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For a given totally positive space of continuous functions, we analyze the construction of
totally positive bases of the space of antiderivatives. If the functions of the totally positive
space have continuous derivatives, normalization properties can be used to describe totally
positive bases of the space of derivatives and relate them with properties of the Greville
abscissae.
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1. Introduction

Integral recurrence formulae for B-splines have been often used in the past. The definition of B-spline as a divided 
difference of a truncated power function and the Hermite–Gennochi formula lead to integral recursions. One of the first 
papers where it is observed that the sequence of B-spline bases can be obtained by successive integration in the general 
context of Chebyshevian splines is Bister and Prautzsch (1997). Bernstein polynomials as well as many other examples of 
totally positive bases in extended Chebyshev spaces are included in this setting.

Totally positive bases (TP) are bases whose collocation matrices have nonnegative minors. This kind of bases are com-
monly used in computer-aided design due to their shape preserving properties (see Goodman, 1996). Among all normalized 
TP bases of a space, we can find normalized B-bases, which are the optimal shape preserving bases (cf. Carnicer and Peña, 
1994).

Spaces containing algebraic polynomials and trigonometric or hyperbolic functions have attracted much interest in the 
field of computer-aided geometric design (Zhang, 1996; Mainar et al., 2001). In Chen and Wang (2003), integral constructions 
of Bernstein-like basis for cycloidal spaces

Cn = 〈cos t, sin t,1, t, . . . , tn−2〉
have been provided. In Costantini et al. (2005), such constructions are discussed in a more general setting, showing that the 
integral constructions provide TP bases. In particular, the normalized B-basis is expressed using integrals of a B-basis of the 
space of derivatives.

Greville abscissae are the coefficients of the function t with respect to a given basis and play a fundamental role in the 
definition of Bernstein-like operators in spaces of exponential polynomials (cf. Aldaz et al., 2009).
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In this paper, the construction of TP bases for the space of antiderivatives of a given space of continuous functions with 
a TP basis is analyzed. We also describe TP bases of the space of derivatives, whose normalization is related with properties 
of the Greville abscissae.

In contrast to other approaches, we do not require that the spaces with TP bases are extended Chebyshev or piecewise 
extendend Chebyshev spaces. In Mazure (2009), similar problems on integral constructions, derivative spaces and Greville 
abscissae are analyzed with powerful techniques, under the hypothesis that the space of derivatives is extended Chebyshev. 
In Section 7 of Mazure (2009), the question of extending the results to a more general context is explored. In Mazure
(2011), piecewise Chebyshev spaces are analyzed using knot insertion techniques. In our approach, we deal not only with 
the normalized B-basis and we show that the integral or derivative constructions can be applied to the more general class 
of TP bases.

In Section 2, we describe integral constructions of normalized TP bases and normalized B-bases. The construction of 
TP bases and B-bases of the space of derivatives is presented in Section 3. In Section 4, we consider shape preserving 
representations of curves and we obtain a derivative formula of the curve involving the Greville abscissae. This formula 
relates the normalized B-basis of a given space with that of the space of derivatives. We also include examples illustrating 
that the integral constructions are valid even when the starting space is not extended Chebyshev. In Section 5, we show 
the equivalence of the existence of a normalized TP basis in the space of derivatives with the fact that Greville abscissae 
of shape preserving representations with the endpoint interpolation property are increasing. In Section 6, we present some 
applications, including sufficient conditions for Bernstein-like operators to be convexity preserving. Finally, we obtain a 
generalization of Theorem 25 of Aldaz et al. (2009) for general cycloidal spaces, deriving conditions on the length of the 
interval domain to ensure that the Greville abscissae of the normalized B-basis (corresponding to the nodes of the associated 
Bernstein operator) are strictly increasing.

2. Integral constructions with totally positive bases

Let us denote by D : f ∈ C1[a, b] �→ f ′ ∈ C[a, b] the derivative operator. For a given space of functions U ⊂ C[a, b], we 
introduce the space

D−1U := {v ∈ C1[a,b] | v ′ ∈ U }.
Observe that ker D is the one dimensional space of constant functions. Hence, if dim U = n, then D−1U contains the constant 
functions and dim D−1U = n + 1.

Definition 1. A matrix is totally positive (TP) if all its minors are nonnegative. A system of functions (u0, . . . , un) defined on 
the subset I ⊆ R is totally positive (TP) if all its collocation matrices

M
(u0, . . . , un

t0, . . . , tn

)
:= (u j(ti))i, j=0,...,n, t0 < · · · < tn in I

are TP. A TP system of functions on I is normalized (NTP) if 
∑n

i=0 ui(t) = 1, for all t ∈ I .

In the following result we show how to construct a TP system of functions in D−1U , starting from a TP system of 
functions in U .

Proposition 2. Let U be an n-dimensional subspace of C[a, b]. If (u0, . . . , un−1) is a TP system of functions in U , then the system 
( f0, . . . , fn) defined by

f0(t) := 1, f i(t) :=
t∫

a

ui−1(x)dx, i = 1, . . . ,n, t ∈ [a,b], (1)

is TP. Moreover, if (u0, . . . , un−1) is a TP basis of U , then ( f0, . . . , fn) is a TP basis of D−1U .

Proof. In order to prove the total positivity of ( f0, . . . , fn), it is sufficient to show that

d := det M
( f i0 , . . . , f ik

t0, . . . , tk

)
≥ 0,

for every i0 < · · · < ik in {0, . . . , n} and all t0 < · · · < tk in I . First let us analyze the case i0 �= 0. Subtracting to each row of 
the matrix M

(
f i0 ,..., f ik
t0,...,tk

)
the previous one, taking into account the multilinearity of the determinant and the total positivity 

of (u0, . . . , un−1), we deduce that
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d = det

⎛
⎜⎜⎜⎜⎝

∫ t0
a ui0−1(x)dx · · · ∫ t0

a uik−1(x)dx∫ t1
t0

ui0−1(x)dx · · · ∫ t1
t0

uik−1(x)dx
...

. . .
...∫ tk

tk−1
ui0−1(x)dx · · · ∫ tk

tk−1
uik−1(x)dx

⎞
⎟⎟⎟⎟⎠

=
t0∫

a

t1∫
t0

· · ·
tk∫

tk−1

det M
(ui0−1, . . . , uik−1

s0, . . . , sk

)
dsk · · ·ds1ds0 ≥ 0.

The case i0 = 0 follows analogously

d = det

⎛
⎜⎜⎝

∫ t1
t0

ui1−1(x)dx · · · ∫ t1
t0

uik−1(x)dx
...

. . .
...∫ tk

tk−1
ui1−1(x)dx · · · ∫ tk

tk−1
uik−1(x)dx

⎞
⎟⎟⎠

=
t1∫

t0

· · ·
tk∫

tk−1

det M
(ui1−1, . . . , uik−1

s1, . . . , sk

)
dsk · · ·ds1 ≥ 0.

Therefore ( f0, . . . , fn) is TP.
Now, assume that (u0, . . . , un−1) is a basis of U . Let c0, . . . , cn be such that 

∑n
i=0 ci f i(t) = 0. Differentiating, we have 

that 
∑n

i=1 ciui−1(t) = 0. By the linear independence of (u0, . . . , un−1), c1 = · · · = cn = 0 and then c0 = c0 f0 = 0. Therefore 
( f0, . . . , fn) are linearly independent. Taking into account that dim D−1U = n + 1, it follows that ( f0, . . . , fn) is a TP basis of 
D−1U . �

Let T , S, R be subsets of the real line and μ be a Borel measure. If K : T × S → R and L : S × R → R are two kernels such 
that K (t, s)L(s, r) are μ-integrable on s ∈ S for each t ∈ T , r ∈ R , the composition M : T × R → R is defined by

M(t, r) :=
∫
S

K (t, s)L(s, r)dμ(s).

The basic composition formula (2.5) of Section 2 of Chapter 1 of Karlin (1968) can be written as

det(M(ti, rk))
m
i,k=1 =

∫
s1<···<sm

det(K (ti, s j))
m
i, j=1 det(L(s j, rk))

m
j,k=1dμ(s1) · · ·dμ(sm).

Let us observe that the expansions of the determinants as multiple integrals in the proof of Proposition 2 can be regarded 
as a particular case, taking T = [a, b], S = [a, b], R = {0, . . . , n − 1}, K (t, s) = (t − s)0+ and L(s, i) = ui(s). Then the total 
positivity of the system ( f0, . . . , fn) in (1) follows from the total positivity of the Heaviside kernel K (t, s) = (t − s)0+ .

The following results summarize some properties of totally positive systems that can be found in Lemma 2.1 and 
Lemma 2.2 (i) of Carnicer and Peña (1994).

Lemma 3. Let (u0, . . . , un) be a TP system of functions defined on I ⊆ R.

(a) The function u j(t)/ui(t), defined on Ii := {t ∈ I | ui(t) �= 0}, is nondecreasing for any j > i.
(b) Let t0 ∈ I be such that ui(t0) = 0 for some i ∈ {0, . . . , n}. Then either ui(t) = 0 for all t ≤ t0 or u j(t0) = 0 for all j ≥ i.

In Carnicer and Peña (1994), special TP bases called B-bases were introduced.

Definition 4. A system (b0, . . . , bn) of linearly independent functions defined on I is a B-basis if it is TP and

inf
{ bi(t)

b j(t)
| t ∈ I,b j(t) �= 0

}
= 0, ∀ i �= j in {0, . . . ,n}. (2)

In Carnicer and Peña (1994), it was shown that each finite dimensional space with a TP basis has a B-basis. Let us state 
the following result on NTP bases corresponding to Theorem 4.2 of Carnicer and Peña (1994).
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Theorem 5. Let U be a vector space of functions defined on an interval with an NTP basis. Then

(i) There exists a unique NTP B-basis (b0, . . . , bn).
(ii) A basis (u0, . . . , un) = (b0, . . . , bn)K of U is NTP if and only if the matrix K of change of basis is TP and stochastic.

Relevant examples of normalized B-bases are the Bernstein basis and the B-spline basis.
In Proposition 2.6 of Carnicer and Peña (1994), two TP bases were related by means of a lower triangular matrix L

of change of basis. This result was obtained by applying Proposition 2.5 of Carnicer and Peña (1994) to a reordered basis 
with an upper triangular matrix of change of basis. We restate Proposition 2.6 of Carnicer and Peña (1994) adding extra 
information on the lower triangular matrix L. This information can be obtained from the proof of Proposition 2.5 of Carnicer 
and Peña (1994), where the matrix of change of basis is the inverse of a bidiagonal matrix.

Proposition 6. Let (v0, . . . , vn) be a TP system of linearly independent functions on a subset I ⊆ R. Then there exists a TP system 
(b0, . . . , bn) such that

(v0, . . . , vn) = (b0, . . . ,bn)L,

where L is a lower triangular TP matrix with unit diagonal whose inverse L−1 is a bidiagonal matrix and

inf
{ bi(t)

bn(t)
| t ∈ I,bn(t) �= 0

}
= 0, i = 0, . . . ,n − 1.

The following result is a key tool to relate a B-basis of U with the normalized B-basis of D−1U .

Theorem 7. Let (u0, . . . , un−1) be a TP basis of a space U in C[a, b] such that

b∫
a

ui(x)dx = 1, i = 0, . . . ,n − 1. (3)

Let us define

u1
0(t) := 1 −

t∫
a

u0(x)dx,

u1
k (t) :=

t∫
a

(uk−1(x) − uk(x))dx, k = 1, . . . ,n − 1, (4)

u1
n(t) :=

t∫
a

un−1(x)dx.

Then (u1
0, . . . , u

1
n) is an NTP basis of D−1U . Moreover, if (u0, . . . , un−1) is a B-basis of U , then (u1

0, . . . , u
1
n) is the normalized B-basis 

of D−1U .

Proof. By Proposition 2, the system ( f0, . . . , fn) given by (1) is TP. Taking into account (3), we deduce that fk(b) = 1, 
k = 0, . . . , n. By Proposition 6, there exists a lower triangular TP matrix with unit diagonal L whose inverse is bidiagonal 
such that

(b0, . . . ,bn) = ( f0, . . . , fn)L−1

is a TP basis of D−1U satisfying

inf{bi(t)/bn(t) | t ∈ [a,b],bn(t) �= 0} = 0, i = 0, . . . ,n − 1.

Let us observe that bn(t) = ∫ t
a un−1(x)dx is a nonnegative nondecreasing continuous function with bn(b) = ∫ b

a un−1(x)dx = 1. 
Therefore

{t ∈ [a,b] | bn(t) �= 0} = (αn,b]
for some αn ∈ (a, b]. Using Lemma 3 (a), we deduce from the total positivity of (b0, . . . , bn) that the functions bi(t)/bn(t)
are nonincreasing on t ∈ (αn, b], i = 0, . . . , n − 1. Therefore
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0 = inf
t∈(αn,b]

bi(t)

bn(t)
= bi(b)

bn(b)
,

and bi(b) = 0 for all i = 0, . . . , n − 1. Since the matrix L−1 = (l̂i j)0≤i, j≤n is a lower triangular and bidiagonal matrix with 
unit diagonal, we have

bk−1(t) = fk−1(t) + l̂k,k−1 fk(t), k = 1, . . . ,n.

Evaluating at t = b, we deduce that

0 = bk−1(b) = fk−1(b) + l̂k,k−1 fk(b) = l̂k,k−1 + 1, k = 1, . . . ,n,

and l̂k,k−1 = −1, k = 1, . . . , n. Therefore the system (u1
0, . . . , u

1
n) defined in (4) coincides with the TP basis (b0, . . . , bn) of the 

space D−1U . We observe that

n∑
k=0

u1
k (t) = 1 +

t∫
a

[
− u0(t) +

n−1∑
k=1

(uk−1(t) − uk(t)) + un−1(t)
]
dt = 1

and the system is a NTP basis of D−1U .
Let us assume that (u0, . . . , un−1) is a B-basis. Let

Ik := {t ∈ [a,b] | uk(t) �= 0}, k = 0, . . . ,n − 1,

and

I1
k := {t ∈ [a,b] | u1

k (t) �= 0}, k = 0, . . . ,n.

From (2), it is sufficient to show that inft∈I1
j

u1
i (t)/u1

j (t) = 0 for all i �= j. Let us first assume that j = 0. By Lemma 3 (a), 

u1
i /u1

0 is nondecreasing. Since u1
0(a) = 1, we have a ∈ I1

0. Hence

inf
t∈I1

0

u1
i (t)

u1
0(t)

= u1
i (a)

u1
0(a)

= 0.

Now, let us consider the case, where i > j > 0. By Lemma 3 (a), uk/u j−1 are nondecreasing functions on I j−1 with 
inft∈I j−1 uk(t)/u j−1(t) = 0, for all k ≥ j. Then, for any ε > 0, there exists τ ∈ I j−1 such that

uk(t)

u j−1(t)
≤ ε for all t ≤ τ in I j−1, k ≥ j.

Using Lemma 3 (b), we have that uk(t) = 0 if u j−1(t) = 0, t ≤ τ , and we deduce that

0 ≤ uk(t) ≤ εu j−1(t), u j−1(t) − uk(t) ≥ (1 − ε)u j−1(t), t ≤ τ , k ≥ j.

Taking k = j, we have that

u1
j (τ ) =

τ∫
a

(u j−1(x) − u j(x))dx ≥ (1 − ε)

τ∫
a

u j−1(x)dx.

The integral 
∫ τ

a u j−1(x)dx > 0 because u j−1 ≥ 0 is continuous and u j−1(τ ) > 0. So u1
j (τ ) > 0, which implies that τ ∈ I1

j . We 
also deduce that

u1
i (τ ) ≤ ε

τ∫
a

u j−1(x)dx.

Thus u1
i (τ )/u1

j (τ ) ≤ ε/(1 − ε). Taking ε arbitrarily small, we deduce that inft∈I1
j

u1
i (t)/u1

j (t) = 0. If j = n, then u1
i /u1

n is 

nonincreasing by Lemma 3 (a). By (3), u1
n(b) = ∫ b

a un−1(x)dx = 1 and b ∈ I1
n . So, we have that

inf
t∈I1

n

u1
i (t)

u1
n(t)

= u1
i (b)

u1
n(b)

= 0.

Finally, we deal with the remaining case i < j < n. By Lemma 3 (a), uk/u j are nonincreasing functions on I j with 
inft∈I j uk(t)/u j(t) = 0, for all k ≤ j − 1. Then, there exists σ ∈ I j such that
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uk(t)

u j(t)
≤ ε for all t ≥ σ in I j, k ≤ j − 1.

Using Lemma 3 (b), we have that uk(t) = 0 if u j(t) = 0, t ≥ σ , and we deduce that

0 ≤ uk(t) ≤ εu j(t), u j(t) − uk(t) ≥ (1 − ε)u j(t), t ≥ σ , k ≤ j − 1.

Therefore we have that

u1
j (σ ) =

b∫
σ

(u j(x) − u j−1(x))dx ≥ (1 − ε)

b∫
σ

u j(x)dx.

The integral 
∫ b
σ u j(x)dx > 0 because u j ≥ 0 is continuous and u j(σ ) > 0. So u1

j (σ ) > 0, which implies that σ ∈ I1
j . We also 

deduce the following inequality

u1
i (σ ) ≤ ε

b∫
σ

u j(x)dx.

Thus u1
i (σ )/u1

j (σ ) ≤ ε/(1 − ε). Taking ε arbitrarily small, we deduce that inft∈I1
j

u1
i (t)/u1

j (t) = 0. �
In Theorem 7 we have used a basis with the normalization property (3). Let us extend the above result for arbitrary TP 

bases.

Corollary 8. Let (u0
0, . . . , u

0
n−1) be a TP basis of a space U in C[a, b]. Then 

∫ b
a u0

i (x)dx > 0, for i = 0, . . . , n − 1. Let us define

u1
0(t) := 1 − w0

t∫
a

u0
0(x)dx,

u1
k (t) := wk−1

t∫
a

u0
k−1(x)dx − wk

t∫
a

u0
k (x)dx, k = 1, . . . ,n − 1, (5)

u1
n(t) := wn−1

t∫
a

u0
n−1(x)dx,

where

wi := 1∫ b
a u0

i (x)dx
, i = 0, . . . ,n − 1. (6)

Then (u1
0, . . . , u

1
n) is an NTP basis of D−1U . Moreover, if (u0

0, . . . , u
0
n−1) is a B-basis of U then (u1

0, . . . , u
1
n) is the normalized B-basis 

of D−1U .

Proof. Since u0
i ≥ 0 are nonzero continuous functions, 

∫ b
a u0

i (x)dx > 0, i = 0, . . . , n − 1. So, the constants w0, . . . , wn−1 de-
fined by (6) are positive. Let ui := wiu0

i , i = 0, . . . , n − 1. Then (u0, . . . , un−1) is a TP basis of U satisfying (3). By Theorem 7, 
(u1

0, . . . , u
1
n) is an NTP basis of D−1U .

If (u0
0, . . . , u

0
n−1) is a B-basis, so is (w0u0

0, . . . , wn−1u0
n−1) and hence, by Theorem 7, (u1

0, . . . , u
1
n) is the normalized 

B-basis. �
3. B-bases of the space of derivatives

In the following result, we show how to obtain a TP basis of the space of derivatives DU , by combining the derivatives 
of an NTP basis of U .

Theorem 9. Let U be a subspace of C1[a, b], dim U = n + 1 ≥ 2, with an NTP basis (u0, . . . , un). Then

vi(t) :=
n∑

u j(t), t ∈ [a,b], i = 0, . . . ,n,
j=i
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is a TP basis of U and (v ′
1, . . . , v

′
n) is a TP basis of DU . Moreover, if (u0, . . . , un) is the normalized B-basis of U , then (v ′

1, . . . , v
′
n) is a 

B-basis of DU .

Proof. Let En+1 be the lower triangular (n + 1) × (n + 1) TP matrix

En+1 :=

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

1 1
. . .

...
...

...
. . . 0

1 1 · · · 1

⎞
⎟⎟⎟⎟⎠ .

By the Cauchy–Binet formula (see page 1 of Karlin, 1968),

(v0, . . . , vn) = (u0, . . . , un)En+1,

is a TP system. Since En+1 is nonsingular, (v0, . . . , vn) is a TP basis of U . Hence v ′
0, . . . , v

′
n generate DU . Since v ′

0 = 0, we 
have that (v ′

1, . . . , v
′
n) is a basis of DU . Given a ≤ t1 < · · · < tn < b, we consider the TP matrix

M
( v0, . . . , vn

t1, t1 + h, t2, t2 + h, . . . , tn, tn + h

)
, 0 < h < b − tn.

By subtracting to each row of the above matrix the previous row, we obtain a matrix of the form(
1 ∗
0 M

)
,

where M is a (2n − 1) × n matrix. From Proposition 3.2 of Carnicer and Peña (1993), we have that M is a TP matrix. We 
extract the rows with odd index and deduce that the n × n matrix

h−1

⎛
⎜⎜⎜⎝

v1(t1 + h) − v1(t1) · · · vn(t1 + h) − vn(t1)

v1(t2 + h) − v1(t2) · · · vn(t2 + h) − vn(t2)
...

. . .
...

v1(tn + h) − v1(tn) · · · vn(tn + h) − vn(tn)

⎞
⎟⎟⎟⎠

is TP. Taking limits as h → 0+ , we obtain the TP matrix

M
( v ′

1, . . . , v ′
n

t1, t2, . . . , tn

)

and deduce that (v ′
1, . . . , v ′

n) is TP on [a, b). Since the functions v ′
1, . . . , v ′

n are continuous, we can take limits as tn → b− in 
the matrices above to obtain that (v ′

1, . . . , v ′
n) is a TP system on [a, b].

Let us now assume that (u0, . . . , un) is the normalized B-basis of U . Let (g0, . . . , gn−1) be a TP basis of DU . Let us con-
struct (g1

0, . . . , g1
n) from the basis (g0, . . . , gn−1) as in (5). By Corollary 8, (g1

0, . . . , g1
n) is an NTP basis of U . By Theorem 5 (ii), 

there exists a stochastic TP matrix K such that

(g1
0, . . . , g1

n) = (u0, . . . , un)K .

Then we have that

(g1
0, . . . , g1

n)En+1 = (u0, . . . , un)K En+1 = (v0, . . . , vn)E−1
n+1 K En+1. (7)

Observe that, by the Cauchy–Binet formula (cf. page 1 of Karlin, 1968), K En+1 is a TP matrix. The first column of K En+1 is 
(1, . . . , 1)T because K is stochastic. Subtracting to each row the previous one, we obtain the matrix

E−1
n+1 K En+1 =

(
1 ∗
0 K1

)
,

which is TP by Proposition 3.2 of Carnicer and Peña (1993). Differentiating in (7), we deduce that

(0, g0, . . . , gn−1) = (0, v ′
1, . . . , v ′

n)E−1
n+1 K En+1,

or equivalently (g0, . . . , gn−1) = (v ′
1, . . . , v

′
n)K1. So, we have shown that each TP basis of DU can be expressed as 

(v ′
1, . . . , v

′
n)K1, where K1 is TP. By Proposition 3.11 of Carnicer and Peña (1994), (v ′

1, . . . , v
′
n) is a B-basis. �

The following result extends Theorem 9 to obtain different normalizations of TP bases of the space of derivatives.
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Corollary 10. Let U be a subspace of C1[a, b], dim U = n + 1 ≥ 2 with an NTP basis (u1
0, . . . , u

1
n). Let w0, . . . , wn−1 be a sequence of 

positive numbers. Then the system of functions (u0
0, . . . , u

0
n−1) defined by

u0
i (t) := 1

wi

n∑
j=i+1

(u1
j )

′(t), t ∈ [a,b], i = 0, . . . ,n − 1, (8)

is a TP basis of DU . Moreover, if (u1
0, . . . , u

1
n) is the normalized B-basis of U , then (u0

0, . . . , u
0
n−1) is a B-basis of DU .

Proof. Let ui(t) := ∑n
j=i+1(u1

j )
′(t), i = 0, . . . , n − 1. By Theorem 9, (u0, . . . , un−1) is a TP basis. Therefore the basis 

(u0
0, . . . , u

0
n−1) defined in (8) is also TP. Again by Theorem 9, if (u1

0, . . . , u
1
n) is the normalized B-basis of U , then 

(u0
0, . . . , u

0
n−1) is a B-basis of DU . �

As a consequence of Corollary 8 and Corollary 10, we deduce the following generalization of Theorem 4.1 of Carnicer 
et al. (2004).

Theorem 11. Let U be a subspace of C1[a, b], dim U = n + 1 ≥ 2, such that 1 ∈ U . Then U has an NTP basis if and only if DU has a TP 
basis.

4. Derivatives of curve representations

A parametric curve can be represented in terms of a basis of nonnegative functions (u0, . . . , un) in the form

γ (t) =
n∑

i=0

Piui(t), t ∈ [a,b],

where P0, . . . , Pn ∈ R
s . The polygon P0 · · · Pn is called the control polygon of γ . It is usually required the normalization 

property 
∑n

i=0 ui(t) = 1. In this case the representation is affine invariant and has the convex hull property.
The endpoint interpolation property of a curve representation means that γ (a) = P0 and γ (b) = Pn . It is easy to verify 

that the endpoint interpolation property is equivalent to the fact that

ui(a) = δi,0, ui(b) = δi,n, i = 0, . . . ,n, (9)

where δi, j is the usual Kronecker symbol.
A representation of a curve is shape preserving if the shape properties of the curve γ are inherited from corresponding 

shape properties of its control polygon. Shape preserving representations are associated with NTP bases (cf. Goodman, 1996;
Carnicer and Peña, 1993).

The analysis of geometric features of the curves demands the computation of the derivative of a curve. Many shape 
preserving representations corresponding to smooth bases have a formula for the derivative in terms of the sides �Pi =
Pi+1 − Pi , i = 0, . . . , n − 1. For obtaining such a formula, the following identity

n∑
i=0

ciui = c0

n∑
i=0

ui +
n−1∑
i=0

(ci+1 − ci)

n∑
j=i+1

u j, for any c0, . . . , cn, u0, . . . , un ∈ R,

known as Abel’s Lemma, can be used. Our purpose is to show that this kind of formula arises in each shape preserving 
representation.

Proposition 12. Let U be a subspace of C1[a, b], dim U = n + 1 ≥ 2 with an NTP basis (u1
0, . . . , u

1
n). Let w0, . . . , wn−1 be a sequence 

of positive numbers and let (u0
0, . . . , u

0
n−1) be the TP basis defined by (8). Then the derivative of the curve γ (t) = ∑n

i=0 Piu1
i (t), 

t ∈ [a, b], can be expressed by the formula

γ ′(t) =
n−1∑
i=0

wi�Piu
0
i (t), t ∈ [a,b].

Proof. By Abel’s Lemma and the fact that 
∑n

j=0 u1
j (t) = 1, it follows that

γ (t) = P0

n∑
j=0

u1
j (t) +

n−1∑
i=0

�Pi

n∑
j=i+1

u1
j (t) = P0 +

n−1∑
i=0

�Pi

n∑
j=i+1

u1
j (t).

Taking into account that wi u0(t) is the derivative of 
∑n

j=i+1 u1(t), we may differentiate and obtain the desired formula. �
i j
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We now introduce Greville abscissae and show how they can be used to find a normalized basis of the space of deriva-
tives and relate the control polygons of a curve and its derivative with respect to two normalized bases.

Definition 13. Let U be a space of continuous functions on [a, b] and let (u0, . . . , un) be a basis of nonnegative functions 
of U such that 

∑n
i=0 ui(t) = 1, t ∈ [a, b]. If the function t belongs to U , the Greville abscissae with respect to the basis 

(u0, . . . , un) are defined as the unique coefficients t0, . . . , tn in the expansion t = ∑n
i=0 tiui(t).

The Greville abscissae can be used to represent geometrically a control polygon for the graph of a function u =∑n
i=0 ciui(t). From the formula

(
t

u(t)

)
=

n∑
i=0

(
ti
ci

)
ui(t),

we see that the control points of the graph are (ti, ci)
T , i = 0, . . . , n.

Observe that, if U and DU are spaces with NTP bases on [a, b], then U contains all polynomials of degree less than or 
equal to 1, that is, 1, t ∈ U .

Among all shape preserving representations there exists an optimal one, where the curve best imitates the shape of its 
control polygon. The normalized B-basis provides this optimal shape preserving representation, as shown in Carnicer and 
Peña (1994). Let us show that a derivative formula involving the Greville abscissae relates the normalized B-bases of both 
spaces.

Theorem 14. Let U be a subspace of C1[a, b], dim U = n + 1 ≥ 2, with an NTP basis (u1
0, . . . , u

1
n). Assume that t ∈ U and that the 

Greville abscissae with respect to the basis (u1
0, . . . , u

1
n) form a strictly increasing sequence

t0 < t1 < · · · < tn. (10)

Then the derivative of γ (t) = ∑n
i=0 Piu1

i (t) is given by

γ ′(t) =
n−1∑
i=0

1

ti+1 − ti
�Piu

0
i (t), (11)

where

u0
i (t) := (ti+1 − ti)

n∑
j=i+1

(u1
j )

′(t), t ∈ [a,b], i = 0, . . . ,n − 1, (12)

is an NTP basis of DU . Furthermore, if (u1
0, . . . , u

1
n) is the normalized B-basis, then (u0

0, . . . , u
0
n−1) is the normalized B-basis of DU .

Proof. If we apply Proposition 12 to the 1-dimensional curve whose control polygon is t0 · · · tn

t =
n∑

i=0

tiu
1
i (t),

we get

1 =
n−1∑
i=0

(ti+1 − ti)wiu
0
i (t)

and (u0
0, . . . , u

0
n−1) is a TP basis. So we see that the necessary and sufficient condition for (u0

0, . . . , u
0
n−1) defined in (8) to 

be an NTP basis of DU is that

wi = 1

ti+1 − ti
, i = 0, . . . ,n − 1. (13)

Furthermore if (u1
0, . . . , u

1
n) is the normalized B-basis, then (u0

0, . . . , u0
n−1) must be the normalized B-basis of DU . �

Formula (11) is a generalization of the well known formulae for the derivative of Bézier and B-spline curves.
In formula (13) we have suggested a relation between w0, . . . , wn and the Greville abscissae. Let us restate Corollary 8 in 

the case that U and DU have normalized TP bases, expressing w0, . . . , wn of formula (6) in terms of the Greville abscissae. 
We also deduce that the Greville abscissae must be strictly increasing.



J.M. Carnicer et al. / Computer Aided Geometric Design 48 (2016) 60–74 69
Theorem 15. Let U be a subspace of C1[a, b], dim U = n + 1 ≥ 2, such that 1, t ∈ U . If DU has an NTP basis (u0
0, . . . , u

0
n−1), then 

there exists an NTP basis of U given by

u1
0(t) := 1 − 1

t1 − t0

t∫
a

u0
0(x)dx,

u1
k (t) := 1

tk − tk−1

t∫
a

u0
k−1(x)dx − 1

tk+1 − tk

t∫
a

u0
k (x)dx, k = 1, . . . ,n − 1,

u1
n(t) := 1

tn − tn−1

t∫
a

u0
n−1(x)dx, (14)

such that the endpoint interpolation property and (12) hold. The Greville abscissae of (u1
0, . . . , u

1
n) are

ti = a +
i−1∑
j=0

b∫
a

u0
j (x)dx, i = 0, . . . ,n, (15)

and then they are strictly increasing. Moreover, if (u0
0, . . . , u

0
n−1) is the normalized B-basis of DU , then (u1

0, . . . , u
1
n) is the normalized 

B-basis of U .

Proof. Since u0
k is a nonnegative continuous and nonzero function, we have that 

∫ b
a u0

k (x)dx > 0, k = 0, . . . , n − 1. Let ti be 
defined by (15). Clearly

a = t0 < t1 < · · · < tn−1 < tn = b.

Let us define wk := 1/ 
∫ b

a u0
k (x)dx > 0, k = 0, . . . , n − 1 as in (6). Then we have that

ti = a +
i−1∑
j=0

w−1
i , i = 0, . . .n,

and

1

tk+1 − tk
= wk, k = 0, . . . ,n − 1.

By Corollary 8, (u1
0, . . . , u

1
n) is an NTP basis. Moreover, if (u0

0, . . . , u
0
n−1) is the normalized B-basis of DU , then (u1

0, . . . , u1
n)

is the normalized B-basis of U . Let us remark that t0 = a. By Abel’s Lemma, we have that

n∑
i=0

tiu
1
i (t) = a +

n∑
i=0

(ti − a)u1
i (t) = a +

n−1∑
i=0

(ti+1 − ti)

n∑
j=i+1

u1
j (t).

Using the normalization property of (u0
0, . . . , u

0
n−1) we have that

n∑
i=0

tiu
1
i (t) = a +

n−1∑
i=0

t∫
a

u0
i (x)dx = a +

t∫
a

dx = t,

which implies that t0, . . . , tn are the Greville abscissae with respect to the basis (u1
0, . . . , u1

n). From (14), it follows that

n∑
j=i+1

u1
j (t) = 1

ti+1 − ti

t∫
a

u0
i (x)dx. (16)

Differentiating the above equation, we get (12). Evaluating (14) at a we have

u1
0(a) = 1, u1

k (a) = 0, k = 1, . . . ,n.

Taking into account that

tk+1 − tk = w−1
k =

b∫
u0

k (x)dx, k = 0, . . . ,n − 1,
a
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we obtain evaluating (14) at b

u1
k (b) = 0, k = 0, . . . ,n − 1, u1

n(b) = 1.

Therefore (u1
0, . . . , u

1
n) satisfies the endpoint interpolation property. �

Remark 16. The basis in (14) is the unique basis with the endpoint interpolation property such that (12) holds. Differenti-
ating in (14) we obtain the relations

(u1
0)

′(t) = − u0
0(t)

t1 − t0
,

(u1
k )′(t) = u0

k−1(t)

tk − tk−1
− u0

k (t)

tk+1 − tk
, k = 1, . . . ,n − 1,

(u1
n)′(t) = u0

n−1(t)

tn − tn−1
,

which are equivalent to (12). The endpoint interpolation property determines the integration constant showing the unique-
ness.

Theorem 15 can be successively applied to construct B-bases of spaces obtained by successive integration. If we start 
with a space Un ∈ C[a, b], dim Un = n + 1, with a normalized B-basis, we can construct normalized B-bases of the spaces 
Um = D−(m−n)Un , m > n. We remark that the functions in the space Un need not be differentiable and hence Un might not 
be an extended Chebyshev space.

Starting with the normalized B-basis (bn
0(x), . . . , bn

n(x)) of Un , the normalized B-basis of Um can be obtained by the 
recurrence

bm
0 (t) := 1 − 1

tm
1 − tm

0

t∫
a

bm−1
0 (x)dx,

bm
j (t) := 1

tm
j − tm

j−1

t∫
a

bm−1
j−1 (x)dx − 1

tm
j+1 − tm

j

t∫
a

bm−1
j (x)dx, j = 1, . . . ,m − 1,

bm
m(t) := 1

tm
m − tm

m−1

t∫
a

bm−1
m−1(x)dx,

where

tm
i = a +

i−1∑
j=0

b∫
a

bm−1
j (x)dx.

In Theorem 4.8 of Mazure (2009), it is shown that the Greville abscissae are increasing if the space of derivatives is 
extended Chebyshev. Theorem 15 is a similar result, but we require the weaker hypothesis that the space of derivatives has 
an NTP basis. In the following examples we show that Theorem 15 can be applied when differentiability conditions fail.

Example 17. A remarkable example of the above construction (already mentioned in Bister and Prautzsch, 1997), is the case 
where the starting space Un is the space of linear splines on an interval [a, b] with knots

a = τ0 = τ1 < τ2 < · · · < τn < τn+1 = τn+2 = b.

The normalized B-basis of Un is the B-spline basis bn
j (t) = N(t; τ j, τ j+1, τ j+2), j = 0, . . . , n, consisting of “hat” functions. 

Successive integration gives rise to bn+k−1
j , j = 0, . . . , n +k − 1, the B-spline basis of degree k of the space Un+k−1 of splines 

of degree k with the same interior knots. This important example shows that our construction is valid if the space is not 
extended Chebyshev. We remark that the space Un is not an extended Chebyshev space if n > 1 and that the functions are 
not differentiable everywhere.

Example 18. The construction of Theorem 15 allows us to deal with other situations where the space fails to be extended 
Chebyshev. In Costantini et al. (2005), the authors consider the spaces

U3 := 〈1, t, (1 − t)m0 , tm1〉, t ∈ [0,1], m0,m1 ≥ 3
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that provide interesting performances related with shape control. The space U1, generated by (1 − t)m0−2, tm1−2 on the 
interval [0, 1] is not an extended Chebyshev space, unless m0 = m1 = 3, because there are too many zeros at the ends of 
the interval.

Let us start with the B-basis (m0 − 1)(1 − t)m0−2, (m1 − 1)tm1−2 of U1 and apply Theorem 7 to obtain the normalized 
B-basis of the space U2 = D−1U1

b2
0(t) = (1 − t)m0−1, b2

1(t) = 1 − (1 − t)m0−1 − tm1−1, b2
2(t) = tm1−1.

Again, taking into account the multiplicity of the zeros at the ends of the interval, we have that U2 is not an extended 
Chebyshev space, unless m0 = m1 = 3.

Using Theorem 15, we obtain the Greville abscissae

t3
0 = 0, t3

1 = 1

m0
, t3

2 = 1 − 1

m1
, t3

2 = 1.

We define

ϕ(t) := 1

t2
2 − t2

1

t∫
0

b2
1(x)dx = t − (1 − (1 − t)m0)/m0 − tm1/m1

1 − 1/m0 − 1/m1

and using (14), we can express the normalized B-basis of the space U3 in the following form

b3
0(t) = 1 − m0

t∫
0

b2
0(x)dx = (1 − t)m0 ,

b3
1(t) = m0

t∫
0

b2
0(x)dx − ϕ(t) = 1 − (1 − t)m0 − ϕ(t),

b3
2(t) = ϕ(t) − m1

t∫
0

b2
2(x)dx = ϕ(t) − tm1 ,

b3
3(t) = m1

t∫
0

b2
2(x)dx = tm1 .

5. Characterizations and properties of the Greville abscissae

Corollary 8 constructs an NTP basis of D−1U from a TP basis of U . Let us show that formulae (5) and (6) can provide a 
TP basis only when the initial basis of U is TP.

Theorem 19. Let (u0, . . . , un−1) be a basis of a space U in C[a, b] such that 
∫ b

a ui(x)dx �= 0, i = 0, . . . , n. Let w0, . . . , wn−1 be given 
by (6) and (u1

0, . . . , u
1
n) be the basis defined by (5). Then (u0, . . . , un−1) is a TP basis of U if and only if (u1

0, . . . , u
1
n) is an NTP basis of 

D−1U and w0, . . . , wn are positive. Moreover, (u0, . . . , un−1) is a B-basis of U if and only if (u1
0, . . . , u

1
n) is the normalized B-basis of 

D−1U .

Proof. If (u0, . . . , un−1) is a TP basis, then by Corollary 8, (u1
0, . . . , u

1
n) is an NTP basis. Moreover, if (u0, . . . , un−1) is a 

B-basis, then (u1
0, . . . , u

1
n) is the normalized B-basis. Conversely, let us assume that (u1

0, . . . , u1
n) is an NTP basis and let

vi(t) :=
n∑

j=i

u1
j (t), t ∈ [a,b], i = 0, . . . ,n.

Then by Theorem 9, (v ′
1, . . . , v

′
n) is a TP basis. Since

v ′
i(t) = wn−1un−1(t) +

n−1∑
j=i

(w j−1u j−1(t) − w ju j(t)) = wi−1ui−1(t),

we have that (w0u0, . . . , wn−1un−1) is a TP basis and, since w0, . . . , wn−1 are positive, then (u0, . . . , un−1) is also a TP 
basis. Moreover if (u1

0, . . . , u
1
n) is the normalized B-basis, then by Theorem 9, the system (w0u0, . . . , wn−1un−1) is a B-basis 

and so (u0, . . . , un−1) is also a B-basis. �
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The following theorem relates the existence of an NTP basis of the space of derivatives with properties of the Greville 
abscissae of shape preserving representations with the endpoint interpolation property.

Theorem 20. Let U be a subspace of C1[a, b], dim U = n + 1 ≥ 2, such that 1, t ∈ U , with an NTP basis. The following properties are 
equivalent:

(a) There exists an NTP basis of DU .
(b) There exists an NTP basis of U with strictly increasing Greville abscissae.
(c) The Greville abscissae with respect to any NTP basis of U with the endpoint interpolation property are strictly increasing.

Furthermore, if U ⊂ C2[a, b], then the previous properties are also equivalent to the fact that D2U has a TP basis.

Proof. Since U has an NTP basis, we deduce from Theorem 5 that U has an NTP B-basis. By Proposition 4.5 of Carnicer and 
Peña (1994), the NTP B-basis satisfies the endpoint interpolation property. Therefore there exists an NTP basis of U with 
the endpoint interpolation property.

(a) =⇒ (c). By Theorem 5, there exists a normalized B-basis of DU and each TP basis of DU can be normalized. Let 
(u1

0, . . . , u
1
n) be an NTP basis of U with the endpoint interpolation property. By Proposition 10, the basis

u0
i (t) := 1

wi

n∑
j=i+1

(u1
j )

′(t), t ∈ [a,b], i = 0, . . . ,n − 1,

is TP. Since each TP basis of DU can be normalized, we can choose suitable positive constants w0, . . . , wn so that 
(u0

0, . . . , u
0
n−1) is an NTP basis. Let t0 = a, ti = a + ∑i−1

j=0 w−1
j , i = 1, . . . , n. Therefore

wi = 1

ti+1 − ti
, i = 0, . . . ,n − 1,

and (12) holds. By Remark 16, (u1
0, . . . , u

1
n) is the unique basis with the endpoint interpolation property satisfying relations 

(12). Integrating we deduce that (14) holds. Evaluating at t = b in (11) and taking into account that (u1
0, . . . , u1

n) satisfies 
the endpoint interpolation property we obtain

∫ b
a u0

0(x)dx

t1 − t0
= 1,

∫ b
a u0

n−1(x)dx

tn − tn−1
= 1,

∫ b
a u0

k−1(x)dx

tk − tk−1
=

∫ b
a u0

k(x)dx

tk+1 − tk
, k = 1, . . . ,n − 1.

Therefore

wk = 1

tk+1 − tk
=

b∫
a

u0
k (x)dx, k = 0, . . . ,n.

By Theorem 15, the strictly increasing sequence t0 < t1 < · · · < tn are the Greville abscissae of (u1
0, . . . , u

1
n).

(c) =⇒ (b) follows from the fact that U has NTP bases with the endpoint interpolation property. Finally, for (b) =⇒ (a) 
we use Theorem 14.

Let us finally assume that U ⊂ C2[a, b]. By Theorem 11, D2U has a TP basis if and only if DU has an NTP basis, which is 
equivalent to (a). �
Corollary 21. Let U be a subspace of C1[a, b], dim U = n + 1 ≥ 2, such that 1, t ∈ U with an NTP basis. Then the Greville abscissae 
with respect to the normalized B-basis of U are strictly increasing if and only if DU has a normalized B-basis.

Proof. From Lemma 3 (a) and (2), it follows that the normalized B-basis of U always satisfies the endpoint interpolation 
property. By Theorem 5, the existence of an NTP basis of DU implies that DU has a normalized B-basis. The result readily 
follows applying Theorem 20. �

In Example 18 we describe a space U3 := 〈1, t, (1 − t)m0 , tm1 〉 ⊂ C2[0, 1], where DU3 has a normalized B-basis. Corol-
lary 21 implies that the normalized B-basis of U3 has strictly increasing Greville abscissae although the space DU3 is not 
an extended Chebyshev space. Analogously, the Greville abscissae of the normalized B-basis of the quadratic spline space 
Un+1 considered in Example 17 are strictly increasing. However the space of derivatives Un is the space of linear splines, 
which is not an extended Chebyshev space if n > 1.
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6. Applications

Let us first apply the above results to the construction of Bernstein-like operators B : C[a, b] → U on spaces U with NTP 
bases. A Bernstein-like operator is

B : f ∈ C[a,b] �→ B[ f ] :=
n∑

i=0

f (ti)bi,

where (b0, . . . , bn) is an NTP basis of U . From its definition it follows that B preserves constants. However it is usually 
required that a strictly monotonic function is also preserved. With a change of variables, one can assume that this function 
is t . So we have

t = B[t] =
n∑

i=0

tibi(t),

and t0, . . . , tn are just the Greville abscissae. It is important that the Greville abscissae are distinct in order to have a 
surjective operator. For many questions concerning the analysis of Bernstein operators, the fact that the Greville abscissae 
are strictly increasing plays an important role.

The operator B is convexity preserving if B[ f ] is convex for any convex function f ∈ C[a, b]. If the Greville abscissae are 
t0 < · · · < tn , then Proposition 2.7 of Carnicer et al. (1995) shows that B[ f ] is convexity preserving. The proof is based on 
the fact that

M
(1, t, B[ f ]

x0, x1, x2

)
= M

(b0, . . . ,bn

x0, x1, x2

)
⎛
⎜⎜⎜⎝

1 t0 f (t0)

1 t1 f (t1)
...

...
...

1 tn f (tn)

⎞
⎟⎟⎟⎠ , x0 < x1 < x2.

All 3 × 3 minors of the first factor are nonnegative because (b0, . . . , bn) is TP. Convexity of f implies that all 3 × 3 minors of 
the second factor are nonnegative. Using the Cauchy–Binet formula (see page 1 of Karlin, 1968), we find that the left hand 
side has nonnegative determinant for any x0 < x1 < x2 and thus B[ f ] is convex.

The results in this paper can be used in the problem of finding conditions for spaces of exponential polynomials to have 
strictly increasing Greville abscissae addressed in Aldaz et al. (2009). By Theorem 20, the search of NTP bases in the space 
of derivatives DU is a key tool to deal with this question.

A space of U ⊂ Cn(I), dim U = n + 1, defined on an interval I is extended Chebyshev on a subinterval J ⊆ I if the number 
of zeros in J counting multiplicities of any nonzero function in U is less than or equal to n. In Theorem 2.4 of Carnicer 
et al. (2004), it was shown that if U is extended Chebyshev on [a, b], then there exists a TP basis of U . In Theorem 4.1 of 
Carnicer et al. (2004), it was shown that if DU is extended Chebyshev on [a, b] and 1 ∈ U , then there exists a NTP basis 
of U .

A space U ⊂ C(R) is invariant under translations if uτ (t) := u(t − τ ), t ∈ R, belongs to U for any u ∈ U and τ ∈ R. If 
U ⊂ C1(R) is invariant under translations, then h−1(u−h − u) ∈ U for any u ∈ U and h �= 0 and, taking limits as h → 0, we 
deduce that DU ⊆ U .

If U ⊂ Cn(R), dim U = n + 1, is invariant under translations, the critical length is defined (see Carnicer et al., 2004) as the 
positive number 
(U ) such that U is extended Chebyshev on an interval I if and only if I does not contain an interval of 
the form [a, a + 
(U )].

The following result relates critical lengths with the fact that the Greville abscissae are strictly increasing.

Theorem 22. Let U ⊂ Cn(R), dim U = n + 1, n ≥ 2, be a space invariant under translations such that 1, t ∈ U . If b − a < 
(DU ), then 
U is extended Chebyshev with an NTP basis satisfying the endpoint interpolation property on [a, b]. Moreover, if b − a < 
(D2U ) ≤

(DU ), then the Greville abscissae with respect to any NT P basis of U on [a, b] with the endpoint interpolation property are strictly 
increasing.

Proof. From the definition of critical length, if b − a < 
(DU ), then DU is an extended Chebyshev space on [a, b]. By 
Theorem 4.1 of Carnicer et al. (2004) we have that U is an extended Chebyshev space with a normalized B-basis on [a, b]. 
From Theorem 5 and Proposition 4.5 of Carnicer and Peña (1994), it follows that the NTP B-basis of U satisfies the endpoint 
interpolation property.

By Corollary 4.1(i) of Carnicer et al. (2004), 
(D2U ) ≤ 
(DU ). If b − a < 
(D2U ), then D2U is an extended Chebyshev 
space. By Theorem 2.4 (iii) of Carnicer et al. (2004), D2U has a TP basis on [a, b]. By Theorem 20, the Greville abscissae 
with respect to any NT P basis of U on [a, b] with the endpoint interpolation property are strictly increasing. �
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We end by applying the above result to the particular case of cycloidal spaces. The (n + 1)-dimensional cycloidal space is 
defined as

Cn := 〈cos t, sin t,1, t, . . . , tn−2〉, n ≥ 2.

For n = 1, it is convenient to define C1 := 〈cos t, sin t〉. Clearly 
(C1) = π . Observe that D2Cn = Cn−2, n ≥ 3.
In Theorem 25 of Aldaz et al. (2009) and Example 2.17 of Mazure (2009), it is shown that the Greville abscissae of the 

normalized B-basis of the space C3 = 〈cos t, sin t, 1, t〉 on the interval [a, b] are strictly increasing if b −a < π = 
(C1). In the 
case that b − a = π , two Greville abscissae coincide. Finally in the cases that π < b − a < 2π , they show that the Greville 
abscissae are not monotonic. Using Theorem 22, we can deduce the following result valid for any cycloidal space.

Corollary 23. If b − a < 
(Cn−2), n ≥ 3, then the Greville abscissae for any NT P basis of Cn on [a, b] with the endpoint interpolation 
property are strictly increasing.
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