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Subdivision is a well-known and established method for generating smooth curves and
surfaces from discrete data by repeated refinements. The typical input for such a process
is a mesh of vertices. In this work we propose to refine 2D data consisting of vertices of a
polygon and a normal at each vertex. Our core refinement procedure is based on a circle
average, which is a new non-linear weighted average of two points and their corresponding
normals. The ability to locally approximate curves by the circle average is demonstrated.
With this ability, the circle average is a candidate for modifying linear subdivision schemes
refining points, to schemes refining point-normal pairs. This is done by replacing the
weighted binary arithmetic means in a linear subdivision scheme, expressed in terms of
repeated binary averages, by circle averages with the same weights. Here we investigate
the modified Lane–Riesenfeld algorithm and the 4-point scheme. For the case that the
initial data consists of a control polygon only, a naive method for choosing initial normals
is proposed. An example demonstrates the superiority of the above two modified schemes,
with the naive choice of initial normals over the corresponding linear schemes, when
applied to a control polygon with edges of significantly different lengths.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Subdivision schemes generate smooth curves/surfaces from discrete data by repeated refinements. Linear schemes are
well understood and have been used in applications, such as Computer Graphics and Computer Aided Geometric Design. 
The typical input to these schemes consists of a mesh of vertices. For information on linear subdivision schemes see e.g. 
Dyn and Levin (2002). In recent years linear schemes were adapted to refine other types of geometric objects such as sets, 
manifold-valued data, and nets of functions (see e.g. Dyn and Farkhi, 2002; Rahman et al., 2005; Wallner and Dyn, 2005;
Conti and Dyn, 2011).

This paper is motivated by the idea to design subdivision schemes generating surfaces by repeated refinements of 3D 
point-normal pairs. As a first step towards this aim we designed and investigated subdivision schemes generating 2D curves 
by repeated refinements of 2D point-normal pairs (PNPs). The subdivision schemes considered in this work are based on a 
geometric construction. These schemes are significantly different from Hermite schemes, which are linear schemes refining 
point-tangent pairs (Merrien, 1992). We plan to extend our schemes to schemes generating surfaces by refining point-
normal pairs. It is important to note that point-normal pairs can be obtained from point-tangent pairs but not vice versa.
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The approach taken here is similar to that taken in the adaptation of linear subdivision schemes to manifold-valued data 
in Dyn and Sharon (2016b) and Wallner and Dyn (2005) and to sets in Dyn and Farkhi (2002) and Kels and Dyn (2013). The 
binary arithmetic mean in the refinement rules of linear subdivision schemes, expressed in terms of such repeated averages, 
is replaced by a weighted binary average of two PNPs. Such an average is designed here, based on a geometric construction 
involving a circle and hence its name circle average. With this average we modify the Lane–Riesenfeld algorithm (Lane and 
Riesenfeld, 1980), namely all spline subdivision schemes, and the 4-point scheme (Deslauriers and Dubuc, 1989; Dyn et al., 
1987) to refine PNPs.

Other modifications of these schemes which refine points are available. The most relevant to our work are Dodgson 
and Sabin (2005) and Cashman et al. (2013), and we plan to compare the performance of our modifications with their 
performance.

An interpolatory scheme refining PNPs, where the inserted PNP is determined by a similar construction to the circle 
average with weight 1

2 , is presented in Chalmovianský and Jüttler (2007). While in Chalmovianský and Jüttler (2007), the 
scheme converges and the limit of the normals is equal to the normals of the limit curve, in our schemes this is not 
necessarily the case. Yet our approach yields a variety of subdivision schemes which are not limited to a subclass of initial 
PNPs as in Chalmovianský and Jüttler (2007).

Here is an outline of the paper.
In section 2 we first define the circle average by an explicit geometric construction, and then prove that it is indeed 

an average. For that we prove the consistency property, which guarantees that all repeated averages originating from two 
PNPs can be expressed as one average with an appropriate weight. We also show that the circle average approximates well 
short pieces of smooth curves, which makes it a good candidate for modifying linear subdivision schemes refining points to 
schemes refining PNPs, by the approach mentioned above. In section 3 we modify in this way the Lane–Riesenfeld algorithm 
and also the interpolatory 4-point scheme. We prove that the modified schemes are convergent, and demonstrate by figures 
and a video their editing capabilities. We provide also a simple method for defining initial normals, in case the input consists 
of control points only. The advantage of the resulting schemes over the corresponding linear schemes is demonstrated for 
initial control polygons with edges of significantly different lengths.

2. The average

In this section we present the construction of a weighted binary average of two pairs each consisting of a point and a 
normal. All the weighted averages of the two pairs are located on a circle. When the two pairs are sampled from a circle, 
the weighted averages stay on that circle.

2.1. Construction of the circle average

We first introduce a new binary operation and then show that it is an average, which we term the circle average. Given a 
real weight ω ∈ [0, 1] and two pairs, each consisting of a point and a normal unit vector P0 = (p0, n0) and P1 = (p1, n1) in 
2D space, we produce a new pair Pω = (pω, nω) denoted by P0 �ω P1. For ω = 1

2 we use also the shorter notation P0 � P1.
To present the operation P0 �ω P1 we introduce some notation. The line defined by the vector ni and passing through 

the point pi is denoted by li, i = 0, 1. The angle θ(u, v) denotes the angle between the vectors u and v . In the special case 
of u = n0 and v = n1, the symbol θ substitutes θ(n0, n1). Observe that 0 ≤ θ ≤ π . The length of the segment [p0, p1] is 
denoted by |p0 p1|, and −−→p0 p1 denotes the vector −−−−→

p1 − p0.
Given three non-collinear points a, b, c, we denote by bc the line passing through b and c, and by H P (a; bc) the half-

plane defined by the line bc which contains the point a. For two unit vectors u = (cosα, sinα), v = (cos β, sin β), we denote 
by G A(u, v; ω) their weighted geodesic average given by

G A(u, v;ω) = (cosγ , sinγ ), γ = (1 − ω)α + ωβ. (1)

The construction of Pω = {pω, nω} = P0 �ω P1 is done in several steps.

1. Construct the perpendicular [p0, p1]⊥ to the segment [p0, p1] at its midpoint. Compute the angle θ . Construct two 
circles with centers o0 and o1 on [p0, p1]⊥ , passing through p0 and p1, so that the central angles �p0oi p1, i = 0, 1
equal θ . Note that the two circles are symmetric relative to the segment [p0, p1], with the same radius |p0 p1|

2sin θ
2

.

2. For each circle, take the short arc connecting p0 and p1. We call the above two arcs “candidate arcs”, and the two 
circles “candidate circles”. One of the candidate arcs is chosen in the next step. We denote the selected candidate arc 
by 
�
P0 � P1 , its length by | �P0 � P1 |, and the center of the corresponding circle by o∗ .

3. Selection Criterion. Let q be the intersection point of l0 and l1. Consider the two half-planes defined by the line p0 p1. 
If n0 and n1 are in different half-planes (relative to p0 p1) then take as 

�
P0 � P1 the arc which is in the same half-plane 

as q, otherwise 
�
P0 � P1 is the other candidate arc.

4. Compute pω ∈ �P0 � P1 such that the length of the part of 
�
P0 � P1 between p0 and pω is ω| �P0 � P1 |, or equivalently 

such that the angle �p0o∗ pω = ωθ .
5. Take the normal nω as G A(n0, n1; ω).
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Fig. 1. Construction of P0 � 1
2

P1.
�
P0 � P1 is the bold arc.

See Fig. 1 for examples. The selection criterion and the following special cases are chosen to guarantee that the circle 
average depends continuously on the data.

Special cases:

(i) If θ = 0, i.e. n0 = n1, then 
�
P0 � P1 = [p0, p1], pω = (1 − ω)p0 + ωp1, and nω = n0.

(ii) In case θ = π the construction is not defined.
(iii) If n1 ‖ p0 p1 then we consider both normals to be in the same half-plane relative to p0 p1, and q to be in the same 

half-plane as n0 when θ(n1, 
−−→p0 p1) = π , and in the other half-plane when θ(n1, 

−−→p0 p1) = 0. The case n0 ‖ p0 p1 is dealt 
with similarly.

(iv) If |p0 p1| = 0, i.e. p0 = p1, then pω = p0, and nω is computed as in 5.

Note that P0 �0 P1 = P0 and P0 �1 P1 = P1.
Two examples of the construction are given in Fig. 1. In the left example, the point c0 is taken as the point p 1

2
since 

n0, n1 /∈ H P (q; p0 p1) and c1 /∈ H P (q; p0 p1). In the right example, n1 ∈ H P (q; p0 p1) while n0 /∈ H P (q; p0 p1). Thus the point 
c1 ∈ H P (q; p0 p1) is selected as p 1

2
. Note that the candidate arcs in both cases are the same, since in both examples θ is the 

same.
In the next subsection we show that P0 �ω P1 is indeed a weighted average.

2.2. The consistency property

In this section we show that

∀t, s,k ∈ [0,1], (P0 �t P1)�k (P0 �s P1) = P0 �ω∗ P1, ω∗ = ks + (1 − k)t (2)

We call this property of the new operation consistency. With this property the operation �ω is an average.
To prove (2), we first show

Lemma 2.1. Assume w.l.o.g. that t < s. Let Pt = P0 �t P1 , and P s = P0 �s P1 . Then one of the candidate circles for 
�
Pt � P s is the 

same as the circle of 
�
P0 � P1.

Proof. Let o∗ denote the center of the circle of 
�
P0 � P1 . We show that this circle meets the requirements of a candidate 

circle for 
�
Pt � P s . Indeed, it passes through pt and ps , and the central angle �pto∗ ps equals (s − t)θ , which is the angle 

between nt and ns . Thus this circle is a candidate circle for 
�
Pt � P s . �

Our proof of the consistency property is based upon a classical result in Euclidean geometry.

Lemma 2.2. Let a, b, c, d be the four vertices of a convex quadrilateral and let �a, �b, �c, �d be the angles of the quadrilateral at the 
corresponding vertices. Then

�a ≥ π − �b ⇐⇒ π − �d ≥ �c.

See Fig. 2 for an example.
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Fig. 2. Preserving the inequality α ≤ β ⇒ δ ≤ γ .

Fig. 3. The setup of Theorem 2.3.

Proof. Since �a + �b + �c + �d = 2π , �a + �b ≥ π ⇐⇒ �c + �d ≤ π , which proves the claim of the lemma. �
The preservation of inequality expressed in Fig. 2, follows directly from the lemma.
Before proceeding we introduce more notation. Let Pω = P0 �ω P1 = (pω, nω). We denote by lω the line through pω in 

direction nω , and by |αω| the angle between the vectors nω and −−→p0 p1. Note that 0 ≤ |αω| ≤ π . We introduce the convention 
that αω > 0 (αω < 0) if nω is to the left (right) of −−→p0 p1, when both vectors are anchored in the same point.

We now prove the consistency property in case the two normals are in the same half-plane relative to p0 p1 or equiva-
lently that α0α1 > 0. First, we show

Theorem 2.3. Let n0 and n1 be in the same half-plane relative to p0 p1 , and let t, s ∈ [0, 1], be such that t < s. Then,

�
Pt � P s ⊂ �P0 � P1.

Proof. W.l.o.g., assume that α0 > α1 > 0 (see Fig. 3). This assumption guarantees that n0, n1 /∈ H P (q; p0 p1). Since the vectors 
n0 and n1 are in the same half-plane relative to p0 p1 the candidate arc in this half-plane is selected by the selection 
criterion.

According to Lemma 2.1, the circle containing 
�
P0 � P1 is considered as a candidate for 

�
Pt � P s . By definition of nt

αt = (1 − t)α0 + tα1, αs = (1 − s)α0 + sα1

Since t < s and α0 > α1, we obtain αt > αs .
Let α′

t (α′
s) be the angle between pt ps and lt (ls), and let q′ be the intersection point between lt and ls . By Lemma 2.2, 

αt > αs ⇒ α′
t > α′

s . Therefore nt, ns /∈ H P (q′; pt ps), implying that 
�
Pt � P s ⊂ �P0 � P1 . �

To prove (2) it remains to show that for Pt �k P s = (p̃, ̃n), �p̃o∗ p0 = ω∗θ , and θ(n0, ̃n) = ω∗θ . Indeed

�p̃o∗ p0 = �pto∗ p0 + k�pto∗ ps = tθ + k(s − t)θ = ω∗θ,

and similarly

θ(n0, ñ) = θ(n0,nt) + kθ(nt ,ns) = ω∗θ.

Next we discuss the case when the normals n0, n1 are in different half-planes relative to p0 p1.

Theorem 2.4. For n0 and n1 in different half-planes relative to p0 p1 , the consistency, as defined in (2) holds.

Proof. We assume w.l.o.g. that n0 ∈ H P (q; p0 p1) and n1 /∈ H P (q; p0 p1), namely that α0 < 0, α1 > 0, and that π −|α0| > α1
(see Fig. 4).
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Fig. 4. The setup of Theorem 2.4.

Fig. 5. Construction of the circle average with ω = − 1
8 , 9

8 .

We take β0, β1 such that 0 < β0 < π − θ , and β1 = β0 + θ < π , and define normal vector n+
i such that θ(n+

i , −−→p0 p1) = βi , 
and a pair P+

i = (pi, n+
i ), for i = 0, 1. Note that θ(n+

0 , n+
1 ) = θ = θ(n0, n1).

Let q+ be the intersection point of the two lines defined for i = 0, 1 by the vector n+
i and passing through 

the point pi . By the choice of β0 and β1, we have H P (q+; p0 p1) �= H P (q; p0 p1). Thus, according to the selection

criterion, 
�

P+
0 � P+

1 = �P0 � P1 .
Let (pω, nω) = P0 �ω P1, and (p+

ω, n+
ω) = P+

0 �ω P+
1 . By the definition of the average, �p0o∗ pω = ωθ, �p0o∗ p+

ω = ωθ , 
and since pω and p+

ω are on 
�
P0 � P1 , they are equal.

Let 0 < t < s < 1. By the above discussion pt = p+
t , ps = p+

s , while nt �= n+
t , ns �= n+

s . By (1), we have

θ(nt,ns) = θ(n+
t ,n+

s ) = (s − t)θ.

Thus, 
�
Pt � P s = �

P+
t � P+

s , and according to Theorem 2.3

�
Pt � P s = �

P+
t � P+

s ⊂ �
P+

0 � P+
1 = �P0 � P1.

The rest of the proof of (2) is as in the proof of Theorem 2.3. �
Finally, we conclude from Theorem 2.3 and Theorem 2.4,

Corollary 2.5. The consistency property holds regardless of the location of the normals relative to p0p1 .

The consistency property of the operation P0 �ω P1, ω ∈ [0, 1] guarantees that it is a weighted binary average and 
allows to extend it for weights outside [0, 1].

Let ω− < 0 and ω+ > 1. For ω− we extend the arc 
�
P0 � P1 on the selected circle outward p0, such that �pω−o∗ p0 =

|ω−|θ , and similarly, for ω+ we extend the arc outward p1 such that �pω+o∗ p0 = ω+θ . The computation of the normal is 
done by (1). See Fig. 5 for examples.

It is easy to see that this extension is well defined for values of ω close to [0,1].

2.3. The arc 
�
P0 � P1 as an approximation tool for curves

In this subsection we compare the quality of the arc P0 � P1 as an approximation tool for curves with that of the optimal 
arc approximating curves in the least-squares sense. We expect the arc 

�
P0 � P1 to approximate well short pieces of smooth 

curves, in analogy to the approximation capabilities of cubic Hermite interpolation (Conte and De Boor, 1980, Chapter 6).
Given a parametric curve 
(t), it is sampled at {ti}100

i=0 with ti+1 − ti = h > 0 and also its two normals n0 and n100
are sampled at 
(t0) and 
(t100). We solve the optimization problem of finding the circle copt minimizing the sum of 
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Table 1
copt vs. a
 .

Curve t0 t100 max
0≤i≤100

ρi max
0≤i≤100

�i
1

101

100∑
i=0

ρi
1

101

100∑
i=0

�i

x(t) = 2 cos t 5
8 π π 0.04145 0.05984 0.01315 0.02909

y(t) = sin t 12
16 π 15

16 π 0.00580 0.00710 0.00193 0.00377

x(t) = t cos t 10
8 π 17

8 π 0.20098 0.28437 0.06613 0.14787

y(t) = t sin t 24
16 π 31

16 π 0.02337 0.02643 0.00794 0.01530

x(t) = t3 − 3t 0 6
8 π 1.46814 1.97726 0.49597 1.02364

y(t) = t2 − 1 3
16 π 9

16 π 0.25617 0.32838 0.09297 0.17556

squares of distances to the input points. Next we construct the arc a
 = �
P0 � P100 , where Pi = (
(ti), ni)), i = 0, 100. 

For every given 
(ti), we find the nearest point on copt and on a
 , and measure the distances to these points, denoted by 
ρi = dist(
(ti), copt), �i = dist(
(ti), a
). The next table presents values of two measures of the quality of the approximation 
of three analytic curves by copt and a
 in two parametric intervals.

The examples in Table 1 demonstrate that 
�
P0 � P1 can serve as an approximating tool in scenarios when the sampling is 

expensive and/or when the computation time is critical. Moreover, the quality of the approximation by 
�
P0 � P1 increases as 

the length of the interval of the parameter t decreases. This observation points to the advantage of approximating a curve 
by piecewise arcs, and to the possibility of using the circle average in subdivision schemes refining point-normal pairs.

3. Subdivision schemes with circle averages

In this section we consider subdivision schemes refining point-normal pairs, which are obtained from converging linear 
subdivision schemes. To obtain these schemes we express the linear schemes in terms of repeated binary averages of points 
and replace these averages by the circle average. We term the so obtained schemes “Modified schemes”.

It is easy to verify that any modified subdivision scheme reconstructs circles, namely, if the initial data is sampled from 
a circle, the limit of the modified scheme is that circle.

The convergence of the modified schemes is proved in two parts, the convergence of the points and the convergence of 
the normals. The proof of the convergence of the points is based on the following result:

Result A (Dyn and Sharon, 2016b, Theorem 3.6) A subdivision scheme refining points converges for any initial data, if any 
sequence of control polygons 

{
P j = {p j

i : i ∈ Z}} j∈N0
generated by this scheme satisfies

• e j+1 ≤ ηe j , η ∈ (0, 1), where e j is the maximal length of an edge in P j (contractivity with factor η).
• |p j+1

2i − p j
i | ≤ ce j , with c > 0 (safe displacement).

Since our proof of convergence depends on the modified subdivision scheme, it is given after the scheme is presented.

3.1. The modified Lane–Riesenfeld (MLR) algorithm

To obtain the first class of subdivision schemes we substitute the arithmetic average by the circle average in the lin-
ear Lane–Riesenfeld algorithm (LLR) (Lane and Riesenfeld, 1980), obtaining the Modified Lane–Riesenfeld (MLR) algorithm, 
presented in Algorithm 1.

In Fig. 6 we present curves generated by the MLR algorithm with m = 3 from the same initial data, but with one initial 
normal changed, demonstrating the editing capabilities of the algorithm. For comparison we depict also the curves generated 
by the LLR algorithm.

3.1.1. Convergence analysis
First we prove the convergence of the points. Our analysis is based on Result A, which gives sufficient conditions for the 

convergence of a subdivision scheme refining points. These conditions in fact apply to any sequence of control polygons.
First, we introduce some additional notation related to the MLR algorithm. For k = 0, ..., m − 1 and j ∈ N0, P j,k

i =
(p j,k

, n j,k
) and
i i
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Algorithm 1 MLR.
Input: m ∈N0, Pi = (pi , ni), i ∈ Z.

for i ∈ Z do
P 0

i ← Pi

end for
for j=1,2,. . . do

for i ∈ Z do
P j,0

2i ← P j−1
i

P j,0
2i+1 ← P j−1

i � 1
2

P j−1
i+1

⎫⎬
⎭ elementary refinement

end for(i)
for k = 1, . . . , m − 1 do

for i ∈ Z do
P j,k

i ← P j,k−1
i � 1

2
P j,k−1

i+1

⎫⎬
⎭ smoothing step

end for(i)
end for(k)
for i ∈ Z do

P j
i ← P j,m−1

i

⎫⎬
⎭ result of current iteration

end for(i)
end for(j)

Fig. 6. Editing capabilities of the MLR with m = 3 by a change of one initial normal. Bold: MLR curve, dots: LLR curve.

e j,k = max
i∈Z

{|p j,k
i p j,k

i+1|},

θ j,k = max
i∈Z

{θ(n j,k
i ,n j,k

i+1)},

μ j,k = 1

2 cos θ j,k

4

.

(3)

We also define for j ∈N0

e j = e j,m−1, θ j = θ j,m−1, μ j = μ j,m−1. (4)

Next we prove that the MLR satisfies the first condition of Result A from a certain refinement level and on.

Lemma 3.1. There exists j∗ ∈N0 such that the MLR algorithm is contractive in refinement levels above j∗, namely satisfies e j+1 ≤ ηe j

with η ∈ (0, 1), for j ≥ j∗ .

Proof. Consider the pairs {P j,0
2i+1}i∈Z inserted in the elementary refinement step of the MLR algorithm. By the definition of 

the circle average (see Fig. 7a), we have
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Fig. 7. The setup of Lemmas 3.1 and 3.2.

|p j+1,0
2i p j+1,0

2i+1 | = |p j
i p j

i+1|
2 cos

(
θ(n j

i ,n
j
i+1)

4

) ≤ e j

2 cos
(

θ j

4

) ≤ μ je j. (5)

Thus

e j+1,0 ≤ μ je j . (6)

In any smoothing step by the triangle inequality, and similar reasoning leading to (5) (see Fig. 7b), we have

|p j,k+1
i p j,k+1

i+1 | ≤ |p j,k+1
i p j,k

i+1| + |p j,k
i+1 p j,k+1

i+1 | ≤ e j,k

2 cos
(

θ j,k

4

) + e j,k

2 cos
(

θ j,k

4

) ≤ e j,k 2μ j,k.

Therefore

e j,k+1 ≤ e j,k(2μ j,k), k = 0, . . . ,m − 2. (7)

Combining (7) and (6) we obtain

e j+1 = e j+1,m−1 ≤ 2μ j+1,m−2e j+1,m−2 ≤ . . .

≤ (2μ j+1,m−2) . . . (2μ j+1,0)e j+1,0

≤
(
μ j

m−2∏
k=0

(2μ j+1,k)
)

e j

(8)

Defining η j+1 = μ j ∏m−2
k=0 (2μ j+1,k) we obtain from (8) and (3)

e j+1 ≤ η j+1e j, (9)

with

η j+1 =
m−2∏
k=0

(
1

cos θ j+1,k

4

)
1

2 cos θ j

4

(10)

By the subdivision of the normals, we have

θ j+1,0 ≤ 1

2
θ j, θ j+1,k ≤ θ j+1,k−1. (11)

Thus

θ j+1 = θ j+1,m−1 ≤ θ j+1,0 ≤ 1

2
θ j. (12)

In view of (11) and (12) θ j,k ≤ θ j,0 ≤ θ j−1, k = 0, ..., m − 1, and we get from (10)

η j+1 ≤ 1

2

(
1

cos θ j

4

)m

. (13)

We also conclude from (12) that 1

cos θ j
4

is monotone decreasing with j.

Let j∗ be the minimal j for which(
1

cos θ j

4

)m

< 2. (14)

Then for j ≥ j∗, η j ≤ η j∗ < 1 and by (9) the MLR is contractive. �
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Table 2
θm as a function of m.

m 1 2 3 4 5 6

θm > π π > 7
9 π > 13

18 π > 11
18 π > 10

18 π

Defining θm = θ j∗ we obtain from (14)

θm = 4 arccos
1

m
√

2

For m = 1, θ1 = 4 arccos 1
2 = 4 π

3 > π , and since the angle between any two normal vectors is at most π , we conclude that 
the MLR algorithm is contractive for any initial data from the first level. Similarly for m = 2, since

θ2 = 4 arccos
1√
2

= 4
π

4
= π.

For m = 3, θ3 = 4 arccos 1
3√2

> 7
9 π and the MLR algorithm with m = 3 is contractive from level j∗ = 1. We give in Table 2

lower bounds of θm for several small values of m. As can be concluded from Table 2, j∗ = 1 for 3 ≤ m ≤ 6.
To show the convergence of the MLR scheme by Result A, it remains to prove that the scheme is displacement safe.

Lemma 3.2. The MLR scheme is displacement safe.

Proof. The proof uses the notation of Lemma 3.1 and its proof. By the triangle inequality and since p j+1,0
2i = p j

i , p j+1
2i =

p j+1,m−1
2i we get

|p j+1
2i p j

i | ≤
m−2∑
k=0

|p j+1,k
2i p j+1,k+1

2i |. (15)

In view of Algorithm 1 and the geometry of the circle average (see Fig. 7) we have

e j+1,k+1 ≤ 2 max
i

|p j+1,k
i p j+1,k+1

i |, k = 0, ...,m − 2,

|p j+1,k
i p j+1,k+1

i | ≤ e j+1,k

2 cos θ j+1,k

4

, k = 0, ...,m − 2,

e j+1,0 ≤ e j

2 cos θ j

4

.

Thus for k = 0, ..., m − 2,

max
i

|p j+1,k
i p j+1,k+1

i | ≤
max

i
|p j+1,k−1

i p j+1,k
i |

cos θ j+1,k

4

≤ · · · ≤
max

i
|p j+1,0

i p j+1,1
i |

k∏
h=1

cos θ j+1,h

4

≤ e j+1,0

2 cos θ j+1,0

4

k∏
h=1

cos θ j+1,h

4

≤ e j

4 cos θ j

4

k∏
h=0

cos θ j+1,h

4

(16)

By (11), (12) and since θ j ≤ θ0 ≤ π we have θ j+1,k

4 ≤ θ j

4 < π
3 , k = 0, 1, . . . , m − 1, and (16) can be replaced by

max
i

|p j+1,k
2i p j+1,k+1

2i | ≤ e j

4
(

cos π
3

)k+2
≤ 2ke j, k = 0,1, . . . ,m − 2.

Insertion of this bound in (15) leads to

max
i

|p j+1
2i p j

i | ≤ e j
m−2∑
k=0

2k ≤ 2m−1e j .

This proves that the MLR scheme is displacement safe, with a constant which grows exponentially with m. �
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We conclude from Lemmas 3.1, 3.2 and Result A the convergence of the points. It remains to prove the convergence 
of the normals. Recalling that the operation between the normals in the circle average is a geodesic average independent 
of the points, the convergence of the normals is a direct consequence of the following result, which is a special case of 
Corollary 3.3 in Dyn and Sharon (2016a).

Result B (Dyn and Sharon, 2016a, Corollary 3.3) The LR algorithm with the Euclidean average replaced by a geodesic average 
is convergent.

Corollary 3.3. The MLR scheme for m ≥ 1 is convergent.

3.1.2. Interactive demo
We developed an interactive software with drawing capabilities, whose input consists of point-normal pairs, and its 

output is the corresponding limit of the MLR scheme with m = 1, displayed on the screen. In this software points can be 
dragged, normals can be rotated, and control polygons can be extended and reflected. Also several control polygons can be 
maintained simultaneously.

As an example, the head of Mickey Mouse is drawn, starting from a simple control polygon. A video of the drawing 
process, from an empty screen to the final sketch of Mickey Mouse can be found at https :/ /youtu .be /CGTiDztzVaM. This 
example demonstrates the drawing capabilities of the MLR scheme, with m = 1, and the quality of naive choice of initial 
normals, as explained in subsection 3.3.

3.2. The modified 4-point scheme (M4Pt)

In this section we modify the interpolatory linear 4-point subdivision scheme (L4Pt) (Dyn et al., 1987; Deslauriers and 
Dubuc, 1989),

p j+1
2i = p j

i , p j+1
2i+1 = − 1

16

(
p j

i−1 + p j
i+2

) + 9

16

(
p j

i + p j
i+1

)
(17)

We use the form suggested in Kels and Dyn (2013) for the refinement rule in (17) written in terms of repeated binary 
averages as

p j+1
2i+1 = 1

2

(9

8
p j

i − 1

8
p j

i−1

) + 1

2

(9

8
p j

i+1 − 1

8
p j

i+2

)
. (18)

The modified 4-point scheme (M4Pt) with the circle average replacing the arithmetic average is presented in Algorithm 2.

Algorithm 2 M4Pt.
Input: Pi = (pi , ni), i ∈ Z.

for i ∈ Z do
P 0

i ← Pi

end for
for j=1,2,. . . do

for i ∈ Z do
P j

2i ← P j−1
i

S L ← P j−1
i �− 1

8
P j−1

i−1

S R ← P j−1
i+1 �− 1

8
P j−1

i+2

P j
2i+1 ← S L � 1

2
S R

end for
end for

Fig. 8 demonstrates the editing capabilities of the M4Pt scheme by a change of one initial normal. Note that the control 
polygon and the normals in this example are the same as those in Fig. 6.

3.2.1. Convergence analysis
We begin the analysis by proving the convergence of the normals. As we mentioned, the operation between the normals 

in the circle average is a geodesic average independent of the points. The convergence of the normals is a direct consequence 
of the following result.

Result C (Dyn and Sharon, 2016b, Example 5.1) The 4-point scheme adapted to manifold valued data by replacing in (18)
the average by geodesic average is convergent.

By definition, any interpolatory subdivision is displacement safe. Thus it remains to prove the contractivity of the M4Pt, 
in order to show its convergence by Result A.

https://youtu.be/CGTiDztzVaM
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Fig. 8. Editing capabilities of the M4Pt by a change of one initial normal. Bold: M4Pt curve, dots: L4Pt curve.

Fig. 9. The setup of Lemma 3.4.

Lemma 3.4. (Contractivity) The M4Pt scheme is contractive for j large enough.

Proof. Let SL = (sL, nL), S R = (sR , nR) be the intermediate pairs obtained by the M4Pt scheme (see Algorithm 2). For the 
proof we introduce the notation αi = θ(n j

i , n
j
i+1). By the triangle inequality and the geometry of the circle average (see 

Fig. 9),

|p j+1
2i p j+1

2i+1| ≤ |p j+1
2i+1sL | + |sL p j+1

2i | ≤ |sR sL |
2 cos( 1

4 θ(nL,nR))
+ |p j

i−1 p j
i |sin αi−1

16

sin αi−1
2

. (19)

Next we show that

θ(nL,nR) ≤ 5

4
θ j. (20)

Indeed, θ(nL, nR) ≤ θ(nL, n
j
i ) + θ(n j

i , n
j
i+1) + θ(n j

i+1, nR), where θ(nL, n
j
i ) = 1

8 θ(n j
i−1, n

j
i ) and similarly θ(nR , n j

i+1) =
1
8 θ(n j

i+1, n
j
i+2). Since θ j = max

i
θ(n j

i ,n j
i+1), (20) follows.

To bound |sL sR | we use again the triangle inequality

|sL sR | ≤ |sL p j
i | + |p j

i p j
i+1| + |p j

i+1sR |,
and since SL = P j

i �− 1
8

P j
i−1, S R = P j

i+1 �− 1
8

P j
i+2,

|sL p j
i | ≤

|p j
i−1 p j

i |sin αi−1
16

sin αi−1
2

, |sR p j
i+1| ≤

|p j
i+2 p j

i+1|sin αi+1
16

sin αi+1
2

(21)

Thus
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|sL sR | ≤ e j
(

1 + sin αi−1
16

sin αi−1
2

+ sin αi+1
16

sin αi+1
2

)
, (22)

and we get from (19), (20) and (22)

|p j+1
2i p j+1

2i+1| ≤ e j
(

1 + sin αi−1
16

sin αi−1
2

+ sin αi+1
16

sin αi+1
2

) 1

2 cos 5
16θ j

+ e j
( sin αi−1

16

sin αi−1
2

)
.

Similarly

|p j+1
2i+1 p j+1

2i+2| ≤ e j
(

1 + sin αi−1
16

sin αi−1
2

+ sin αi+1
16

sin αi+1
2

) 1

2 cos 5
16 θ j

+ e j
( sin αi+1

16

sin αi+1
2

)
.

Therefore

e j+1 ≤ e j
(

1 + sin αi−1
16

sin αi−1
2

+ sin αi+1
16

sin αi+1
2

) 1

2 cos 5
16 θ j

+ Ae j,

with

A = max
i

sin αi
16

sin αi
2

.

Thus, e j+1 ≤ η je j with

η j = 1

2

(
1 + sin αi−1

16

sin αi−1
2

+ sin αi+1
16

sin αi+1
2

) 1

cos 5
16θ j

+ A. (23)

Since αi ≤ θ j and the normals converge, lim j→∞ θ j = 0. Thus we get from (23)

η∗ = lim
j→∞

η j = 1

2
(1 + 1

8
+ 1

8
) + 1

8
= 3

4
(24)

We conclude from (24) that for j large enough η j < 1. Defining J∗ such that η j < 7
8 for j ≥ J∗ , we get that the M4Pt 

scheme is contractive for j ≥ J∗ , with η j = 7
8 . �

We conclude from Lemma 3.4 and Result A the convergence of the points.

Corollary 3.5. The M4Pt scheme is convergent.

3.3. Naive choice of initial normals

In previous sections we discussed the scenario in which normals are given at every vertex of the input control polygon. 
In this section we propose a method for determining initial normals at the vertices of a given control polygon.

To determine a normal at the vertex pi , we first compute the normals vi−1, vi to the neighboring edges of the ver-
tex pi , and the length of these edges, di−1, di . We chose the direction of vi , the normal to the edge pi pi+1, such that 
vi × −−−−→pi pi+1 > 0. The normal at pi is the weighted geodesic average of vi−1, vi as defined in (1), with weights proportional 
to the reciprocal of the length of the corresponding edge,

ni = G A
(

vi−1, vi; di−1

di + di−1

)
.

In case pi is a boundary vertex, the normal is taken as that of the only neighboring edge.
Fig. 10 depicts a control polygon and different curves obtained from it by two modified schemes with initial normals 

computed by the “naive method”. For comparison the curves generated by the corresponding linear schemes from the same 
initial control polygon are also shown. Fig. 10a demonstrates that the MLR algorithm with m = 3 preserves the shape of 
the control polygon more accurately than the corresponding LLR scheme. In Fig. 10b we see that the L4Pt scheme generates 
a self intersecting curve while the curve of the M4Pt scheme is self intersection free and follows the shape of the initial 
polygon smoothly.

The proposed “naive method” determines intuitive initial normals, which can be modified later on, as is shown in the 
example of subsection 3.1.2.
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Fig. 10. Comparison between modified schemes and their corresponding linear schemes. Same initial control polygon (dots); (a) MLR (bold) and LLR 
(regular); (b) L4Pt; (c) M4Pt.
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