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We present a simple functional method for the interpolation of given data points and
associated normals with surface parametric patches with rational normal fields. We give
some arguments why a dual approach is especially convenient for these surfaces, which
are traditionally called Pythagorean normal vector (PN) surfaces. Our construction is based
on the isotropic model of the dual space to which the original data are pushed. Then the
bicubic Coons patches are constructed in the isotropic space and then pulled back to the
standard three dimensional space. As a result we obtain the patch construction which is
completely local and produces surfaces with the global G1 continuity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper is devoted to the Hermite interpolation with the surfaces possessing Pythagorean normal vector fields (PN 
surfaces). These surfaces were introduced by Pottmann (1995). We can understand them as surface counterparts to the 
Pythagorean hodograph (PH) curves first studied by Farouki and Sakkalis (1990). PN surfaces have rational offsets and thus 
provide an elegant solution to many offset-based problems occurring in various practical applications. In particular, in the 
context of the computer-aided manufacturing, the tool path does not have to be approximated and it can be described 
exactly in the NURBS form, which is nowadays a standard format of the CAD/CAM applications.

For the survey of the theory and applications of PH/PN objects, see Farouki (2008) and references therein. Many inter-
esting theoretical questions related to this subject have been studied in the past years. Let us mention in particular the 
analysis of the geometric and algebraic properties of the offsets, such as the determination of the number and type of their 
components and the construction of their suitable rational parameterizations (Arrondo et al., 1997, 1999; Maekawa, 1999;
Sendra and Sendra, 2000; Vršek and Lávička, 2010).

Despite natural similarities between the PH curves and the PN surfaces, the two classes of Pythagorean objects exhibit 
also some important differences. For example, the set of all polynomial PH curves within the set of all rational PH/PN curves 
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was exactly identified in Farouki and Pottmann (1996). On the other hand for the PN surfaces only the rational ones are 
described explicitly using a dual representation and the subset of the polynomial ones has not been revealed yet. Polynomial 
solution of the Pythagorean condition in the surface case started in Lávička and Vršek (2012) for cubic parameterizations 
and recently an approach based on bivariate polynomials with quaternion coefficients was presented by Kozak et al. (2016). 
A survey discussing rational surfaces with rational offsets and their modelling applications can be found in Krasauskas and 
Peternell (2010).

The previous problem is also strongly related to the construction techniques for PN surfaces, in particular to the Hermite 
interpolation, which is the main topic of this paper. There exist many Hermite interpolation results for the polynomial and 
rational PH curves yielding piecewise curves of various continuity, see Farouki (2008), Kosinka and Lávička (2014). Concern-
ing direct algorithms for the interpolations with PN surfaces the situation is different. By ‘direct’ we mean in this context 
the construction of the object together with its PN parameterization. Indeed, some constructions for special surfaces, which 
become PN only after a suitable reparameterization, were designed. For instance in Bastl et al. (2008), there was designed a 
method for the construction of the exact offsets of quadratic triangular Bézier surface patches, which are in fact PN surfaces. 
However their PN parameterizations were gained via certain reparameterization. A similar approach based on reparameter-
ization was also used in the paper (Jüttler and Sampoli, 2000) devoted to the surfaces with linear normals (Jüttler, 1998), 
which generally admit a non-proper PN parameterizations, see Vršek and Lávička (2014) for more explanations.

First we emphasize that our method requires that given points being interpolated are arranged in a rectangular grid; 
for further details about quadrilateral mesh generation and processing, including surface analysis and mesh quality, simpli-
fication, adaptive refinement, etc. we refer to survey paper (Bommes et al., 2013) and references therein. Next, unlike the 
approaches presented in the papers cited in the previous paragraph we plan to interpolate a set of given points pi j with 
the associated normal vectors ni j by a rational parameterized PN surface in a direct way, i.e., without the necessary subse-
quent reparameterization. The advantage of such direct PN interpolation techniques is obvious – no complicated trimming 
procedure in the parameter space is necessary. As far as we are aware, a similar method was discussed only in Peternell 
and Pottmann (1996), where a surface design scheme with triangular patches on parabolic Dupin cyclides was proposed. In 
addition, in Gravesen (2007) the interpolation of triangular data using the support function is studied. The Gauss image is 
first constructed and then the support function interpolating the values and gradients at certain points (the given normals) 
is determined. Our approach interpolates the normals and the support function simultaneously in the isotropic space. This 
way we are able to produce local patches with global G1 continuity.

In the beginning of this paper, we also very shortly address the related open problem of the Hermite interpolation 
with the polynomial PN surfaces. Rather than solve this problem, we show its complexity. Indeed, by simply considering 
the required number of free parameters we show that this problem is much harder than in the curve case. We use this 
consideration as a certain defense for using a dual technique, which leads to rational solutions. Even so we consider the 
Hermite interpolation with polynomial PN surfaces directly as a promising and challenging direction for our future research.

The remainder of this paper is organized as follows. Section 2 recalls some basic facts concerning surfaces with 
Pythagorean normal vector fields. We will also briefly sketch how to satisfy the PN condition in the polynomial case, i.e., 
how to find polynomial PN parameterizations. In Section 3 the representation of PN surfaces in the Blaschke and in the 
isotropic model is presented. We also discuss the usefulness of these representations for the solution of the interpolation 
problem. Section 4 is devoted to bicubic Coons patches in the isotropic model and their usage in the construction of smooth 
PN surfaces. The method is described, discussed and presented on a particular example in Section 5. Finally, we conclude 
the paper in Section 6.

2. Surfaces with Pythagorean normals

In this section we recall some fundamental facts about surfaces with rational offsets.

Definition 2.1. Let X be a real algebraic surface in R3, let X r denote the set of regular points of X , and let us denote 
by np ∈ S2 a unit normal vector at a point p ∈ X r . Then the d-offset Od(X ) of X is defined as the closure of the set 
{p ± dnp | p ∈X r}.

If X is rational and x : R2 → R
3 is its parameterization, we may write down a parameterization of the offset explicitly 

in the form

x(u, v) ± dnx(u, v), (1)

where nx(u, v) is the unit normal vector field associated to the parameterization x(u, v). It turns out that (1) is rational if 
and only if nx(u, v) is. This is equivalent to the existence of a rational function σ(u, v) such that

‖xu × xv‖2 = σ 2, (2)

where xu and xv are partial derivatives with respect to u and v , respectively.

Definition 2.2. C1 regular parametric surfaces fulfilling condition (2) are called surfaces with Pythagorean normal vector fields
(or PN surfaces, in short) and condition (2) is referred to as PN condition or PN property.
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PN surfaces were defined by Pottmann (1995) as surface analogies to Pythagorean hodograph (PH) curves distinguished 
by the PH condition ‖x′(t)‖2 = σ(t)2. These curves were introduced as planar polynomial objects. Later, the concept was 
generalized also to the rational PH curves, see Pottmann (1995). The interplay between the different approaches to polyno-
mial and rational curves with Pythagorean hodographs was studied by Farouki and Pottmann (1996) and the former were 
established as a proper subset of the latter by presenting simple algebraic constraints.

Unfortunately more than 20 years from their introduction, the situation is still completely different for the PN surfaces. 
This is also reflected when solving the interpolation problems, in which the points and the normal vectors are prescribed 
as input data. The most natural (and expected) way of handling the PN surfaces would be probably similar to the one 
used for PH curves, see e.g. Farouki (2008). Let us show it on the polynomial case. All the polynomials satisfying the PH 
condition x′(t)2 + y′(t)2 = σ(t)2 can be described explicitly using polynomial Pythagorean triples. The corresponding PH 
curve x(t) = (x(t), y(t)) is then obtained simply by integration. In the surface case, however, we cannot reproduce this 
approach.

It is possible to describe explicitly all the polynomial Pythagorean normal fields N(u, v) of degree k having the polyno-
mial length, i.e., ||N(u, v)||2 is a perfect square; cf. Dietz et al. (1993). To determine an associated PN parameterization of 
degree � + 1 in a direct way, we have to find suitable polynomial vector fields

P(u, v) =
⎛
⎝ ∑

i+ j≤�

p1i ju
i v j,

∑
i+ j≤�

p2i ju
i v j,

∑
i+ j≤�

p3i ju
i v j

⎞
⎠ ,

Q(u, v) =
⎛
⎝ ∑

i+ j≤�

q1i ju
i v j,

∑
i+ j≤�

q2i ju
i v j,

∑
i+ j≤�

q3i ju
i v j

⎞
⎠ ,

(3)

which will play the role of xu , xv , respectively, that satisfy the following conditions

P · N = 0,

Q · N = 0,

∂P

∂v
− ∂Q

∂u
= 0,

(4)

where the third equation expresses the condition for the integrability. Since a polynomial of degree n in two variables 
possesses 

(n+2
2

)
coefficients, the problem is now transformed to solving a system of 2

(k+�+2
2

) + 3
(
�+1

2

)
homogeneous linear 

equations with 6
(
�+2

2

)
unknowns p1i j , p2i j , p3i j , q1i j , q2i j , q3i j . The corresponding PN parameterization is then obtain as

x(u, v) =
∫

P(u, v)du + c(v), where c(v) =
[∫

Q(u, v)dv −
∫

P(u, v)du

]
u=0

. (5)

However, we must stress that not for every given polynomial Pythagorean normal field N(u, v) there exists a correspond-
ing polynomial surface x(u, v) for which xu × xv = N(u, v). For this to hold we need � = k/2. Nevertheless, in this case the 
number of unknowns is less than the number of equations so one cannot expect a solution, in general. On the other hand 
for � large enough, the system of equations (4) is solvable. In this case we obviously arrive at a PN parameterization such 
that xu × xv = f (u, v)N(u, v), where f (u, v) is some non-constant polynomial.

3. PN surfaces in the isotropic model of the dual space

As the offsets have a considerably simpler description if we apply the dual approach, we recall in this section the 
representation of PN surfaces in the Blaschke and isotropic model of the dual space. Moreover, this concept is later used for 
formulating our Hermite interpolation algorithm.

For the sake of brevity, we exclude developable surfaces from our considerations and assume a non-degenerated Gauss 
image γ (X ) of all studied surfaces X in what follows. This means that the duality δ maps a surface X to its dual surface X ∗ . 
Recall that a non-developable surface X : f (x) = 0 has the dual representation

X ∗ : F ∗(n,h) = 0, (6)

where F ∗ is a homogeneous polynomial in n = (n1, n2, n3) and h. If F ∗(n, h) = 0 then the set of all planes

Tn,h : n · x = h (7)

forms a system of tangent planes of X with the normal vectors n (i.e., X ∗ is considered as the set of tangent planes of X ). 
Furthermore, if we assume ‖n‖ = 1 then the value of h is the oriented distance of the tangent plane to the origin. Moreover, 
if the partial derivative ∂ F ∗/∂h does not vanish at (n0, h0) ∈X ∗ , then (6) implicitly defines a function

n �→ h(n) (8)
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Fig. 1. The Blaschke cylinder B and the isotropic model I of the dual space.

in a certain neighborhood of (n0, h0). The restriction of this function to the unit sphere S2 is called the support function of 
the primal surface, see Gravesen (2007); Aigner et al. (2009); Gravesen et al. (2008); Lávička et al. (2010); Šír et al. (2008)
for more details. Let us stress out that the dual representation (6) does not require the normal vectors n to be unit vectors. 
However, whenever we use the support function then its argument n will be assumed to be a unit vector.

Conversely, from any smooth real function on (a subset of) S2 we can reconstruct the corresponding primal surface by 
the parameterization xh : S2 → R

2

xh(n) = h(n)n + ∇S2 h(n), (9)

where the vector ∇S2 h is obtained by embedding the intrinsic gradient of h with respect to S2 into the space R3, see 
Gravesen et al. (2008) for more details. The vector-valued function xh gives a parameterization of the envelope of the set of 
tangent planes (7). Hence, all surfaces with the associated rational support function are rational. It is enough to substitute 
into (9) any rational parameterization of S2, for instance n(u, v) = (2u/(1 + u2 + v2), 2v/(1 + u2 + v2), (1 − u2 − v2)/

(1 + u2 + v2)).
Furthermore, several important geometric operations correspond to suitable modifications of the support function, see 

Šír et al. (2008). In particular the one-sided offset of a surface at the distance d is obtained by adding the constant d to 
the support function h. For using the support function for computing the convolutions (i.e., the general offsets) of two 
hypersurfaces see e.g. Šír et al. (2007).

In Pottmann and Peternell (1998), the rational surfaces with rational offsets were studied in the so-called Blaschke model. 
Consider in R4 the quadric B = S2 × R : ‖n‖2 − 1 = 0. This quadratic cylinder is called the Blaschke cylinder. It holds that 
parallel tangent planes are then represented as points lying on the same generator (a line parallel to the x4-axis) of B. In 
what follows the map that sends a point in X to the tangent plane, i.e., a point in X ∗ , is called the Blaschke mapping and 
is denoted β .

Proposition 3.1. Any non-developable PN surface is the image of a rational surface on the Blaschke cylinder B via the mapping 
φ = δ−1 ◦ β .

Next, consider the generator line w of B containing the point w = (0, 0, 1, 0). Let I be the hyperplane x3 = 0 in R4, 
which is parallel to w . We use the new coordinate functions y1 = x1, y2 = x2, y3 = x4 and define the isotropic mapping

ι : B \ w → I, (x1, x2, x3, x4) �→ (y1, y2, y3) = 1

1 − x3
(x1, x2, x4). (10)

I is called the isotropic model of the dual space, see Fig. 1. Clearly, the tangent planes with the unit normal (0, 0, 1) do not 
have an image point in I . Other parallel tangent planes are represented as points on the same line parallel to the y3-axis; 
these lines are called the isotropic lines. By a direct computation one obtains

ι−1 : I → B \ w, (y1, y2, y3) �→ (x1, x2, x3, x4) = 1

1 + y2
1 + y2

2

(2y1,2y2,1 − y2
1 − y2

2,2y3). (11)
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Fig. 2. Curves with cusps and continuous tangent line. The support function (blue) is C∞ on the left and C1 on the right. The value of h + h′′ (radius of 
curvature) is displayed in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

All the above mentioned properties and mappings are summarized in the following proposition and diagram, which are 
essential for our method, see (12).

B ι

β
φ

I

ξ

θ

X δ X ∗

(12)

Corollary 3.2. Any non-developable PN surface is the image of a rational surface in I via the mapping ξ = φ ◦ ι−1 .

The effectiveness of the construction presented later is guaranteed by the following continuity result.

Proposition 3.3. Let y be a piecewise rational C1 surface in I . If x = ξ(y) is regular then it is a G1 piecewise rational surface with 
Pythagorean normals.

Proof. By the regularity of x we mean that at every point there is a suitable tangent plane so that the projection of the 
surface to this plane is a homeomorphism on some neighborhood of this point. This essentially means that we exclude 
the sharp edges (ridges). Conditions for the regularity are discussed in more detail in the paragraph following this proof. 
We have ξ = φ ◦ ι−1. The mapping ι (and its inverse) is a diffeomorphism which does not change the continuity. So the 
patch ι−1(y) on the Blaschke cylinder is clearly also C1. The mapping φ is given by formula (9), which contains the first 
order differentiation. For this reason the surface x = ξ(y) is only C0. However, in fact the continuity of ι−1(y) describes a 
continuous variation of a certain well defined plane. It is shown in Gravesen (2007) that if x is regular then the inversion 
of the projection to this plane is locally C1 which shows the global G1 continuity of x. �

As it has been noticed earlier (Peternell and Pottmann, 1996; Gravesen, 2007; Šír et al., 2008; Blažková and Šír, 2014)
despite the fact that the variation of the planes in the previous proposition is continuous, the resulting surface may some-
times exhibit sharp edges (ridges). To understand this phenomenon let us first investigate, for the sake of simplicity, two 
examples of planar curves, see Fig. 2. In this case h(n) is univariate and the function h + h′′ gives the oriented radius of 
curvature (Šír et al., 2008). If this expression vanishes the curve exhibits a cusp at which the curvature goes to infinity.

The first example is a part of a hypocycloid (Fig. 2, left) where the support function h(n) is perfectly smooth but still 
a cusp occurs. The second example (Fig. 2, right) shows two circle segments connected tangentially and producing a sharp 
jump in the signed curvature.
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Fig. 3. The Coons patch y(u, v) determined by (13).

A similar behavior can be described for surfaces. In this case the critical expression (corresponding to h + h′′) is the 
matrix function HessS2 h + hI , where HessS2 denotes the intrinsic Hessian with respect to the unit sphere S2 (the base of 
the Blaschke cylinder B) and I is the identity. In fact as shown in Šír et al. (2008), it holds that dxh = HessS2 h + hI , so 
this quantity allows us to control the features of the resulting surface. Vanishing of the det

(
HessS2 h + hI

)
or a jump in 

the signs of one its eigenvalues indicates the occurrence of a sharp edge. For practical modelling purposes let us remark, 
that a sharp edge typically occurs when the data from a surface with parabolic curves are interpolated. In other cases this 
phenomenon will disappear under subdivision. Furthermore, as our method is based on the construction of Coons patches 
with boundaries being Fergusson cubics determined by suitably chosen tangent vectors at given points in the isotropic space 
(see Section 4), it is theoretically also possible to avoid ridges by optimizing the lengths of the tangent vectors (which can 
serve as free modelling shape parameters, see Section 5) with a suitable objective function. One can for example use the 
function 

∫
�

det
(
HessS2 h + hI

)−2
dAS2 , where dAS2 is the area element on the sphere and � ⊂ S2 is the Gauss image of 

the constructed surface. In fact det
(
HessS2 h + hI

)−2 = K 2 and when minimizing its integral we can avoid the ridges at 
which the Gauss curvature K tends to infinity, see also Gravesen (2007).

4. Coons patches in the isotropic model and PN patches in the primal space

We will use rectangular patches throughout this paper. In order to construct a piecewise PN interpolation surface x in 
the primal space, we will consider rational patches in the isotropic model.

Suppose we are given four C1 continuous boundary curves c0(u), c1(u), d0(v), d1(v) in the isotropic space I which meet 
at the four corners

c0(0) = d0(0) = a00, c0(1) = d1(0) = a10, c1(0) = d0(1) = a01, c1(1) = d1(1) = a11, (13)

see Fig. 3. Then we can apply the construction of the so called bicubic Coons patch, see e.g. Farin (1988). It is a parametric 
surface y(u, v) : [0, 1] × [0, 1] →R

k (k = 3 in our case) determined by the identity

(
F0(u),−1, F1(u)

) ·
⎛
⎝ a00 d0(v) a01

c0(u) y(u, v) c1(u)

a10 d1(v) a11

⎞
⎠ · (F0(v),−1, F1(v)

)T = 0, (14)

where the blending functions F0, F1 are two of the basic cubic Hermite polynomials used in the construction of the Ferguson 
cubic, i.e., F0(t) = 2t3 − 3t2 + 1 and F1(t) = −2t3 + 3t2.

We recall that the matrix in (14) directly reflects the scheme in Fig. 3. Formula (14) ensures that the constructed patch 
interpolates all the given boundary curves c0(u), c1(u), d0(v), d1(v). Note that if only two tangent vectors at every point 
ai j instead of the whole boundary curves are given then one has to first construct some boundary curves via interpolating 
these points and vectors by the suitable C1 Hermite interpolation curves.

By a direct computation (Farin, 1988) it can be proved a fundamental property satisfied by the bicubically blended Coons 
patches.

Lemma 4.1. Two bicubic Coons patches sharing the same boundary curve and the same tangent vectors at the end points of the adjacent 
transversal boundary curves are connected with the C1 continuity.

From this lemma it follows one of the nicest application properties of the bicubic Coons construction. Specifically, given 
a network of curves, the global interpolating surface that one gets using the bicubic Coons construction is globally a C1

surface. Combined with Proposition 3.3 we obtain the fundamental theoretical result justifying our Hermite PN construction.

Proposition 4.2. Let y be a globally C1 continuous network of piecewise rational Coons patches in the space I . Then x = ξ(y) is a 
piecewise G1 surface with Pythagorean normals.
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The observations and results above allow us to design a simple construction algorithm which is essentially local. More 
precisely, for a given network of position data (points) and first order data (normals) we will construct a family of PN 
patches yielding a piecewise surface which is globally G1 continuous. Specifically, a modification of some of these data will 
modify only the adjacent patches.

Suppose we are given a network of the points pi, j with the associated unit normal vectors ni, j in the primal space, 
where i ∈ {0, 1, . . . , m} and j ∈ {0, 1, . . . , n}. Our goal is to construct a set of rational PN patches xi, j(u, v) for i ∈ {1, . . . , m}, 
j ∈ {1, . . . , n}. Each patch will be defined on the interval [0, 1] ×[0, 1] and will interpolate the corner points pi−1, j−1, pi, j−1, 
pi−1, j , pi, j together with the corresponding normals. Moreover the union of these patches x = ⋃

i, j xi, j is required to be 
globally G1 continuous.

Based on the theoretical results from the previous sections, we will construct the patches xi, j(u, v) as the images of the 
rational patches yi, j(u, v) in the isotropic space I , i.e.,

xi, j(u, v) = ξ(yi, j(u, v)). (15)

First, for each point we evaluate the support function hi, j = pi, j · ni, j , cf. (7). Next we obtain the corresponding network of 
points in the isotropic space I as

ai, j = ι(ni, j,hi, j). (16)

In order to apply the bicubic Coons patch construction, we need to construct boundary curves between the points ai, j . 
From the identity

n(u, v) · x(u, v) − h(u, v) = 0, (17)

it follows

(nu,hu) · (p,−1) = 0,

(nv ,hv) · (p,−1) = 0.
(18)

So, let us observe that any curve c(t) lying on the piecewise surface y such that c(t0) = ai, j must satisfy

[ J (ι−1)c′(t0)] · (pi, j,−1) = 0, (19)

where J (ι−1) denotes the Jaccobi matrix of the mapping ι−1. It means that the patch possessing ai, j as its corner point (in 
the isotropic space) must be tangent to the 2-plane τi, j given as

τi, j = {v : [ J (ι−1)v] · (pi, j,−1) = 0} (20)

at this point.
Let us stress out that the original PN interpolation problem (prescribed points and normal vectors, i.e., tangent planes) in 

the primal space was difficult to solve. Using the methods presented above we have transformed it to the same kind of the 
interpolation problem (prescribed points and normal vectors, i.e., tangent planes), now in the isotropic space I . However, 
after the transformation we do not have to care about the PN property – this property is now obtained for free.

Remark 4.3. One limitation of the presented method should be noted. As the north pole w, see Fig. 1, is the center of 
the stereographic projection, the points on the unit sphere S2 (the unit normals ni, j ) must be suitably distributed. In 
other words, the Gauss image of the interpolating surface cannot contain w. This means that in some cases a preliminary 
coordinate transformation is needed.

Let us also remark that one can alternatively interpolate the Gauss image (given data ni, j ) and the support function (data 
hij computed from given data ni, j and pi, j ) separately, cf. Gravesen (2007). Firstly, one interpolates data ni, j by a piecewise 
rational C1 surface on S2, see e.g. Alfeld et al. (1996). Then using (18) we arrive at the values of the partial derivatives hu , 
hv at the points pi, j and computing e.g. one-dimensional Coons patches we arrive at the piecewise C1 function h(u, v). The 
sought PN parameterization is obtained just by switching from the dual to the primary space. For the sake of lucidity we 
prefer to apply the isotropic model as this approach is more illustrative and needs less steps.

5. PN patches interpolating given data

To start the Coons construction in I , we must first construct curves ci, j(u) connecting the points ai, j and ai+1, j and 
curves di, j(v) connecting the points ai, j and ai, j+1, simultaneously satisfying the condition that they are tangent to the 
planes τi, j at each of the two boundary points. Clearly, any arbitrary curve fulfilling these constraints may be considered as 
one of the input boundary curves for scheme (14). For the sake of simplicity we can, for instance, take the Ferguson cubics 
interpolating with C1 continuity the given points and some suitably chosen associated boundary vectors. Other possible 
polynomial curves of low parameterization degree, which can be easily used, might be e.g. parabolic biarcs.



82 M. Lávička et al. / Computer Aided Geometric Design 48 (2016) 75–85
Fig. 4. A net of points in I – corner points (red), non-corner boundary points (blue) and inner points (green). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

We have considered the following boundary vectors at the points from the network in I , which represent a natural 
choice for the tangent vectors of the boundary curves:

• for an inner point ai, j (see Fig. 4, green) we have taken the projections of the difference vectors ai+1, j − ai−1, j and 
ai, j+1 − ai, j−1 into the tangent plane τi, j ;

• for a non-corner point ai,0, or ai,n on the u-boundary (see Fig. 4, blue) we have taken the projections of the difference 
vectors ai+1,0 − ai−1,0 and 2(ai,1 − ai,0), or ai+1,n − ai−1,n and 2(ai,n − ai,n−1), respectively, into the tangent plane τi,0, 
or τi,n , respectively;

• in a similar way, for a non-corner point a0, j , or an, j on the v-boundary (see Fig. 4, blue) we have taken the projections 
of the difference vectors 2(a1, j − a0, j) and a0, j+1 − a0, j−1, or 2(an, j − an−1, j) and an, j+1 − an, j−1, respectively, into the 
tangent plane τ0, j , or τn, j , respectively;

• for the corner point a0,0 (see Fig. 4, red) we have taken the projections of the difference vectors 2(a1,0 − a0,0) and 
2(a0,1 − a0,0) into the tangent plane τ0,0, for the corner point an,0 we have taken the projections of the difference 
vectors 2(an,0 − an−1,0) and 2(an,1 − an,0) into the tangent plane τn,0, for the corner point a0,n we have taken the 
projections of the difference vectors 2(a1,n − a0,n) and 2(a0,n − a0,n−1) into the tangent plane τ0,n , and for the corner 
point an,n we have taken the projections of the difference vectors 2(an,n − an−1,n) and 2(an,n − an,n−1) into the tangent 
plane τn,n .

Of course, the lengths of the chosen vectors can be easily modified and serve as possible modelling shape parameters. 
This is useful, for instance, when we want to avoid ridges by optimizing these lengths with respect to a suitable objective 
function, cf. the final paragraph in Section 3. Subsequently, we construct the rational patches yi, j using formula (14) and 
applying ξ we obtain the patches xi, j and thus the sought piecewise smooth PN surface x.

In what follows we will show the functionality of the designed algorithm on a particular example. We will demonstrate 
the whole technique on one macro-element consisting of nine ordered points with the associated normals, i.e., a smooth 
surface consisting of four PN patches is constructed. For a bigger network the process will be the same, as the designed 
method is strictly local.

Example 5.1. Let be given a network of the points pi, j

(pi, j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(0,0,0)
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72
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) (
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)
(
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) (
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36
,− 7

36
,0

) (
23
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36
,−1
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)
(

2

9
,0,

1

3

) (
11

36
,−23

72
,

1

4

) (
5

9
,−5

9
,0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(21)

with the associated (non-unit) normal vectors ni, j

(ni, j) =
⎛
⎜⎝

(0,0,−1) (0,4,−3) (0,1,0)

(4,0,−3) (2,2,−1) (4,8,1)

(1,0,0) (8,4,1) (2,2,1)

⎞
⎟⎠ , (22)

where i, j = 0, 1, 2, see Fig. 5.
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Fig. 5. A network of given points pi, j with the associated normal directions ni, j .

Fig. 6. 4 corner points (red), 4 non-corner boundary points (blue), 1 inner point (green) in I with the associated tangent vectors of the boundary curves 
spanning the tangent planes τi j , and the constructed Fergusson cubics (orange). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 7. A smooth piecewise interpolation surface consisting of four PN patches.

Using (16) we find the nine points ai, j (4 corner points, 4 non-corner boundary points, 1 inner point) in I , see Fig. 6, 
with the associated tangent vectors of the boundary curves obtained by the approach from the beginning of this section. 
Next, we construct 12 Fergusson cubics, see Fig. 6, as the input boundary curves for the bicubic Coons construction.

After computing the four bicubic Coons patches and applying the mapping ξ on each of them we obtain a smooth 
piecewise PN surface (given by PN parameterizations of each patch) interpolating given Hermite data, see Fig. 7. Finally, 
computations show that det

(
HessS2 h + hI

) = 0 at all points so no sharp edges occur for given data, cf. Section 3.

Remark 5.2. One of the advantages of the designed method (based on exploiting the Coons patches) is the possibility to use 
the length of the tangent vectors in the isotropic space as free construction parameters (as already mentioned at the end 
of Section 3). Fig. 8 shows how a suitable choice of these vectors can improve the resulting patch and helps to avoid the 
ridges.

Remark 5.3. A natural question is why not to use the Coons (or some other boundary-curves) construction already in the 
primal space. A possible way could be for instance to prescribe some boundary curves satisfying given data, construct a 
patch given by this boundary and then to modify suitably the obtained patch (simultaneously preserving the conditions 
at the boundary) to gain a new patch which is PN. However, this construction assumes a necessary requirement that the 
prescribed curves must be PSN, i.e., curves on the surfaces along which the surface admits Pythagorean normals, cf. Vršek 
and Lávička (2014). Using the dual approach and the isotropic model for this is considerably simpler.
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Fig. 8. PN patches interpolating the same boundary data. A suitable choice of the tangent vectors leads to a smooth patch (right), while some choices may 
produce ridges (left).

6. Conclusion

The main goal of this paper was to present a simple functional algorithm for computing piecewise Hermite interpolation 
surfaces with rational offsets. The obtained PN surface interpolates a set of given points with associated normal directions. 
The isotropic model of the dual space was used for formulating the algorithm. This setup enables us to apply the standard 
bicubic Coons construction in the dual space for obtaining the interpolation PN surface in the primal space. The presented 
method is completely local and yields a surface with G1 continuity. Moreover the method solves the PN interpolation 
problem directly, i.e., without the need for any subsequent reparameterization, which must be always followed by trimming 
of the parameter domain. Together with its simplicity, this is a main advantage of the designed technique. It can be used by 
designers anytime when surfaces with rational offsets are required for modelling purposes.
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