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In this paper, we propose a sparse surface representation for arbitrary surface models
(point clouds, mesh models, continuous surface models, etc.). We approximate the input
surface model with radial basis functions (RBF) whose centers are located on the medial
axis of the input object surface. The sparsity of the RBF representation is achieved by
solving an L1 optimization problem. Experimental results demonstrate that our method 
needs much less number of parameters to represent the input surface model with good
accuracy. The sparse representation is useful in various applications, such as saving
memory space in storing the surface models, and saving time in transmission of the surface
models on the internet.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Surface representation is a fundamental issue in the community of Computer Aided Design and Computer Graphics. 
Popular representations include parametric representation, implicit representation and mesh representation. Among various 
surface representations, implicit representation is a flexible and effective tool to describe smooth surfaces with complex 
shape and topology. An implicit representation generally can be expressed as a linear combination of some basis functions, 
such as radial basis functions, B-spline functions, etc. There have been many approaches on reconstructing implicit surface 
representations from point clouds, such as radial basis functions (RBF) (Carr et al., 2001), multilevel partition of unity 
(MPU) (Ohtake et al., 2005b), Poisson reconstruction (Hoppe, 2008) and others, focusing on goals like improving accuracy, 
handling large and noisy data sets, etc. However, the resulting implicit function constructed by such methods generally 
consists of lots of terms–tens of thousands or even millions of terms, depending on the number of input points and the 
complexity of the surface model. Such representations add great burden on storage and on subsequent computations such 
as boolean operations. In this paper, we have a different goal–constructing sparse representation of the surface model, that 
is, representing the surface model with fewest possible terms while preserving the required accuracy of the model. With 
the sparse representation, less storage space is needed to store the surface model and less transmission time is needed to 
transfer the surface model on the internet, which may be useful in many online applications such as constructing 3D icons 
of objects in 3D repository on the websites.

There are two key issues in sparse representation of surface models. Firstly, how to balance the sparsity and accuracy 
of the surface model. Generally sparsity decreases the accuracy of the surface model. For a given accuracy, how many basis 
functions should be selected in the implicit representation is a big problem. Secondly, how to distribute the basis functions 

* Corresponding author.
E-mail addresses: chenfl@ustc.edu.cn (F. Chen), chtu@sdu.edu.cn (C. Tu).
http://dx.doi.org/10.1016/j.cagd.2016.08.001
0167-8396/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cagd.2016.08.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:chenfl@ustc.edu.cn
mailto:chtu@sdu.edu.cn
http://dx.doi.org/10.1016/j.cagd.2016.08.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2016.08.001&domain=pdf


50 M. Li et al. / Computer Aided Geometric Design 48 (2016) 49–59
in appropriate locations. Previously, in implicit surface reconstruction, some techniques have been proposed to reduce the 
number of basis functions (Carr et al., 2001; Ohtake et al., 2005a, 2006; Samozino et al., 2006). The common method is to 
first select some possible centers, then solve a least-square approximation problem. However, the two major problems–how 
many basis functions to select and how to select the centers of the basis functions are not well solved in these methods. 
In this paper, we propose a sparse optimization method to solve the problem. We express the implicit representation using 
radial basis functions, i.e., the implicit function is a linear combination of radial basis functions. The centers of the basis 
functions are located on the medial axis of the input surface model. We propose an L1 optimization algorithm to find the 
sparse centers. Compared with previous approaches, our method produces a more compact implicit representation for a 
surface model while preserving required accuracy.

We emphasize some subtle differences between our method and previous implicit surface reconstruction methods as 
they are closely related. As stated before, our goal is to compute a sparse representation for a surface model. Thus the 
input can be any surface representation–point cloud, mesh model, parametric model or even implicit model. From the input 
surface model, we find an approximation of the surface model with fewest possible terms with required accuracy. This is 
not exactly the same problem with implicit surface reconstruction from point clouds. So we will not consider problems in 
implicit surface reconstruction, e.g., point clouds with noise or incomplete data sets.

The outline of this paper is as follows. Section 2 discusses some related works. Section 3 reviews some preliminary 
knowledge about radial basis functions and sparse optimization. Section 4 presents the optimization model together with 
an algorithm to compute the sparse representation, including a strategy to sample the medial axis points. The experimental 
results and comparisons are demonstrated in section 5. We conclude the paper in section 6 with some future research 
problems.

2. Related work

In this section, we discuss some related works on sparse representation of surface models–implicit surface reconstruction, 
sparse optimization and medial axis transformation.

2.1. Implicit surface reconstruction

Given an input point cloud, implicit surface reconstruction is to find a smooth implicit function which is usually ex-
pressed as a linear combination of a set of basis functions to fit the point cloud. In the past several decades, there is a 
wealthy literature focusing on implicit surface reconstruction problem, and various approaches have been proposed, such as 
Blinn’s blobs, signed distance functions, radial basis functions (RBF), multilevel partition of unity(MPU), moving least squares 
(MLS), level sets, Poisson, algebraic splines, etc. For a complete reference, the reader is referred to Berger et al. (2016), Wang 
et al. (2011), Pan et al. (2016).

One problem with these approaches is that a large body of data is needed to express the implicit function, especially for 
complex models. This will create a big burden for storage and transmission on the internet. To solve this problem, several 
techniques have been developed to reduce the amount of data. J.C. Carr put forward a method to construct an implicit 
surface with RBFs and presented a greedy algorithm to iteratively append centers with large residuals to reduce the number 
of basis functions (Carr et al., 2001). However, this reduction can’t guarantee the most sparse solution. Y. Ohtake combined 
the adaptive partition of unity and least-square RBF fitting to approximate the point clouds (Ohtake et al., 2006). He first 
selected a set of surface points whose support volume can well cover the shape and overlap more than a threshold at each 
point, then used least-square method to solve the weights of RBF centers. Different from those methods with the centers of 
the basis functions on the surface or offset, M. Samozino (2006) proposed to place the RBFs’ centers on the Voronoi vertices. 
This method first selects a user-specified number of centers by filtering and clustering from a subset of Voronoi vertices, 
then solves a least-square problem to get the reconstructed surface. However, it approximates the surface and center points 
equally, which causes larger approximation error on surface.

In all, although several techniques have been proposed to reduce the number of basis functions in implicit surface 
reconstruction, they all adopt the idea of selecting the centers of basis functions before fitting. The two key issues–balancing 
between sparsity and accuracy and finding the best locations of the centers of basis functions in the implicit representation 
are not well solved. In this paper, we will present a new approach based on sparse optimization to solve the problem.

2.2. Sparse optimization

A signal can be expressed as a linear combination of some atom functions. A signal is called sparse if most of the 
combination coefficients are zero. Sparse optimization is to find a sparse solution in all the feasible solutions of a problem.

Sparse optimization has become a very popular technique in signal processing and computer vision (Elad, 2010; Wright 
et al., 2010). Comparatively, the use of sparse optimization in geometric modeling has just begun. Recently, this technique 
has been applied in geometric modeling and graphics problems, such as mesh denoising (He and Schaefer, 2013; Wang et al., 
2014), shape matching (Bouaziz et al., 2013; Ovsjanikov et al., 2012), shape segmentation (Liu et al., 2015; Hu et al., 2012), 
point cloud consolidation (Avron et al., 2010; Mustafa et al., 2015), curve fitting (Kang et al., 2015), shape deformation (Deng 
et al., 2013), etc. For a survey on these researches, the reader is referred to Xu et al. (2015).
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In this paper, we apply the sparse optimization technique to select a set of sparse radial basis functions such that the 
resulting implicit function approximates the input surface model with prescribed accuracy.

2.3. Medial axis transform

Medial axis transform (MAT) (Blum, 1967) is defined as the set of balls, the union of which is exactly the boundary of 
objects. Medial axis is the centers of the medial balls. Thus the medial axis is composed of all the points with more than two 
closest boundary points. Medial axis has been widely used in computer graphics and geometric processing problems (Siddiqi 
et al., 2008; Yoshizawa et al., 2007; Siddiqi and Pizer, 2008).

For a given geometric object, how to extract an accurate and stable medial axis transform has been a very hot topic. 
There is a lot of literature focusing on the problem. N. Amenta et al. (2001) constructed the approximated medial axis with 
poles, which is a subset of the Voronoi vertices of the sample points from the object. However, the medial axis based on 
Voronoi diagram is very sensitive to small perturbations on the input geometry. Furthermore, the extracted medial axis 
generally contains many tiny and messy branches which have to be removed to get a clear and stable medial axis. Several 
techniques have been explored to solve the problem, such as by separation angles (formed by the vectors connecting a 
medial axis point to the closest points on the boundary) (Chazal and Lieutier, 2005), by scale factors (Giesen et al., 2009;
Miklos et al., 2010), or other criterions (Attali and Montanvert, 1997; Dey and Zhao, 2004; Foskey et al., 2003).

3. Preliminary knowledge

In this section, we present some preliminary knowledge about radial basis functions and sparse optimization.

3.1. Radial basis functions

An implicit function is generally expressed as a linear combination of some basis functions:

f (X) :=
n∑

i=1

λiφi(X) = 0, (1)

where φi(X), i = 1, 2, . . . , n are basis functions, and λi , i = 1, 2, . . . , n are combination coefficients. X is the variables in the 
geometric space, for example, in two dimensional space X = (X1, X2), and in three dimensional space X = (X1, X2, X3).

In this paper, we adopt radial basis functions φi(X) = φ(‖X − ci‖/ri), where φ(γ ) is a nonnegative function defined on 
[0, +∞) which generally has the following properties (Carr et al., 2001):

(1) φ(0) = 1;
(2) limitγ →+∞φ(γ ) = 0;

ci is the center of the basis function φi(x), and ri > 0 is the influence radius of the radial basis function which will be 
discussed in details in Section 4.

A typical choice of radial basis function is Gaussian function

φ(γ ) = e−γ 2
. (2)

Besides the Gaussian function, there are other radial basis functions including compactly supported radial basis functions 
(CSRBF), for example, φ(γ ) = (1 − γ )4(1 + 4γ ) for 0 ≤ γ ≤ 1, and otherwise φ(γ ) = 0.

3.2. Sparse optimization

Let u = (u1, u2, . . . , un) be an n-dimensional vector. The Lp norm of u is defined as ||u||p = (
∑n

i=1 |ui |p)1/p (0 <
p < +∞). The L0 pseudo norm of u is defined as ||u||0 := #{ui‖ui �= 0}, i.e., the number of nonzero elements in u. A vector 
u is called sparse if ||u||0 << n.

Consider solving a linear system of equations

Au = b. (3)

Assuming there are infinite number of solutions in the system, we hope to find the sparsest solution among all the feasible 
solutions. This amounts to solving the following optimization problem

min ||u||0 (4)

s.t. Au = b.
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The above optimization is a NP-hard problem. To efficiently solve the above problem, we relax the L0 norm to L1 norm:

min ||u||1 (5)

s.t. Au = b.

This problem is convex and can be efficiently solved by techniques such as least absolute shrinkage and selection oper-
ator(LASSO). It is shown that the solutions of the two problems (Eq. 4) and (Eq. 5) are equivalent under certain condi-
tions (Tropp, 2006).

The problem (Eq. 5) can be rewritten as a unconstrained optimization problem

min μ||u||1 + ||u − b||22 (6)

where μ > 0 is a parameter which balances the two targets: sparsity and accuracy of solutions.

4. Model and algorithm

In this section, we first give a brief overview about the problem and the overall approach, then present the strategy 
to sample points on the medial axis of the input object. Finally, we put forward the optimization model and algorithm to 
compute the sparse representation of the input surface.

4.1. Overview

Given an input model (point cloud, polygonal mesh, parametric equation or even implicit equation), our goal is to find 
an RBF implicit function f (X) as defined in (Eq. 1) to approximate the input model such that the expression of f (X) has 
fewest possible terms with a prescribed accuracy. In this paper, we use Gaussian basis functions as described in Section 3.1, 
even though other representations of radial basis functions such as CSRBF should also apply.

Unlike traditional approaches which put the centers of the radial basis functions on the input surface and/or offset 
points, we propose to put the centers {ci}n

i=1 of the RBFs on the medial axis of the input object. This idea is motivated 
by the extreme case–a sphere can be expressed by just one RBF with its center in the center of the sphere, which is the 
sparsest representation of the sphere. The parameter ri is taken as the radius of the center point ci , i.e., ri is the distance 
from the center ci to the boundary of the input model.

To begin with, we sample the input model to get a set of points {Pi}N
i=1 on the given surface and extract the medial 

axis M of the input model. Following the work in Amenta et al. (2001), we compute poles from the Voronoi diagram of 
the input points. It has been proved that when the input points are dense enough, the extracted poles should be a good 
approximation of the medial axis.

In most cases, the number of medial axis points computed in the first step is very large, making it hard to compute in 
the later optimization process. As a result, a sampling process is necessary to select a sufficient subset of medial axis points. 
We propose a sampling algorithm to select the sampled points based on the surface details, i.e. the radii of medial axis 
points. After this step, we obtain a set of points C := {ci}n

i=1 on the medial axis which are used as the initial centers of the 
RBFs.

After the sampling process, we further reduce the number of RBFs by proposing an optimization model which fits the 
given point set {Pi}N

i=1 and at the same time produces a sparse solution. The optimization is a trade-off between the 
accuracy and sparsity, which can be controlled by some parameters. Our optimization algorithm includes two stages. The 
first stage–sparse optimization is to obtain a sparse set of basis functions, while the second stage–accuracy optimization is to 
improve approximation accuracy. The sparse optimization problem is solved by alternating direction method of multipliers 
(ADMM).

Fig. 1 illustrates a specific example to demonstrate the process of our algorithm and the results of each step.

Fig. 1. The process of our algorithm and results in each step. The inner medial axis points are drawn in red, the outer ones are blue. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Sampling medial axis

The goal of the sampling step is to reduce the scale of optimization problem, making the problem solvable in memory 
and time. Via sampling, we find a subset of medial axis points as sampled centers, with which the optimization can approx-
imate the surface well. Thus, the sampled points should be reasonably distributed on the medial axis with certain density. 
There is a balance between the number of sampled points and the approximation error. While few sampling points will 
increase the approximation error, too many sampled points may contain redundancy and make the scale of the problem 
too large. Secondly, local features need more samples. One reason is that local features call for more basis functions to be 
approximated. The other reason is that the corresponding basis functions at local features often have smaller local supports.

Considering these requirements, we develop a sampling algorithm to decide the number of sampled points automatically. 
The sampled points are selected based on the surface details, i.e. the radii of medial axis points.

In the sampling, all the surface points should be covered by the sampled centers with slightly expanded radii, i.e. all 
surface points should satisfy minci∈Cinner

d(p,ci)
ri

< s and minci∈Couter
d(p,ci)

ri
< s, where Cinner and Couter are the set of inner and 

outer samples, d(p, ci) is the distance between surface point p and sampled center ci , s > 1 is a parameter to control the 
sampling density. The selection is to iteratively append medial axis points as sampled centers, until the requirements are 
satisfied. Compared with the random method and the clustering method in Samozino et al. (2006), our algorithm is more 
robust and doesn’t need the users to decide the number of sampled points for different models.

The sampling parameter s controls the sampling density which influences the sparsity of the implicit representation and 
the approximation error. Generally, as s increases, the sampling density decreases, whereas the sparsity of the implicit and 
the approximation error increases. Further details will be discussed in section 5.

After the sampling, some outer distant points on the medial axis are filtered out. Because the outer distant points have 
little influence on the approximation of surface, and are less necessary to be approximated.

4.3. Optimization

After the sampling step, we hope to find a sparse weight vector λ = (λ1, . . . , λn) of f (X) as defined in (Eq. 1) such 
that f (X) = 0 is a good fit to the point set {Pi}N

i=1. Our optimization process contains two stages–sparse optimization and 
accuracy approximation. We first apply the L1 minimization to perform the sparse optimization, and drop the terms whose 
weights are close to zero to find the sparse centers of the radial basis functions. Then we perform a second approximation 
without sparsity term to obtain a more accurate solution.

The inputs of the optimization algorithm include the surface points {Pi}N
i=1, the sampled medial axis points {ci}n

i=1
which are served as the centers of the RBFs, and the offset points S = {siinner , siouter }m

i=1. The offset points are computed along 
two opposite oriented normals, which can be approximated by the directions from each surface point to its corresponding 
medial axis points. We can sample one pair of inner and outer offset points for a few surface points. The output is a sparse 
representation of the input surface model in the form (Eq. 1) but with most of the terms being removed.

4.3.1. Sparse optimization
In this stage, we compute a sparse solution of the implicit representation (Eq. 1) which fits the given surface points 

and offset points, and at the same time loosely fits the signed distance function of the input object. The objective function 
contains four terms: sparsity term ||λ||1, surface point term E(P ), medial axis point term E(C), and offset point term E(S). 
The objective function of sparse optimization can be expressed as

min ρw ||λ||1 + ρs E(P ) + ρm E(C) + ρo E(S). (7)

The sparsity term is the L1-norm of the variables λ = (λ1, . . . , λn), which are the weights of the radial basis functions 
in f (X). The other terms are to approximate the signed distance functions of the input object at different points, as dis-
cussed below.

The surface point term is to reconstruct the shape of the surface, and the function values at surface points should be all 
zero. This approximation term can be written as

E(P ) =
N∑

i=1

( f (Pi))
2. (8)

The medial axis point term is to avoid collapse of the implicit function inside the shape. The corresponding term is

E(C) =
M∑

j=1

( f (c j) − ri ∗ label(c j))
2, (9)

here label(c j) = 1 if c j is an inner medial axis point, and label(c j) = −1 if c j is an outer medial axis point.
The offset point term is an additional constraint in order to avoid occurrence of extra connected iso-surfaces of the 

implicit function f (X). The offset points contain inner and outer offset points. The inner offset points have positive signed 



54 M. Li et al. / Computer Aided Geometric Design 48 (2016) 49–59
Fig. 2. Illustration of the optimization process. From left to right: (a) shows the constraint points: surface points (green), offset points (yellow) and sampled 
centers (inner centers are red and outer centers are blue). (b) shows the centers of basis functions: inner sampled centers (red) and outer sampled centers 
(blue). (c) is the approximated distance field, where color represents the implicit function values. (d) is the extracted contour (green) and the sparse centers 
(inner centers are red and outer centers are blue) after optimization. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

distances and the outer offset points have negative ones. The distances are their offset values. The offset approximation 
term can be written as

E(S) :=
m∑

k=1

[( f (skinner ) − dk)
2 + ( f (skouter ) + dk)

2], (10)

where dk is the offset value for each pair of points.
According to the importance of each term, the parameters are chosen with different values. Generally, ρs should be 

given a large value since the corresponding term measures the accuracy of the approximation. The parameters ρm and ρo

can be relatively small since these terms are used just to control the overall shape of the implicit function f (X), and exact 
approximation is not necessary. The parameter ρw is used to control the sparsity of the solution. Larger value of ρw would 
induce a sparser solution.

After the variable λ is optimized, we filter out those points in {ci}n
i=1 whose absolute values of weights λi are smaller 

than a specified constant δ. The retained points are the sparse centers of the radial basis functions in the implicit represen-
tation f (X). Fig. 2 gives an example to illustrate the optimization process in 2D case.

4.3.2. Optimization algorithm
With abuse of notations, the objective function of the optimization problem (Eq. 7) can be written as a quadratic function

E(x) := ω|x|1 + xT Ax + bT x, (11)

where the variable x = λ is the weight vector of the basis functions in the implicit function f (X). A is a positive definite 
matrix of size n × n, and b is a n-dimensional column vector.

We apply ADMM algorithm to solve the optimization problem. Rewrite (Eq. 11) as

min ω|y|1 + xT Ax + bT x (12)

s.t. y − x = 0.

The augmented Lagrangian of the above problem is:

Lρ(x,y) = ω|y|1 + xT Ax + bT x + zT (y − x) + ρ

2
‖y − x‖2

2. (13)

In the ADMM solver, we iteratively update the variables x, y, z as described below:

xk+1 = min (xk)T Axk + bT xk − zT xk + ρ

2
(xk)T xk − ρ(xk)T yk, (14)

yk+1 = minω|yk|1 + (zk)T yk + ρ

2
(yk)T yk − ρ(xk+1)T yk, (15)

zk+1 = zk + ρ(yk+1 − xk+1). (16)

For most examples, the algorithm converges in about 200 iterations.

4.3.3. Accuracy optimization
After sparse optimization, we get a set of sparse radial basis functions. Using this set of basis functions, we compute 

the corresponding weights using a similar optimization as (Eq. 7)–only with the absence of sparsity term (i.e., ρw = 0). We 
continue to use the same ADMM algorithm to iterate. This accuracy optimization is a supplement to improve the accuracy 
with generated sparse basis functions. Generally, the accuracy optimization takes at most a few seconds, and it can reduce 
by more than a half of the approximation error with little cost.



M. Li et al. / Computer Aided Geometric Design 48 (2016) 49–59 55
Fig. 3. The effect of the parameter s on sampling density, sparsity of the implicit representation and approximation error for the Bimba model. From left 
to right: (a) the number of sampling points with respect to the parameter s; (b) the number of sparse centers over the parameter s; (c) the approximation 
error with respect to the parameter s.

5. Results and discussion

In this section, we present some experimental examples to illustrate sparsity of our representation. Comparisons are 
made with related approaches such as the Voronoi diagram based RBFs (Samozino et al., 2006), and the adaptive partition 
of unity combined with sparse RBFs (Ohtake et al., 2006). An application of our sparse representation in 3D icon construction 
is also presented.

5.1. Implementation details

We use following formula to measure the approximation error between the input model and the implicit surface 
f (X) = 0 (Taubin, 1994):

eavg = 1

L

√√√√ 1

N

N∑
i=1

( f (pi))
2

‖∇ f (pi)‖2
, (17)

where L is the diagonal length of the object size. In this paper, we scale the input model into the bounding box [−1, 1]3. 
The computations are performed using Matlab, running on a 3.50 GHz computer with 16 GB RAM.

In our algorithm, there are some parameters to control the results. For sampling process, the only parameter s is for 
the sampling density which also influences the sparsity of our implicit representation and approximation error. Generally, 
as s increases, the sampling density decreases, whereas the sparsity of the implicit representation and the approximation 
error increases. However, when the sampling density reaches a certain level, improvement on the approximation error is not 
obvious. Fig. 3 demonstrates the influence of parameter s on the sampling density, sparsity of the implicit representation, 
and the approximation error for the Bimba model. From our experiments, s = 1.005 is a reasonable choice to get sufficient 
sampling points to reach good approximation and sparsity.

For optimization process, there are four parameters in the objective function (Eq. 7) to control the sparsity and quality of 
the approximating result. The parameter ρw controls the sparsity, while the others ρs , ρm , ρo are relevant to the quality of 
the approximation. Generally, ρs should be chosen large in order to get a good approximation to the input model, while ρm

and ρo should be relatively small. In our experiments, we set these parameters as ρw = 0.1, ρs = 1000, ρm = 10, ρo = 300.
The threshold δ controls the removal of redundant centers. This threshold should filter out most redundant centers while 

keep the quality of the implicit representation. Fig. 4 presents the average sparsity and accuracy of a set of models with 
different δ. Generally, δ = 0.01 is a reasonable choice to preserve the accuracy.

5.2. Results

Fig. 5 illustrates some examples to demonstrate the fitting results of sparse approximation algorithm. The corresponding 
color maps of the approximation errors are also shown, where blue means smaller values and red indicates larger values. 
The color maps in this paper are all drawn in the same metric. Column 3 in Table 1 shows the statistics of the fitting 
results, including the number of sparse centers of the radial basis functions and approximation error for each model. From 
the statistics, we can see that the number of sparse centers Ncen is significantly smaller than the number of input points 
N with an average error of order 10−4. For models (a)–(d), Ncen is about one fifth of N . The sparsity gets more obvious 
when the models are smooth and fair, i.e., the curvatures of the models do not oscillate too much. For the models (e) 
and (f), the ratio of Ncen over N is even smaller, it reaches 1/15 and 1/20 respectively. Note that the storage of the implicit 
representation is measured by the number of parameters Npara in the representation which is the number of sparse centers 
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Fig. 4. The sparsity and accuracy with different δ in optimization. Ncen is the number of remained centers after sparse optimization, error is the approxima-
tion error computed with Eq. 17. The figures show the average Ncen and error of a set of models. Thus, δ = 0.01 is a reasonable choice to balance between 
sparsity and accuracy.

Fig. 5. Fitting results of our optimization algorithm. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Ncen multiplied by five (the center ci , radius ri and the coefficient λi ), while the storage of the input model is the number 
of points N multiplied by three.

5.3. Comparisons

Next we compare our sparse optimization method with related works, e.g. the Voronoi diagram based RBF method 
(Samozino et al., 2006) and the partition of unity based RBF method (Ohtake et al., 2006). Table 1 lists the statistic results 
for the three methods. For a comparison with the Voronoi diagram based RBF method, both methods locate the centers of 
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Table 1
Statistics for our method, the Voronoi centered RBFs (Samozino et al., 2006) and the adaptive partition of unity combined with sparse RBFs (Ohtake et al., 
2006). The sparsity of each method is measured by the number of parameters Npara with the given number of input points.

Model Input points Our method Voronoi-based RBF method
(Samozino et al., 2006)

Sparse PU+RBF method
(Ohtake et al., 2006)

Squid 6325
Ncen = 1216 Ncen = 5589 Ncen = 3774
Npara = 6080 Npara = 27945 Npara = 52836
eavg = 4.63e − 4 eavg = 4.29e − 4 eavg = 4.31e − 4

Bimba 15516
Ncen = 3156 Ncen = 9458 Ncen = 3874
Npara = 15780 Npara = 47290 Npara = 54236
eavg = 6.24e − 4 eavg = 7.89e − 4 eavg = 5.83e − 4

Horse 8078
Ncen = 1619 Ncen = 4950 Ncen = 3732
Npara = 8095 Npara = 24750 Npara = 52248
eavg = 4.17e − 4 eavg = 7.52e − 4 eavg = 4.46e − 4

Vase 14859
Ncen = 2664 Ncen = 8937 Ncen = 9661
Npara = 13320 Npara = 44685 Npara = 135254
eavg = 3.82e − 4 eavg = 5.77e − 4 eavg = 4.15e − 4

Knot 40848
Ncen = 2778 Ncen = 4809 Ncen = 10526
Npara = 13890 Npara = 24045 Npara = 147364
eavg = 1.18e − 4 eavg = 1.03e − 4 eavg = 2.21e − 4

Igea 116737
Ncen = 6001 Ncen = 14765 Ncen = 9346
Npara = 30005 Npara = 73825 Npara = 130844
eavg = 2.68e − 4 eavg = 6.53e − 4 eavg = 3.34e − 4

Fig. 6. Illustration of the center locations of the basis functions with our method and sparse PU+RBF method. The radii of the spheres are the radii of 
sparse centers, or half of the support of the basis functions with sparse PU+RBF method. This example demonstrates that placing centers on the medial 
axis results in more sparse representation.

basis functions on the medial axis. The results indicate that the number of sparse centers by our method is only about one 
fourth of that by the Voronoi diagram based RBF method with about the same approximation errors, except for the Knot 
model. The comparison with the partition of unity based RBF method demonstrates the effect of center locations on sparsity. 
The partition of unity based RBF method locates the centers on the object surface. Each basis function is composed of a 
quadratic polynomial in a local coordinate system and a normalized radial basis function, thus needs 14 floating numbers 
and calls for more mathematical operations. From Table 1, we can see that, with about the same accuracy the number 
of parameters by our method is 1/3 to 1/10 of that of the partition of unity based sparse RBF method, depending on the 
complexity of models. Fig. 6 illustrates the unions of the spheres corresponding to the basis functions by our method and by 
the partition of unity based RBF method respectively for the Horse model. This example demonstrates that placing centers 
on the medial axis results in more sparse representation.

Because the Voronoi diagram based RBF method and our method both adopt global optimization, the running time for 
the two methods is much longer than that of sparse partition of unity based RBF method. For example, for the Vase model 
which has about 15, 000 input surface points, our method takes about 5 minutes in which about 3 minutes are expended 
in forming the matrix A in the optimization problem (Eq. 11). The computational time for the Voronoi-based RBF method 
is about 7 minutes whereas it is only 15 seconds for the sparse partition of unity based RBF method.

5.4. Applications in 3D icon construction

Nowadays it’s a common requirement to preview the models or scenes as 3D icons in some virtual applications. The 
preview requires to display the models fast, where the transmission may be a limitation. The problem is how to keep more 
details using as little data as possible. Thus, the sparse representation is useful for such application.

To illustrate the advantage of sparse representation, we compare the file storage of our representation and some popular 
3D file formats. Although many file formats compress data, the data amount is still large when the models consist of many 
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Table 2
The comparison of file storage (KB) between our representation and popular 3D file formats. The last column is the file storage of simplified meshes with 
the same accuracy with our representation.

Models Ours LWO PLY OBJ OFF WRL STL Mesh simplification
(Garland and Heckbert, 1997)

Squid 72 173 404 411 422 590 618 162
Bimba 184 425 1026 1048 1070 1480 1516 357
Horse 95 221 516 527 539 753 789 122
Vase 155 407 987 1003 1030 1422 1452 226
Knot 161 1118 2737 2858 2856 3934 3990 3025
Igea 350 3717 8257 8365 8599 11677 11400 1379

complex primitives. We also compare the file storage with a mesh simplification method (Garland and Heckbert, 1997) as 
listed in the last column of Table 2. From the table, it can be seen that our representation uses much less storage space 
than other file formats to represent the same models with about the same accuracy, especially for complex models.

5.5. Limitations

There are some limitations for our sparse implicit representations. Firstly, our representation is not efficient for planar 
models and models with sharp features (such as a cube) due to the nature of Gaussian radial basis functions. One possibility 
for improvement is to introduce other types of basis functions in the sparse representations. Secondly, for complex models, 
enough sampling points have to be sampled in the detailed places, which leads to larger optimization problem and takes 
longer time to solve. Finally, the running time is also a limitation of our sparse representation. Currently the most expensive 
step in our algorithm is to form the matrix A in the optimization problem (Eq. 11). This should be able to greatly speed 
up by GPU implementation. Furthermore, the size of the optimization problem depends on the number of sampling points. 
Thus the suitable choice of the sampling density is also helpful for reducing the computation time.

6. Conclusion

In this paper, a sparse surface representation is proposed for arbitrary surface models. The input surface model is approx-
imated with radial basis functions whose centers are located on the medial axis of the input object surface. The sparsity of 
the RBF representation is computed by solving an L1 optimization problem. Comparisons and experimental results indicate 
that our method needs much less number of parameters to represent the input surface models. We demonstrate an applica-
tion of our sparse representation in 3D icon construction which shows that our representation is much more compact than 
other file formats.

As for future work, there are some possible directions to improve our sparse representation. Firstly, radial basis functions 
in other forms can be investigated to improve the performance of approximation; And other types of basis functions may 
increase the ability to represent planar models and models with sharp features. Secondly, it will reduce lots of running time 
if the sparse optimization is combined with some local approximation technique. Furthermore, accelerating the algorithm 
of our method by GPU implementation is worthy of further investigation.
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