalized to the higher dimensional Euclidean spaces. The 
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Fig. 1. Projection of a compact domain D onto a unit sphere in E3.

notion of the solid angle is well known and widely studied in the literature (see Gardner and Verghese, 1971). We recall this 
definition concerning the 3-dimensional Euclidean space E3.

Definition 1.1. The solid angle �S (p) subtended by a surface S is defined as the surface area of the projection of S onto the 
unit sphere around P (p), where p is the coordinates of P .

The solid angle is measured in steradians, e.g. the solid angle subtended by the whole Euclidean space E3 is equal to 4π
steradians. Moreover, this notion has several important applications in physics (in particular in astrophysics, radiometry or 
photometry) (see Camp and Van Lehn, 1969), computational geometry (see Joe, 1991) and we will use it for the definition 
of the isoptic surfaces.

The isoptic hypersurface in the n-dimensional Euclidean space (n ≥ 3) is defined in Csima and Szirmai (2013) and now, 
we recall some statements and specify them to E3.

Definition 1.2. The isoptic hypersurface Hα
D in E3 of an arbitrary 3-dimensional compact domain D is the locus of points 

P where the measure of the projection of D onto the unit sphere around P is equal to a given fixed value α, where 
0 < α < 2π (see Fig. 1).

In this paper we develope an algorithm and the corresponding computer program to determine the isoptic surface of 
an arbitrary convex polyhedron in the 3-dimensional Euclidean space. We apply this algorithm for the regular Platonic 
solids and some semi-regular Archimedean solids as well. We note here that this generalization of the isoptic curves to the 
3-dimensional space provides possible research to extend the notion of isoptic surfaces to bounded polyhedral surfaces and, 
with triangulations, to ‘smooth surfaces’.

2. The algorithm

In this section we discuss the algorithm developed to determine the isoptic surface of a given polyhedron.

1. We assume that an arbitrary polyhedron P is given by the usual data structure. This consists of the list of facets FP
with the set of vertices V i in clockwise order. Each facet can be embedded into a plane.
It is well known, that if a ∈ R3 \ {0} and b ∈ R then {x ∈ R3|aT x = b} is a plane and {x ∈ R3|aT x ≤ b} defines a halfspace. 
Every polyhedron is the intersection of finitely many halfspaces. Therefore an arbitrary polyhedron can also be given by 
a system of inequalities Ax ≤ b where A ∈ Rm×3 (4 ≤ m ∈N), x ∈ R3 and b ∈ Rm .

2. For an arbitrary point P (p) ∈ E3 we have to decide, that which facets of P ‘can be seen’ from it. Let us denote the ith
facet of P by F i

P (i = 1, . . . , m) and by ai the vector derived by the ith row of the matrix A which characterize the 
facet F i

P .
Since the polyhedron P is given by the system of inequalities Ax ≤ b, where each inequality aix ≤ bi (i ∈ {1, 2 . . . , m}) 
is assigned to a certain facet, therefore the facet F i

P is visible from P if an only if the inequality aip > bi holds.
Now, we define the characteristic function Ii

P (x) for each facet F i
P :

I
i
P (x) =

{
1 aix > bi

0 aix ≤ bi .

3. Using the Definition 1.1, let �i(p) := � i (p) be the solid angle of the facet F i regarding the point P (p).
FP P
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Fig. 2. Projection of a facet F i
P onto the unit sphere in E3.

To determine �i(p), we use the methods of the spherical geometry. Let us suppose that F i
P contains ni vertices, V i j (xi j )

( j = 1, . . . , ni) where the vertices are given in clockwise order. Projecting these vertices onto the unit sphere centered 
in P (p) we get a spherical ni -gon (see Fig. 2), whose area can be calculated by the usual formula

�i(p) = � − (ni − 2)π.

Here � is the sum of the angles τ j of the spherical projection of the polygon F i
P where the angles are measured in 

radians.
4. To obtain angles τ j , we need to determine the angles between the two planes containing the neigbouring edges P V i j−1 , 

P V i j and P V i j , P V i j+1 . Thus for j = 1, 2, . . . , n (i0 := ini and ini+1 := i1), we have:

τ j = π − arccos

⎛
⎝

〈−→
P V i j−1 × −→

P V i j ,
−→
P V i j × −→

P V i j+1

〉
∣∣∣−→P V i j−1 × −→

P V i j

∣∣∣ ∣∣∣−→P V i j × −→
P V i j+1

∣∣∣
⎞
⎠ .

Finally, we get the solid angle function �i(x) of the facet F i
P for any x ∈ R3:

�i(x) = 2π −
ni∑

j=1

arccos

⎛
⎝

〈−→
X V i j−1 × −→

X V i j ,
−→
X V i j × −→

X V i j+1

〉
∣∣∣−→X V i j−1 × −→

X V i j

∣∣∣ ∣∣∣−→X V i j × −→
X V i j+1

∣∣∣
⎞
⎠ .

5. We can summarize our results in the following

Theorem 2.1. Let us consider a solid angle α (0 < α < 2π ) and a convex polyhedron P given by its data structure and its set of 
inequality. Then the isoptic surface of P can be determined by the equation

α =
m∑

i=1

I
i
P (x)�i(x).

The results and the computations will be demonstrated in the following subsection through the computation related to the 
regular tetrahedron and along with some figures.

Remark 2.2.

1. The algorithm can be easily extended for non-closed directed surfaces e.g. for subdivision surfaces.
2. If we have a convex polyhedron, then projecting its whole surface to the unit sphere, we obtain a double coverage 

(double solid angle) of the given polyhedron, therefore the algorithm can be changed i.e. it is not necessary to determine 
the visible facets. In this case the isoptic surfaces are determined by the following implicit equation:

α = 1

2

m∑
i=1

�i(x).
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Fig. 3. Isoptic surface of the regular tetrahedron for α = π/8 (left). A part of the tetrahedral isoptic surface (right). E.g. the surface φ1,2 is derived by the 
solid angles of the facets F3

T and F4
T .

2.1. Computations of the isoptic surface of a given regular tetrahedron

Following the steps of the above described algorithm, we will calculate the compound isoptic surface of a given regu-
lar tetrahedron T whose data structure is determined by its vertices and facets where the facets F i

P are given by their 
clockwise ordered vertices:

A1 =
(

0,0,

√
2

3
− 1

2
√

6

)
, A2 =

(
− 1

2
√

3
,−1

2
,− 1

2
√

6

)
,

A3 =
(

− 1

2
√

3
,

1

2
,− 1

2
√

6

)
, A4 =

(
1√
3
,0,− 1

2
√

6

)
,

{
F1
T , {A2, A3, A4}

}
,
{
F2
T , {A3, A2, A1}

}
,{

F3
T , {A4, A1, A2}

}
,
{
F4
T , {A1, A4, A3}

}
.

This tetrahedron can also be given by its system of inequalities:

⎛
⎜⎜⎜⎝

0 0 −4
√

3

−8
√

6 0 4
√

3

4
√

6 −12
√

3 4
√

3

4
√

6 12
√

3 4
√

3

⎞
⎟⎟⎟⎠

⎛
⎝ x

y
z

⎞
⎠ ≤

⎛
⎜⎜⎜⎝

√
2

3
√

2

3
√

2

3
√

2

⎞
⎟⎟⎟⎠ .

Since the final formula of the isoptic surface is too long to appear in print even for this simple example (the right side 
of the equation consists of twelve arccos function), we choose i = 1 and derive only I1

P (x).

I
1
P (x, y, z) =

{
1 −4

√
3z >

√
2

0 −4
√

3z ≤ √
2

.

For the obtained surface, see Fig. 3 (left), and Fig. 3 (right) shows a part of the tetrahedral isoptic surface for the solid 
angle α = π/8. The surface φ1,2 is derived by the solid angles of the facets F3

T and F4
T . The isoptic surface φ1 is derived 

by the solid angles of the facets F2
T , F3

T and F4
T and the isoptic surface φ2 is derived by the solid angles of the facets F1

T , 
F3
T and F4

T .

2.2. Isoptic surfaces to regular polyhedra and some Archimedean polyhedra

In the following we apply our algorithm to some polyhedra. We note here that the algorithm provides the implicit 
equation of the compound isoptic surface related to the given polyhedron (see Figs. 4 and 5).
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Fig. 4. Isoptic surface of the cube for α = π/2 (left). Isoptic surface of the regular octahedron for α = π/7 (right).

Fig. 5. Isoptic surface of the truncated cube for α = π (left). Isoptic surface of the truncated octahedron α = 2π/3 (right).

Remark 2.3. Despite the equation can be obtained in O(e) steps, where e is the number of edges, the rendering of these 
figures by Wolfram Mathematica (Wolfram Research, Inc., 2015) takes 20–40 minutes. The implicit equation of the isoptic 
surface is so complicated that it seems difficult to draw further consequences from it.
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