Computer-Aided Design 78 (2016) 168-178

Contents lists available at ScienceDirect !C@
Computer-Aided Design s

journal homepage: www.elsevier.com/locate/cad

eBits: Compact stream of mesh refinements for remote visualization”

CrossMark

@

Mukul Sati**, Peter Lindstrom?, Jarek Rossignac*

2School of Interactive Computing, Georgia Institute of Technology, United States
b Jawrence Livermore National Laboratory, United States

ARTICLE INFO ABSTRACT

Keywords:

Triangle mesh compression
Remote visualization

Level of detail

Selective transmission
Local refinement

Triangle collapse

We focus on applications where a remote client needs to visualize or process a complex, manifold triangle
mesh, M, but only in a relatively small, user controlled, Region of Interest (Rol) at a time. The client first
downloads a coarse base mesh, pre-computed on the server via a series of simplification passes on M, one
per Level of Detail (LoD), each pass identifying an independent set of triangles, collapsing them, and, for
each collapse, storing, in a Vertex Expansion Record (VER), the information needed to reverse the collapse.
On each client initiated Rol modification request, the server pushes to the client a selected subset of these
VERs, which, when decoded and applied to refine the mesh locally, ensure that the portion in the Rol is
always at full resolution. The eBits approach proposed here offers state of the art compression ratios (using
less than 2.5 bits per new full resolution Rol triangle when the Rol has more than 2000 vertices to transmit
the connectivity for the selective refinements) and fine-grain control (allowing the user to adjust the Rol
by small increments). The effectiveness of eBits results from several novel ideas and novel variations of
previous solutions. We represent the VERs using persistent labels so that they can be applied in different
orders within a given LoD. The server maintains a shadow copy of the client’s mesh. To avoid sending
IDs identifying which vertices should be expanded, we either transmit, for each new vertex, a compact
encoding of its death tag - the LoD at which it will be expanded if it lies in the Rol - or transmit vertex
masks for the Rol and its neighboring vertices. We also propose a three-step simplification that reduces
the overall transmission cost by increasing both the simplification effectiveness and the regularity of the
valences in the resulting meshes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The triangle-count in large meshes, which may represent
iso-surfaces generated during scientific simulations on a high
performance computing cluster or detailed scans of human
anatomy, precludes their transmission at full resolution from the
server to a remote client for visualization.

The solution of (1) transmitting user-controlled camera mo-
tions to the server, (2) generating the corresponding images on the
server, and (3) streaming them to the client is impractical when
high image resolution and low latency are desired and does not
support local processing of the mesh on the client (e.g., calculating
surface normals, ridges, or other properties).

* This paper has been recommended for acceptance by Scott Schaefer and Charlie
C.L. Wang.
* Corresponding author.
E-mail addresses: mukul@gatech.edu (M. Sati), pl@lInl.gov (P. Lindstrom),
jarek@cc.gatech.edu (J. Rossignac).

http://dx.doi.org/10.1016/j.cad.2016.05.016
0010-4485/© 2016 Elsevier Ltd. All rights reserved.

Our eBits approach strives to minimize the transmission cost
involved in remote visualization and processing. It focuses on
applications where the client needs, at any moment, to have local
access to the mesh at full resolution, but to only a small portion
of a mesh at a time. We refer to that portion as the Region of
Interest (Rol). The server streams the geometry and connectivity
information needed by the client to maintain the Rol at full
resolution each time it is moved by the user.

Hence, the eBits representation provides read and annotation
access of the full resolution mesh to the client, but operations that
alter or refine the mesh locally must be carried out on a private
copy that the client must maintain.

Our contribution builds upon previously proposed strategies
where, at initialization, the server transmits a coarse (highly
simplified) base mesh and then transmits compressed encodings of
local refinements that allow the client to restore to full resolution
the current Rol (Fig. 2), which may be changed arbitrarily by the
user.

To obtain the base mesh, we perform n simplification steps,
each one producing the next level of detail (LoD). Each step per-

http://dx.doi.org/10.1016/j.cad.2016.05.016
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2016.05.016&domain=pdf
mailto:mukul@gatech.edu
mailto:pl@llnl.gov
mailto:jarek@cc.gatech.edu
http://dx.doi.org/10.1016/j.cad.2016.05.016

M. Sati et al. / Computer-Aided Design 78 (2016) 168-178 169

r-triangle
c-triangle

a-triangle
b-triangle

Fig. 1. A t-collapse operation and its inverse v-expand operation. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)

forms a constrained set of triangle-collapse (t-collapse) opera-
tions, each collapsing the three vertices of a c-triangle (collapsible
triangle) into a single vertex v, which becomes an e-vertex (ex-
pandable vertex) in the less refined LoD (Fig. 1). A t-collapse re-
moves a cluster of triangles formed by the c-triangle (blue) and its
3 edge-adjacent b-triangles (boundary triangles, cyan). r-triangles
(remaining triangles, yellow) in a LoD are those that remain in
the coarser LoD. A cut-edge is a clockwise oriented edge of an r-
triangle that is adjacent to a b-triangle and that points to a vertex
of the c-triangle in the mesh before the t-collapse and to v after
the t-collapse. Hence, there are three cut-edges (red arrows) per
c-triangle. The r-triangles that contain a cut-edge are also called
a-triangles.

The inverse v-expand (vertex expand) operation is fully
characterized by identifying v and the three cut-edges amongst the
oriented half-edges that point to v.

Using t-collapse and v-expand operations as building blocks, we
present several novel contributions, which allow us to transmit the
missing connectivity information using only about 2.3 bits per full
resolution triangle added in the modified Rol.

The transmission cost of the connectivity grows with the
number n of simplification passes and with the average degree
(i.e.,valence) of the e-vertices. We minimize the combined effect of
both factors by using triangle collapses, rather than edge collapses,
as simplification primitives and by using a novel algorithm for
optimizing the selection of independent sets of c-triangles at each
pass. Due to these contributions, we observe an average reduction
of the vertex count by about 41% at each pass. Consequently,

ot . . g .
& \JJ Pre-processing Simplification

LoDs

n = 7 simplification passes suffice to produce a base mesh with
only about 2.5% of the original triangle count. Furthermore, we
obtain an average degree of 7.3 for the resulting e-vertices, while a
naive simplification approach yields a significantly higher degree
average (see Section 4).

The information needed to reverse a triangle collapse is stored
in a Vertex Expansion Record (VER). There are several challenges
associated with the use of such VERs to define the local expansion
of the mesh on the client:

1. The client needs to identify the e-vertices. To address this chal-
lenge, we propose two solutions of comparable effectiveness:
(1) transmit a bit mask and (2) transmit a death tag (LoD num-
ber at which the vertex will be expanded) for each vertex cre-
ated by the v-expansion (Section 4).

2. To reduce latency, we do not want the client to have to
request each VER. Hence, the server pushes selected VERs to
the client. But how does the client know which VER should be
applied to which e-vertex? To address this challenge, an eBits
server maintains a shadow copy of the clients mesh and sends
the VERs in the order of increasing vertex IDs in the client’s
representation of the mesh.

3. The VERs are created during a one-time simplification process
on the server. They are indexed by a vertex ID that identifies the
corresponding e-vertex v. Each VER identifies three cut-edges
of v. Unfortunately, the IDs of v and of the cut-edges in the
LOD produced by that simplification pass cannot be used on the
working mesh (the shadow copy of the client mesh maintained
by the server) because the two meshes are typically different:
the working mesh has a full resolution Rol surrounded by rings
of decreasing LoDs. To address this problem, we convert these
initial vertex and edge IDs into their universal ID counterparts,
which are initialized to the natural IDs of the base mesh and
maintained for all vertices of the working mesh by both the
server and the client. On the server, the VERs are indexed by
their universal vertex IDs using a hash map.

4. We wish to reduce the number of bits used to encode the
IDs of the 3 cut-edges and of the death tags of the 3 vertices
created by the v-expansion defined by a VER. Since we know
the LoD at which a vertex is created, we know the range of valid
values for its death tag. Each value has a different probability.

S BT

A W A A N
3 < /% i = \
’SN >~ r'/‘(“ Y"“ :f)f’l

Su*%; SZW : e
i N Local “ﬁ

Refinement ;

Fig. 2. An overview of eBits: The original mesh My, is simplified to obtain a sequence of LoDs. The coarsest mesh (base mesh), M7, is transmitted to the client, who can
request to view a particular region of My in full detail (green Rol in the boxed zoomed in view). The server computes and sends to the client the information needed to refine
the mesh locally (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

170 M. Sati et al. / Computer-Aided Design 78 (2016) 168-178

Local Refinement Batches

Working Mesk
Indices W, W1
Local
Refinement
Batch k
Simplification
Pass n-k

Wk Wm Wn
L . zis x's
y is x's child ancestor

X is alive
Base Mesh

n Mh-(k-1)

Mn—k

I y is aIiveﬁl
Mn-m

Orlglnl\?ll Mesh LoD
0 Indices

Simplification Passes

n n-(k-1)

Birth tags n-k n-m 0

Fig. 3. During preprocessing on the server, an e-vertex x of the base mesh M, is created in LoD M;,_ 1, during simplification pass n — k, as a result of the collapse of a
c-triangle, t (blue), of LoD M,,_. The three vertices of t, including vertex y, disappear (i.e., die) during this t-collapse. We say that y is a “child” of x, because it will be “born”
(created) when x “dies” and is expanded (split) on the client mesh during refinement pass k. Refinement pass k reproduces the exact connectivity of the portion of the LoD
M,,_\ inside (a slightly expanded version of) the Rol. A subsequent refinement pass may further expand y and create new vertices (such as z, which is an ancestor of x). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The measured entropy of this information is about 1.2 bits.
Similarly, we exploit the fact that the distribution of cut-edges
around an e-vertex is biased. On average, the entropy of the cut-
edge information is about 7.09 bits per vertex expansion.

In our experiments, when transmitting the entire mesh, eBits
achieves a connectivity compression ratio approaching 2.08 bpt
(bits per triangle). It is remarkable that eBits approaches state-
of-the-art single-rate compression (e.g., 1.84 bpt guaranteed by
Edgebreaker [1]), yet offers fine-grain control that allows the user
to grow and slide the Rol by small (one edge) increments.

The remainder of the paper starts with an overview of eBits and
discusses its relation with prior art, then provides implementation
details, reports experimental results, and concludes with a detailed
comparison with prior art.

2. Overview

We assume that the original triangle mesh, My, is an orientable
manifold without boundary and that it is represented using a
data-structure where vertices and triangles are associated with
consecutive positive integer IDs.

During a one-time pre-process on the server, My is simpli-
fied using a series of n simplification passes yielding increasingly
coarse LoDs: {My, My, ..., My}. Pass i carefully selects a set of in-
dependent collapsible triangles (c-triangles) in M;_; and collapses
them using t-collapse operations. Each t-collapse collapses 4 tri-
angles and 3 vertices and creates an expandable “parent” vertex
(e-vertex) v in M;.

The server archives Vertex Expansion Records (VERs), which
encode the information needed to undo each t-collapse and to
refine M; to M;_1: namely, the ID of v in M;, the IDs, in M;, of
3 a-triangles that define the cut-edges (see Fig. 1), geometry
information for the new vertices being added, and the death tag
of each child u of v that will be created by the expansion of v. The
death tag indicates the LoD at which u will have to be expanded
(if it is in or near the Rol).

The server also archives a compressed version of the base mesh
(coarsest LOD), M, and the death tag of each one of its vertices.
The compressed base mesh and these death tags are downloaded
by the client before the interactive remote inspection of My starts.
M, is used as the initial version of the working mesh, W. Both the
server and the client maintain synchronously their own local copy
of the evolving W.

As the user defines, and subsequently freely moves the Rol, both
the client and server update W identically to ensure that W is
expanded correctly, representing at full resolution the Rol portion
of W that is selected by the user.

After each user-guided change of the Rol the information used
by the client (and synchronously by the server) to refine the
working mesh is delivered to the client in n batches, called Batch
Expansion Records (BERs) (Fig. 3). Let W, denote the state of the
working mesh W before the refinement process starts and let W,
denote the result of applying BERy.

Below, we first discuss what happens on the client’s side after
each change of Rol, then discuss the pre-processing done once on
the server for each mesh, and finally, what is done on the server to
support user interaction, after each change of Rol.

Client interactions and actions after a change of Rol

The client and server may agree on a particular protocol for
communicating changes of the Rol.

We propose three operations: Pick, Grow, and Slide. For a pick,
the client selects a vertex v of the working mesh W. If v is not at
full resolution, the server transmits VERs to refine the mesh locally
until W contains a full resolution vertex f that is a descendant of
v (and is close to v). A grow preserves f, but increases the size of
the Rol (either by one edge if size is defined using graph distance or
by some increment if size is defined by Euclidean distance). A slide
moves f by one edge of My to a neighboring full resolution vertex.

The client receives a series of BERs, each containing a batch of
VERSs. For each BER, the client identifies the set B of vertices of W
that lie in the Rol and that, according to their death tag, should be
expanded by BER k, which contains the VER for each vertex of B in
the order of their IDs in W.

However, as in [2], some vertices of B must be balanced, before
they can be expanded: we must bring their neighboring vertices to
LoD at least k — 1, so that the VER information can be interpreted
unambiguously. Hence, in batch k, the VER of a vertex v is preceded
by the VERs of neighboring vertices that must be expanded first
to balance v. The client identifies these dependencies recursively
and receives the corresponding VERs in post-order traversal of the
dependency tree.

The VER contains: (1) information needed to identify the 3 cut-
edges of Wj_; from the set of edges incident upon v (Fig. 1), (2)
an encoding of the 2 vectors that allow the client to compute the
vertex coordinates of the 3 children of v in W, (during t-collapse,
we place the parent vertex at the centroid of the child vertices) and
(3) the death tags for the three children of v, indicating the LoDs
when they are to be expanded.

After receiving batch k, the client executes its v-expansions to
produce a new version, Wy, of W. Due to balancing, W, contains full
resolution vertices in the Rol and “rings” of vertices around the Rol
at successively lower resolutions (Fig. 4).

The client and server may adopt a common policy to simplify
the mesh by reversing the expansion outside of the Rol for clusters

M. Sati et al. / Computer-Aided Design 78 (2016) 168-178 171

|

‘\
A
0

N
$

N
T
R%
t\\:o; e
N

\“

(|
\Q\Qsi‘
S8

QL

§\

|

Fig. 4. Working mesh after 2 (top) and 3 (bottom) grow operations. The vertices
are colored by death tag (red for base mesh, orange, yellow, light green, dark
green, cyan, blue, magenta for full resolution). The triangles are shaded magenta
around Rol vertices. Newly inserted clusters are shaded gray. Note that while a grow
operation adds several full resolution vertices, the density of newly added clusters
decreases with distance from the Rol. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

that are not required for balancing. We do not discuss the details of
such cleaning because it may be implemented using simple book-
keeping and t-collapse operations. We do not include cleaning
costs in our timing results.

One-time server side pre-processing:
During each simplification pass, the server carefully selects a
particular set of c-triangles striving to meet three objectives:

1. The order in which the VERs in BER k are sent is unknown in ad-
vance and depends on the current state of W. To ensure that the
encoding of the IDs of cut-edges can be interpreted unambigu-
ously, we require that the star (incident triangles) of a balanced
e-vertex be always identical. This requirement constrains valid
selections of c-triangles to form an independent set, in which
no two c-triangles share a vertex.

2. Each VER requires encoding the choice of 3 edges amongst the
d = deg(v) edges incident upon a vertex v. The entropy of that
information increases with d. Hence, during simplification, we
avoid creating high degree e-vertices.

3. To reduce the cost of transmitting death tags, we wish to re-
duce the total number n of batches, so that the differences be-
tween the death tag of a vertex and the current batch number
k are small integers that can be encoded using fewer bits. An
eager approach to identify the largest number of independent
c-triangles in M may not only increase the irregularity of the
degrees of the vertices of M1, but may also reduce the num-
ber of independent c-triangles in M 1, and hence increase the
number of batches (n).

We have explored a variety of approaches for reducing both
n and the degree irregularity and report (Section 4) a three-
phase solution, ValPack, which is highly effective, as shown by our
experimental results.

Server actions after a change of Rol:

The server receives the same changes of Rol as the client does
and mimics the client actions, described above, for maintaining its
shadow copy of W.

Additionally, the server is responsible for identifying the e-
vertices of each batch, for retrieving the suitable set of VERs, for
translating the information stored in them so that they can be
properly interpreted by the client (in terms of vertex IDs in W),
and for sending these translated VERs in the proper order.

3. Prior art

Randomly accessed clusters: To provide a compressed transmission
format for random access, some approaches divide the mesh into
clusters, compress the connectivity of each cluster using single-
rate compression ([3] yields about 1 bpt using entropy encoding)
and encode how clusters are stitched. For large clusters, (for
example about a million triangles, as used in [4]), the approach
yields excellent results. For example, the Progressive Forest Split
(PES) [5] identifies clusters of triangles, removes the interior
edges of the clusters, encodes the resulting polygonal mesh using
Topological Surgery compression [6] and transmits it as a base
mesh first. Then, it transmits the internal connectivity of each
cluster using Topological Surgery compression to encode its cut-
edges. PFS encodes connectivity using about 5 bpt. Choe et al. [7]
use Lloyd’s algorithm to form clusters of 1000-2000 triangles.
They encode the connectivity between clusters using polygon
compression [8], the geometry of the edges between clusters using
parabolic prediction, and the connectivity inside each cluster using
Angle Analyzer [9]. Yoon and Lindstrom [10] form clusters of a
few thousand triangles directly from a streaming mesh [11]. Each
triangle and vertex is assigned to a single cluster. Their format uses
about 4 bpt. Such approaches support random access, but only at a
per cluster granularity.

Compressed custom expansion: Edgebreaker can be used [3] to
compress manifold meshes with boundaries. A mesh M of v
vertices with a single bounding loop of e edges can be encoded
using 2(v+-e) bits or using 2v-+-e bits plus an integer used to encode
the value of e. Consider a simply connected portion P of the original
mesh that has already been downloaded and reconstructed by the
client. We want to download the connectivity of another adjacent
simply connected portion M of the original mesh that shares a
series of one or more consecutive edges with P. We could do
so by encoding the connectivity of M as explained above, plus
two integers identifying the portion of the boundary of P that is
shared with M. Using such a scheme, the cost of transmitting the
connectivity for extending the mesh is capped by 3 bits per triangle,
plus 2 integers per run (connected component) of shared edges
between P and M. Hence, this scheme may incur a cost significantly
higher than 3 bits per triangle, especially when the portion of the
new Rol that needs to be transmitted is small and has multiple
edge-connected components.

Progressive meshes: Progressive mesh transmission allows clients
to receive first a base mesh (simplest LOD), and then, if desired
a series of incremental refinements. Hoppe [12] encodes a set of
vertex-splits, each undoing an edge-collapse simplification step.
The information needed for each vertex-split identifies the ver-
tex to be split and two of its incident edges. This approach selects
a sequence of edge-collapses (ordered by inverse impact on ge-
ometric fidelity) so as to achieve the best approximation to the
mesh at each refinement step. The order of the vertex splits is
fixed to be the reverse order of the corresponding edge collapses.
To relax this restriction and allow local refinements, both [13,14]
proposed constraints for valid edge-collapses so as to construct
a tree hierarchy over the vertex-splits. These schemes offer fine
granularity, but have a high transmission cost because, for each
vertex-split, the client must receive the ID of the next vertex to
be split in the current mesh. A number of compressed progres-
sive schemes aim to amortize this cost by creating batches of edge-
collapses, leading to the creation of a number of discrete LoDs for
the mesh. The Compressed Progressive Meshes (CPM) [15] per-
forms refinements in batches on the entire mesh. CPM uses a
bit-mask to identify the split-vertices in each batch (this avoids
having to encode the ID of each split-vertex) and uses a compact
encoding (less than 5 bits per split). Thus, CPM encodes the con-
nectivity using about 3.6 bpt. A variation of the CPM solution that

172 M. Sati et al. / Computer-Aided Design 78 (2016) 168-178

offers a fast decompression by using a simplified geometry pre-
diction function was proposed in [16]. To obtain the set of vertex-
splits for each batch, Alliez and Desbrun [17] perform a conquest
of the mesh, decimating vertices at the center of a 1-ring patch
and deterministically re-triangulating the resulting hole, reporting
average connectivity compression rates of 1.86 bpt across tested
meshes. These approaches, however, lose the granularity of refine-
ment offered by [12]. Further, these approaches also sacrifice se-
lective refinement—if a region is to be viewed at a desired LoD, the
records of vertex-split batches for the entire mesh have to be trans-
mitted up to that LoD.

Geometry driven progressive meshes: Hierarchical space partition
schemes have also been used to create selective progressive
meshes. For example, Gandoin and Devillers [18] store the vertices
in a kD-tree and encode how the vertex count is distributed at
each split. Using edge-flips and a simplification heuristic that
collapses the longest edge first (if possible), Valette et al. [19]
achieve compression rates of about 2 bpt. Their approach thus
utilizes geometric information to obviate the need for identifying
the vertex to be split. While successful in providing the granularity
of access of non-batched progressive meshes and competitive
compression ratios, their approach does not allow for selective
refinement and, thus, for random access to specific portions of the
mesh.

Progressive and random accessible meshes: A few attempts have
been made at providing a progressive and randomly accessible
format. The approach in [20] utilizes the truly selective refinement
scheme for progressive meshes [21] to allow for random access
to blocks of vertices. Their encoding of vertex splits allows for
refinement of just the desired Region of Interest, but requires
5.5 bpt to encode the connectivity. In contrast, our approach refines
aslightly larger area than the Rol, providing a gradual change in the
refinement level while transitioning from the Rol to the unrefined
portion of the mesh.

The eBits approach proposed here builds on many of these
previously proposed ideas by sending first a crude base mesh and
then selective refinements [12], by using a bit-mask to identify
vertices to be expanded [15] and, by using heuristics to maximize
the effectiveness of the simplification passes [8].

Our approach most closely resembles POMAR [22], a view-
dependent, random-accessible, compressed progressive scheme.
POMAR uses edge-collapses to build LoDs, partitions the mesh
into clusters, transmits the base mesh first, and then transmits
refinement in batches that each increase the LoD for a selected
set of clusters while ensuring balancing constraints (i.e., that
LoDs of adjacent clusters do not differ by more than one). The
eBits approach proposed here improves on POMAR by providing a
more compact encoding of the refinements and a finer granularity
for selecting which portion should be refined to full resolution.
Specifically, using eBits instead of POMAR reduces (1) the number
of bits that need to be transmitted per vertex to define the
connectivity change for each refinement operation and (2) the
number of balancing vertices which are not in the Rol, but must
be transmitted to support the desired refinements. For example,
when the original mesh is fully recovered, POMAR transmits
between 4 and 6 bpt (depending on the size of the clusters), while
eBits transmits only about 2 bpt.

4. Implementation details

In this section, we explain non-trivial implementation details
and discuss alternatives that we have explored.
Data structure and mesh operations:

The working mesh is maintained both on the client and the
server. We represent it using a simple extension of the Corner

Table [23], which associates with triangle t three corners 3t, 3t +1,
and 3t + 2 and which, for corner c, stores two integers: V|[c],
which is the ID (denoted c.v) of the vertex at that corner, and
S[c] which is the ID (denoted c.s) of the next corner around c.v.
Other corner operators may be derived trivially: the ID c.t of the
triangle containing c is ¢ /3. Corners c.n and c.p, which are the next
and previous corners from ¢ around triangle c.t can be computed
as 3c.t + ((c + 1) mod 3) and 3c.t + ((c + 2) mod 3). The
term “around” is defined as clockwise around the outward normal
at the vertex or triangle. The simplicity of this data structure
and of its operations make it trivial to traverse the mesh and to
update the connectivity when performing the t-collapse and v-
expand operations. For example, the tip of each red arrow in Fig. 1
corresponds to a corner. The three corners identifying the cut-
edges may be used as arguments of a v-expand function, which
appends two new vertices and four new triangles to the Corner
Table and updates the entries in the V[] and S[] tables of the corners
associated with these triangles and their neighbors. We also store,
as vertex annotations, on the server, the birth tags of triangles,
the death tags of vertices and the universal vertex and triangles
labels. The client maintains triangle birth tags, which it uses for
identifying candidate r-triangles. Both the server and client also
maintain an age tag for each vertex (see below).

Encoding cut-edges:

To expand a vertex v, the client needs to identify three cut-
edges out of the d edges incident upon v in W, where d = deg(v) is
the degree of v. To reduce transmission cost, the client and server
use a tacit agreement. The edges are numbered {0, 1,...,d — 1}
clockwise around v, starting with the edge that joins v to the
neighbor with the lowest ID. Hence, we need to encode three
different integers {eq, e,, e3} in [0, d — 1]. We use offsets {0; =
e, 0, = e; — e1,03 = e3 — €3}. We have explored five encoding
options listed below in order of decreasing average cost, specified
in bpe (bits per vertex expansion). We used the 4th approach to
produce the statistics in Section 5. We report here the associated
cost or entropy of each alternative:

1. Send a mask of d bits: 7.27 bpe.

2. Compress that bit-stream using entropy coding: 7.09 bpe.
3. Eliminate trailing zeros from approach 1: 6.33 bpe.

4. Encode one of the [log, (deg;"))l choices: 5.78 bpe.

5. Use arithmetic coding on the bit strings 0;0,03: 5.31 bpe.

Universal labels:

The client receives VERs ordered in accordance with the IDs of
the current working mesh. The server, however, has no such luxury
and must know where to look up this information. Universal labels
for vertices and triangles with IDs t and v are denoted as t and Vv,
and defined as follows. The universal vertex label (UVL) of vertex
v in the base mesh M,, is the same as its vertex ID: v = v. If v
is not expanded in M,_1, its UVL in M,_1 is 3v. If it is expanded,
its three children vertices are given UVLs 3v, 3v + 1, and 3v + 2.
The scheme extends to higher LoDs: a vertex with UVL v in M;
will either correspond to a vertex with UVL 3v in M_ or will be
expanded and its three children in M;_; will have UVLs 3v, 3v+ 1,
and 3v + 2. Such a scheme ensures that the tuple (UVL, birth tag)
unambiguously identifies a single vertex across all the LoDs and all
possible states of W and may be used by the server to index and
query for VERs.

A similar scheme is used to define and track the universal
triangle labels (UTLs) for the triangles. However, as a triangle that
is once born persists in all subsequent refined meshes, we use a
numbering that persists across the LoDs as well, to ease book-
keeping. A triangle with UTL t in M, will be associated with UTL
4t in My_;. The four triangles created by the expansion of a vertex
with UVL v in M, will be associated with UTLs n; + 4v, n; +4v—+ 1,

M. Sati et al. / Computer-Aided Design 78 (2016) 168-178 173

Fig. 5. UVLs and UTLs assigned during two consecutive passes: The base mesh M;
(left) has six triangles and a single e-vertex v with UVL 6. The refined mesh M,
(right) results from the v-expansion of v in M;. The three a-triangles for v are those
containing the cut-edges. The a-triangle with the smallest UTL (0 in this case), is
selected as reference for assigning labels 18, 19 and 20 to the added vertices and
labels 30, 31, 32 and 33 to the added triangles.

ny+4v+2,and n, +4v+3in My_1, where n, is the triangle count in
M. Adding n; ensures that each triangle in W has a different UTL.

We also specify precisely how these UVLs and UTLs are assigned
for vertices and triangles resulting from a v-expansion. Triangle t
is an a-triangle for an e-vertex v if there is a corner ¢ such that
c.t =t,c.v = v, and the edge e from vertex c.p.v to v is a cut-edge
(Fig. 1). v has 3 such a-triangles. Let ty be the a-triangle that has the
lowest UTL, and ey be the corresponding cut-edge. We call t; and
eo the first cut-triangle and the first cut-edge respectively. Let ¢
be the corner for which c.t = tp and c.v = v. We use c to define
the assignment of UVLs and UTLs to the new vertices and triangles
created by the v-expansion of v (see Fig. 5). For example, the new
vertex inserted at the corner c of ty will be labeled 3v. Similarly,
the triangle inserted in the cut-edge eg will have UTL n; + 4v.

We also use a simple convention to select consistently the
correct cyclic assignment of consecutive integer IDs to the corners
of each new triangle created by a v-expansion—the first corner, c,
of each new triangle is not incident upon a new vertex (i.e., c.visa
tip-vertex).

In the discussion so far, the server orders VERs by the vertex
IDs of the working mesh. As the client and server working meshes
are synchronized, the client does not need to maintain UVLs or
UTLs. These labels are only used by the server to access the
information required to construct VERs and to encode the VERs.
The information required to construct VERs is indexed by UVLs.
Because UVLs are not contiguous integers, to reduce memory
usage, we use a hash-map with the UVL serving as the key,
for accessing the VER information. In collaborative environments
where all users view the same Rol, a single working mesh W
suffices. To support multiple independent clients, the server needs
to maintain a different copy of W per client. However, the
VERs are identical for all client and thus need not be replicated.
Additionally, the UVLs and UTLs allow the server to offload much
of its processing to the client and thus handle very large client
counts, in the following manner—as previously mentioned, the
working mesh data-structure is augmented and each vertex and
each triangle of the working mesh W is associated with its UVL
or UTL. This association is maintained as the candidate vertex sets
are identified and some of their vertices expanded. Such book-
keeping is not necessary on the client, since an active server
“translates” the UVLs and UTLs into integer IDs in the Corner Table
representation of the working mesh on the client. However, doing
this book-keeping as well allows the client to interpret the content
of the VERs without the help of an active server. In such a thin
server architecture, the server becomes a passive database. The
slightly more expensive, but computationally cheaper encoding
scheme of sending a 0/1 bit for each e-vertex edge, minus
the trailing 0’s, may also be employed to further reduce server
computation.

Birth and death tags: Birth and death tags are computed on the
server during the simplification process. A t-collapse in pass k

collapses three child-vertices into their parent-vertex, v. We say
that v dies during the reverse expansion process at LoD k. Hence,
we set the death tag of v to k and the birth tags of its three children
to k.

Age tags: The working mesh W contains vertices at different LoDs.
For each change of Rol, the server and client identify the set U of
vertices in the Rol that are not at full resolution and the set I of
vertices that must be expanded first to make these balanced, and
so on, recursively. VERs for both U and I are transmitted by the
server. To help identify these, the client maintains, for each vertex
v of W, an age tag. When v is born, its age is initialized to its birth
tag. Then, it is incremented at each pass to keep track the current
age of v.

Vertex mask: We have also implemented and tested the following
alternative to let the client know which vertices need to be
expanded. Instead of sending death tags for the vertices of the base
mesh and for the 3 child-vertices created by each vertex expansion,
the server can send a bit mask for a set of well defined candidate
vertices of W in the Rol and for rings of edge-adjacent vertices. The
rings are used to ensure balancing constraints and the masks are
sent in order of decreasing LoDs.

For each age a (all our experiments use 7 LoDs and thus, a €
[1, 7]), the client interprets the bit-stream it is receiving as BER,
in the following manner: For each vertex v in the Rol that has age
a, the client receives a bit for the vertex mask. If that bit is 0, the
client knows it does not need to expand v at age a, and hence it
increments its age. Otherwise, the client knows that it will receive a
VER for the vertex, and marks it as an e-vertex. However, the client
may need to first expand some of the neighbors of v to ensure that
v is balanced. Hence, for each neighbor u of v, if the age of uisa — 1
(note that it can never be lower), the client receives a vertex mask
bit for u and either increment u’s age (if the bit is 0), or iterates
recursively the above steps for (u, a — 1) (if the bit is 1). At the end
of the recursive process, the client has identified the e-vertices. For
each BER, batch, the client receives the VERs in order of increasing
(age, vertex ID) tuple.

To compare the effective costs of both solutions (sending death
tags or sending vertex masks) we use the effective entropy (EE),
which we define as the entropy of the corresponding bit stream
multiplied by the total number of vertices created during the
refinement and divided by the total number of such vertices that
have been created at the highest LoD in the Rol.

Our experiments indicate that transmitting the entire mesh has
an EE of about 1.18 bits when sending the death tags and an EE of
1.25 bits when sending the vertex masks. When the Rol is small, the
grow operation has lower transmission cost per Rol vertex when
using bit-masks than death tags. For this reason, and because they
are trivial to decode, we report our performance results using our
bit mask implementation.

Encoding of the geometry and other vertex attributes:

The 3 cut-edges identify the 3 new vertices in the refined
working mesh. For example, the first two new vertices bound the
b-triangle that collapsed to the first cut-edge. When we collapse a
c-triangle t, we place the new vertex v at its centroid G and encode,
in the VER, two vectors from G to the first and second vertices
of t. This information suffices to recover, during the expansion
of v, the locations of its three child vertices. This solution uses
fewer coordinates than encoding the locations of the three child-
vertices. Furthermore, these two vectors are typically shorter than
vectors between child vertices, and hence, may yield more compact
encodings when quantized.

Additionally, we may use the local connectivity and geometry
information in a particular Rol to predict the location of each new
vertex and transmit a compressed encoding of the correction. Prior
approaches for extrapolating prediction achieve, depending on the

174 M. Sati et al. / Computer-Aided Design 78 (2016) 168-178

Fig. 6. Invalid configurations of c-triangles: (a) Two clusters share an edge. (b) Vertex c of the c-triangle (blue) has degree 3. (c) A b-triangle bounded by a vertex with degree
3 (vertex d) produces an ear as shown in (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

smoothness of the mesh, about 5 bits per coordinate for geometry
that is quantized to 12 bits per coordinate [24]. Vertex attributes
may also be compressed using existing techniques such as [25],
which uses prediction and quantization to encode normals using
about 6 bits per vector. Hence, reducing the cost of transmitting
connectivity has a non-negligible impact on the total cost, unless
several attributes are needed.

Constraints on sets of c-triangles:

On the server, each simplification pass identifies a set of c-
triangles. The cluster of a c-triangle t comprises t and its three
edge-adjacent b-triangles. The tip (or tip-vertex) of a b-triangle of
a cluster is the vertex of that triangle that does not bound the c-
triangle of the cluster (Fig. 1).

To avoid creating non-manifold topologies and to ensure that
we can unambiguously identify the three cut-edges of an e-vertex
v, regardless of which other e-vertices of the same age (belonging
to the same LoD) have already been expanded, we impose several
validity constraints: (a) No two c-triangles share a vertex; (b) No
two b-triangles share an edge; and (c) The three vertices of a b-
triangle do not have a common neighbor. Fig. 6 shows examples of
invalid configurations that violate one or more of these constraints.

Constraints (a) and (b) ensure that clusters do not share edges,
and also imply that each cluster has a border of exactly 6 edges
(is a Hajés graph). Furthermore, condition (b) ensures that no c-
triangle has a vertex of degree 3 (see Fig. 6(b)). Constraint (c)
ensures that the mesh remains manifold. Violating it may produce
an “ear” where two triangles of opposite orientations share the
same 3 vertices (see Fig. 6(c) and (d)). While our eBits scheme
can be modified to support such pseudo-manifold configurations,
for simplicity and fair comparison with other schemes, we forbid
this configuration in the experiments reported here. A corollary of
constraint (c) is that a b-triangle cannot have a degree 3 vertex.
Edge contractions that preserve topology have been studied in [26].
Criteria for valid collapses are discussed in [27] and used in [28] to
avoid ambiguities in the specification of vertex-splits. Because a
degree 3 vertex prevents t-collapses in subsequent LoDs, we wish
to reduce the probability of creating degree 3 vertices and hence
impose an additional constraint: (d) a tip-vertex cannot have a
residual degree of 4 or less. The residual degree of a vertex, v, in
LoD My is the degree that its parent has in M.

Algorithm for selecting c-triangles:

The simplification ratio of simplification pass k is defined
as the ratio of the vertex count of M, to the vertex count of
My_1, and hence is 1 or less. The choice of c-triangles affects the
degree distribution of the mesh. In general, simplification increases
the entropy of degrees. This observation guides our strategy for
selecting sets of c-triangles.

The degree deg(v) of e-vertex v may be computed from the
degrees of its three children g, h, and i (see Fig. 1):

Property 1 : deg(v) = deg(g) + deg(h) + deg(i) — 9

Proof : This property holds (for manifold meshes without bound-
ary) because v inherits all the corners of g, h, and i except for the 9
corners that are contained in the triangles of the cluster and inci-
dent upon the three children of v.

Fig. 7. The clusters (blue and cyan) produced by the spiraling algorithm for a
regular mesh region (left) results in a simplification ratio of 0.33. Note how, in these
clusters, all 3 tip-vertices are incident on a c-triangle (all the 3 c-triangle vertices
are shared with other clusters). Thus, the e-vertices produced on collapsing these
clusters are of degree 6. The clusters produced by the spiraling algorithm for an
irregular mesh region (right), are less densely packed. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

For good compression performance, we want low and consis-
tent simplification ratios across LoDs. We start by briefly describ-
ing two approaches that we initially considered and explain their
shortcomings. Then, we present our final ValPack (valence driven
packed) traversal algorithm.

Naive eager traversal: The first scheme that we have considered
is an eager scheme that tests triangles one by one in order
of their IDs in M) and selects as c-triangles those that pass
the validity test. Unfortunately, this simple strategy leads to
deteriorating simplification performance over consecutive LoDs
(Fig. 10) because it tends to create a high ratio of degree 3 and
4 vertices, which increase the simplification ratio of subsequent
passes. Furthermore, the average degree of e-vertices created by
the naive approach is high (9.15 for the subdivided horse mesh),
which implies a greater cost for encoding the VERSs.

Spiraling eager traversal: A better approach spirals out from a
random starting corner, eagerly marking any valid c-triangle. It
may be implemented trivially (without using a stack or recursion)
by using a simple variation of the RingExpander algorithm of [29].
We also carry out a naive traversal after the spiral to ensure
maximality of the c-triangle set. This approach works extremely
well on regular portion of a mesh, where most vertices have
degree 6 (Table 1). In such regions, all vertices of a c-triangle
are shared with nearby clusters and, thus, such a region remains
regular after the t-collapses (Fig. 7). For example, for a four times
subdivided small horse mesh, the simplification ratio is 0.44 for
the first pass using this strategy. In irregular regions, however, the
spiraling algorithm does not fare that well (see Fig. 7). The spiraling
algorithm is dependent on the starting corner. We perform several
spiraling traversals from randomly selected initial corners and
retain the best one. Furthermore, even for highly regular meshes,
this approach produces successive simplified LoDs in which degree
4 vertices become increasingly dominant. For example, in the
subdivided horse, My has 99% regular (degree 6) vertices and <1%
degree 4 vertices. After two simplification passes, M, has only 32%
degree 6 vertices, but 43% degree 4 vertices (see Fig. 8).

ValPack: Let the degree of a triangle denote the sum of the
degrees of its 3 vertices. Note that, given the constraints discussed
above, the degree of a c-triangle is at least 12. Recall that the t-
collapse of a c-triangle with degree v produces a vertex with degree
v — 9. Hence, collapsing a degree 12 triangle yields a degree 3
vertex.

M. Sati et al. / Computer-Aided Design 78 (2016) 168-178 175

Valence Distribution at LoD 6

0.6 T T T
1.0 — T EE Original Mesh
0.5 0.8 b I ValPack H
0.6 7 Hl Naive
0.4 0.4+ b =3 Spiral il
0.2+ 9
0 - - L

0_ L
4567891011 7

Fraction of vertices
o o
N w

o
o

o
S)

4 5 6 7 8 9 10 11
Vertex Valence

Fig. 8. Histogram of degrees in the subdivided horse mesh (Mp, inset) and after the
6th simplification pass using the naive, spiral and ValPack approaches.

Table 1

The importance of both degree driven selection and regular mesh packing in
ValPack: For two meshes with very different regularity, the cumulative product of
the simplification ratios across all 7 LoDs obtained: (a) by using just degree driven
selection (followed by a naive traversal to obtain a maximal valid c-triangle set),
(b) by the spiraling eager traversal and (c) by using ValPack. ValPack performs
consistently irrespective of the mesh regularity.

Mesh Degree driven Spiral ValPack
Subdiv Horse 0.063 0.025 0.020
Buddha 0.039 0.074 0.038

Note that collapsing a triangle of degree 15 that has three degree
5 vertices, yields a vertex with degree 6, effectively correcting 3 low
degree vertices. So, we could consider giving priority to triangles
of low degree when selecting c-triangles. Also, a t-collapse of a
triangle reduces the degree of each of its tip vertices by one. Thus,
if we wish to prevent the creation of low-degree vertices, we could
consider giving priority to clusters where the minimum degree
across the 3 tip vertices is high. Such degree driven heuristics
perform well for many meshes. However, they tend to produce
sub-optimal distributions of clusters that are not densely packed
in regular regions, hence increasing the simplification ratio of the
simplification pass (Table 1).

Based on these observations, we propose a 3-step solution for
our Degree Driven Packed traversal (ValPack):

1. Degree driven selection: Our strategy is to prioritize c-triangles
that have the lowest degree. First, we use eager selection and
an ID ordered traversal to identify candidate c-triangles, placing
triangles that have degree between 13 and 17 (both inclusive)in
adegree ordered min priority queue. We then visit each triangle
in the queue sequentially, check if it is a valid c-triangle, and
if so, mark its cluster (mark it as a c-triangle, and its adjacent
triangles as b-triangles).

2. Regular mesh packing: We wish to ensure that we produce
a tight packing of clusters in the regular regions (where all
vertices have degree 6 and hence all triangles have degree
18). Note that these have not been affected by step 1. To
this effect, we perform the spiraling order traversal of the
mesh as described above, spiraling out from each of the c-
triangles produced at the end of the priority selection step. We
use the eager spiraling traversal to produce a tightly packed
configuration of additional c-triangles in regular mesh regions.

3. Hole filling: Finally, we augment the set of c-triangles marked
by the above steps with other c-triangles discovered by a final
eager traversal.

An additional benefit of ValPack apart from the consistently
good simplification performance (as seen in Table 1) is that the
lower degree of the collapsed triangles, and hence of the resulting
e-vertices (due to the degree driven selection step), allows us to
encode the v-expand operations with fewer bits than approaches

1.0 - ——— 40 — T
08F o o & /ﬂ/; 1 3(5): ==a ValPack]
06l | 25f|=== Naive i
0'4 20} POMAR ,
A B 15} B
L | 10} 1
0.2 5[i
0‘0 1 L 1 L L L L 0

0o 1 2 3 4 5 6 7 8 0o 1 2 3 4 5 6 7 8

Fig. 10. (a)Ratio of vertex counts in M; to vertex counts in M;_; for different LoDs i.
(b) Ratio of vertex counts in M to vertex counts in M;. Both ratios are for the Ramses
model.

that are not degree driven. We obtain an average e-vertex degree
of 7.3 bits for eBits for our test meshes.

Base mesh compression:

The connectivity of the base mesh is compressed using
EdgeBreaker [3]. Although EdgeBreaker combined with a Huffman
coding [30] of consecutive pairs of symbols yields about 1 bpt,
it is less effective for highly irregular meshes, such as our base
meshes. Hence, we use the standard EdgeBreaker format [1], which
guarantees 2.0 bpt. Other compression schemes could be used
for transmitting the base mesh, but most are less effective than
EdgeBreaker for highly irregular meshes. When the base mesh has
about 3% of the triangles of the original mesh, the effective cost
(amortized per triangle of the original mesh) of transmitting the
base mesh connectivity to the client is approximately 0.06 bpt of
the original mesh.

5. Results

Simplification effectiveness:

As shown in Fig. 10(a), our naive traversal algorithm for
selecting c-triangles yields a rapidly increasing simplification ratio.
POMAR [22] maintains a steady simplification ratio of about 0.73.
Our ValPack solution produces a lower, although slowly increasing
simplification ratio of about 0.60. (POMAR prevents edge-collapses
that produce flips of a triangle normal. Therefore, for fairness,
we also disabled triangle-collapses that do so in ValPack for this
comparison.) This improvement of the simplification performance
is essential because it reduces the number of simplification passes
needed to produce a relatively coarse base mesh and hence reduces
the cost of encoding the death tags or the number of vertex masks
that would need to be sent. Fig. 10(b) captures the cumulative
effect of i consecutive simplification passes and shows that in 7
passes ValPack produces a base mesh 4 times smaller than the one
produced by POMAR.

When using ValPack, 7 simplification passes produce a base
mesh with about 2.5% of the original triangle count. This ratio is
slightly higher for the Buddha mesh, which has highly irregular
connectivity [29]. The simplification ratios for the LoDs of different
meshes are tabulated in Table 2. See Fig. 9 for a visualization of
these meshes.

Transmission costs:

We present our transmission cost results for streaming the
entire mesh, and also for servicing the three client interaction
requests of pick, grow and slide as defined in Section 2.

176

Table 2

M. Sati et al. / Computer-Aided Design 78 (2016) 168-178

The simplification ratios R; obtained using ValPack for successive simplification passes and their cumulative product [=]_[Z:1 R;. Rightmost column: C = the cost (in bpt)

for transmitting the connectivity of the entire mesh using the eBits format.

Mesh (vertex count) Ry R, R3 Ry Rs Rg R; 11 C

Big Horse (48 485) 0.53 0.59 0.59 0.59 0.59 0.59 0.60 0.023 2.15
Subdiv Horse (64 002) 0.44 0.57 0.60 0.59 0.60 0.61 0.61 0.020 1.93
Angel (237018) 0.56 0.59 0.59 0.59 0.60 0.61 0.62 0.026 2.19
Buddha (543652) 0.59 0.59 0.60 0.61 0.63 0.66 0.71 0.038 2.20
Dragon (655 980) 0.47 0.57 0.58 0.59 0.60 0.61 0.64 0.020 1.93
Ramses (826 266) 0.58 0.59 0.59 0.59 0.60 0.61 0.62 0.025 2.16
Neptune (2003932) 0.52 0.58 0.59 0.59 0.59 0.60 0.61 0.022 1.94
Thai (4999 996) 0.57 0.59 0.59 0.59 0.59 0.60 0.62 0.025 2.15
Average 0.53 0.58 0.59 0.59 0.60 0.61 0.63 0.025 2.08

Connectivity cost for reconstructing Moy:

The connectivity transmission cost for expanding the entire
mesh (when it is completely contained in the Rol) is shown in
Table 2. The cost includes the transmission of the base mesh, but
not the cost of transmitting geometry. The cost was computed
using an enumerative encoding of the three cut-edges of a vertex v
(thus using ﬂogz((deg;”))ﬂ bits) and using vertex masks. Note that
the numbers are competitive with single rate mesh compression
algorithms (e.g., Edgebreaker [3,1] guarantees 1.84 bpt).

Connectivity cost for servicing client interactions:

We call the ratio of the total number of bits transmitted
to the number of full resolution vertices created the Effective
Transmission Cost (ETC) per vertex, and divide this number by 2 to
approximate the ETC per triangle. The number of bits required for
servicing different client interactions (see Section 2) are specified
as ETC per triangle.

Picking: Picking is a parameter-less operation. We measure the ETC
for anumber of pick operations across all meshes, with the working
mesh initialized to the base mesh for each of our experimental
runs. The average pick cost is 154 bits, with a high variance. The
pick operation translates a base mesh vertex v to a descendant f
in My by drilling down the family tree of v. f is initialized to v and
is replaced by one of its children recursively. In this process, if the
resulting f has a birth tag different from 0, just one full resolution
vertex is created (this is f itself). In other cases, v will be expanded
to create 3 full resolution vertices. This variation affects the ETC
scores and makes them vary by multiples of 3. The pick cost is
correlated with the regularity of the region (in My) being picked,
due to our good packing in such regions. Thus, the average pick
cost for the highly regular subdivided horse mesh (136 bits) is less
than the average pick cost of the irregular Buddha mesh (182 bits).

Growing and sliding: The practical benefits of our format are
highlighted when random access to nearby regions of the mesh
is desired, such as in terrain flybys. In such scenarios, the ETC is
amortized over neighboring vertices. When we enforce balancing
constraints, we create a smooth transition of LoDs from the most
refined to the least refined vertices (Fig. 4). Thus, the BERs servicing
a Rol request also contain information that can be leveraged for
servicing requests for neighboring Rols.

Both grow and slide (given a desired focus) are dependent on
the current size of the Rol (which is measured in terms of edge-
distance from the focus vertex in Mp). Shrinking the Rol has no
cost associated with it—it may only result in some t-collapses being
performed on W on both the client and server, depending on the
cleaning policy. In our proposed interactions, to grow a Rol to size
r at a newly picked location, the client requests r grow operations
to get a desired size of the Rol. Following this, we envision that
the client would make small changes to r. We thus report the ETCs
for growing to a particular Rol size r at a newly picked to location

Table 3

For different Rol sizes (measured in terms of edge distance r at full resolution), we
show V(r): the average number of vertices in the Rol and the ETC (bpt) for three
operations: Grow to r (iterative growing the Rol from size 0 to size r), Grow (from
r — 1tor), and Slide by one edge.

r 1 5 10 20 30 40 50

V(r) 1 88 395 1793 4455 8426 13655

Grow tor - 5.00 3.53 2.87 2.56 245 2.38

Grow 1146 374 296 250 229 227 2.20

Slide 1931 420 277 236 231 228 216
(this is a cumulation of grow(i),i € {0,...,r — 1}), and the cost

of growing a Rol of size r in Table 3. The numbers follow a similar
trend across meshes so we report the across all test meshes. The
difference between the subdivided horse and the Buddha meshes
is less than 0.3 bpt across all values of r > 1 for both types of grow
operations.

For sliding, we observe that our ETC costs for directional slide
operations (i.e., sliding along edges of M, that are oriented similarly
in space), are mostly independent of the number of edges we slide
along. Thus, we present ETC costs for sliding along one edge of
M (while ensuring an r-ring of edges around the new focus is
at full resolution). Our results are presented in Table 3. The ETC
for sliding drops quickly with r, and is relatively similar across
all meshes. We thus report the average across the meshes. When
the sliding motion is not directional, but random, the ETC costs
reported could decrease further, due to greater amortization of the
ETC if the cleaning strategy is LRU.

Performance: Our tests are carried out on a machine with
32 GB RAM, a 2.7 GHz processor (8 cores, but a, single threaded
implementation) and 4 SSDs in RAID-0. The simplification process
is linear in the number of vertices and takes around 93 s for
7 LoDs of the Neptune mesh to be generated (this includes the
I/O time to write the VERs to disk). The average time required
for collating and applying VERs to perform a grow operation, for
different values of Rol size r for the some meshes are plotted in
Fig. 11. While our implementation of the grow algorithmis linear in
the Rol size, our non-optimized, single-threaded implementation
can be improved upon. The set operations performed by grow are
parallelizable. Additionally, our C++ code also spends a non-trivial
fraction of its execution time for memory allocation. Thus, using a
custom memory allocator could also offer significant performance
gains.

6. Comparison with prior art

As discussed in Section 3, using single rate compression, such
as Edgebreaker, for encoding the connectivity of the portion of the
mesh recently conquered by the Rol is likely to exceed 3 bpt.

The most relevant prior art is the recently proposed PO-
MAR [22], a random accessible, progressive and loss-less manifold
triangle mesh compression algorithm. It provides a compressed
file, which can be used as a database of records needed by the

M. Sati et al. / Computer-Aided Design 78 (2016) 168-178 177

80

— Subdiv Horse
— Ramses
60 H — Neptune

70 H

Time(ms)

RoI Size

Fig. 11. The time taken (ms) for grow operations (growing the Rol by one ring), as
a function of the Rol size.

client for refining the mesh after each change of Rol. Similarly to
eBits, POMAR produces a base mesh through a series of simplifica-
tion batches, yielding a sequence of simplified LoDs, each obtained
from the previous one by a series of half-edge collapses. During re-
finement, the first n refinement batches increase the resolution of
all the vertices (i.e., the refinement is global, not adaptive). These
n refinements yield the base clustered mesh. A cluster is defined as
the set of vertices that collapse to the same vertex in the base clus-
tered mesh during simplification. At each LoD, POMAR allows a se-
quence of multiple half-edge collapses onto a single vertex v. The
collapse of a half-edge e affects the configuration of a set of faces
called its patch. POMAR constrains half-edge collapses so that once
half-edge e has been collapsed, no half-edge collapse whose patch
intersects with e’s patch may be collapsed.
We highlight four advantages of eBits over POMAR:

Better simplification: Using t-collapses, eBits allows the collapse of
pairs of edges that are incident upon the same triangle and also
allows for the vertices of one patch to be collapsed into a vertex
of another patch. Thus, each eBits simplification pass removes a
higher fraction of vertices, which, in turn, reduces the total number
of LoDs required to obtain the same number of base mesh vertices.
Fig. 10 compares the number of vertices at successive LoDs for
POMAR and eBits. As a direct result of the improved simplification,
eBits has improved retrieval ratios (see below). The reduction in
LoDs is also leveraged by eBits to reduce the encoding cost. These
two ideas are detailed below.

Improved retrieval ratios: Both POMAR and eBits fetch additional
vertices than those requested by the client to ensure balancing
constraints are met. Due to better simplification ratios, eBits
produces a smaller number of LoDs than POMAR. Thus, it requires
fewer “balancing” vertices to be sent in response to an expansion
request. For example, we see a quantitative measure of the
difference between POMAR and eBits when the client requests for
a single base mesh vertex to be fully expanded so as to produce
all of its full resolution descendants. We define the retrieval ratio
as he ratio of the number of these full resolution descendants to
the total number of vertices received (which includes balancing
vertices and ancestors). For comparison, we use a mesh (Ramses
model) simplified to the same number of vertices with eBits and
POMAR, eBits has a retrieval ratio that is an order of magnitude
higher: 0.212 for eBits vs. 0.0268 for POMAR. Note that in this
comparison, we have disabled the global LoDs in POMAR, because
these would further decrease its retrieval ratio.

Granularity of access: Apart from the improved simplification
ratios, the improvement in the retrieval ratio is also explained by
the fact the eBits encodes each triangle collapse independently,
indexable by the unique labels, as opposed to POMAR, which
groups edge collapses into clusters. The ability to index individual
vertex expansion bits provides eBits with finer granularity of
access, allowing it to transmit a much smaller set of VERs.

Encoding compactness: Due to a smaller number of LoDs and finer
granularity of access, the vertex mask variants of eBits sends fewer
vertex mask bits than what would have been sent by POMAR. Also,
POMAR does not maintain a working mesh on the server and hence
cannot take advantage of the compact encoding proposed in eBits.
Instead, for each vertex split, POMAR encodes the information
needed to identify two out of the deg(v) edges incident upon v.
POMAR guesses which of the incident edges is the reference edge
and uses entropy encoding to transmit a correction of that guess,
plus two offsets relative to the reference edge that identify the two
split edges.

The reported transmission cost for POMAR depends on the
cluster size and is about 3.90 bpt for clusters having around 200
vertices. eBits, while using a very simple encoding, achieves a
transmission cost of 2.08 bpt which is a significant improvement.
Even with the more stringent ETC measure, eBits offers effective
transmission costs that quickly approach the asymptotic transmis-
sion cost mentioned above.

Conclusion

We have presented a compact format, called eBits, for
transmitting the local connectivity of the subset of a triangle mesh
that lies inside the Region of Interest (Rol) as the Rol is moved
in a user-controlled manner. When the Rol includes the entire
mesh, eBits transmission cost is only 2.08 bpt, including the cost of
transmitting the base mesh. When the Rol is smaller the, Effective
Transmission Cost approaches 2.08 bpt—for example, if the Rol has
2000 vertices, the ETC is about 2.5 bpt.

There are numerous avenues for future exploration. As it stands,
eBits provides a block level random accessible compressed triangle
mesh format for remote visualization. By transmitting mesh
connectivity and geometry instead of server rendered images, eBits
allows for client side geometry processing. While multiple clients
can be trivially served by maintaining a single copy of the VER
table on the server, saving client side edits of local geometry and
connectivity on the server is an interesting topic of future research.

Isosurfaces from structured grids are often ordered along a
spatial axis. An easy option for random access of such meshes
is to transmit the entire slices stabbed by the Rol. eBits sends
only portions of these slices inside the Rol (plus balancing
rings). However, eBits does not exploit the spatial ordering itself,
which could be used to devise efficient out of core simplification
algorithms for the server side pre-processing.

Finally, the current implementation of eBits does not support
non-manifold meshes or meshes with boundaries. Meshes with
boundaries can be supported by extending the encoding of t-
collapses to also account for border c-triangles or by preventing
the collapse of border triangles. A watertight non-manifold mesh
(when each edge has an even number of incident faces) could be
converted to a manifold representation using MatchMaker [31].
Handling more general non-manifold meshes requires further
research.

Acknowledgments

This work was performed in part under the auspices of the US
Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. This material is based upon
work supported by the US Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research.

References

[1] King D, Rossignac J. Guaranteed 3.67 v bit encoding of planar triangle graphs.
In: Proceedings of the 11th Canadian conference on computational geometry,
CCCG'99, 1999.

178 M. Sati et al. / Computer-Aided Design 78 (2016) 168-178

[2] Weiss K, De Floriani L. Bisection-based triangulations of nested hypercubic
meshes. In: Proceedings of the 19th international meshing roundtable, 2010,
pp. 315-333.
[3] Rossignac]. Edgebreaker: Connectivity compression for triangle meshes. IEEE
Trans Vis Comput Graphics 1999;5(1):47-61.
[4] Ho], Lee KC, Kriegman D. Compressing large polygonal models. In: Proceesings
of visualization, 2001, VIS'01, 2001, pp. 357-573.
[5] Taubin G, Guéziec A, Horn W, Lazarus F. Progressive forest split compression.
In: Proceedings of SIGGRAPH 98, 1998, pp. 123-132.
[6] Taubin G, Rossignac J. Geometric compression through topological surgery.
ACM Trans Graph 1998;17(2):84-115.
[7] Choe S, Kim], Lee H, Lee S. Random accessible mesh compression using mesh
chartification. IEEE Trans Vis Comput Graphics 2009;15(1):160-73.
[8] Khodakovsky A, Alliez P, Desbrun M, Schroder P. Near-optimal connectivity
encoding of 2-manifold polygon meshes. Graph Models 2002;64(3):147-68.
[9] Lee H, Alliez P, Desbrun M. Angle-Analyzer: A triangle-quad mesh codec.
Comput Graph Forum 2002;21(3):383-92.
[10] Yoon SE, Lindstrom P. Random-accessible compressed triangle meshes. IEEE
Trans Vis Comput Graphics 2007;13(6):1536-43.
[11] Isenburg M, Lindstrom P. Streaming meshes. In: Proceedings of visualization,
2005, VIS'05, 2005, pp. 231-238.
[12] Hoppe H. Progressive meshes. In: Proceedings of SIGGRAPH 96, 1996,
pp. 99-108.
[13] Xia JC, El-Sana], Varshney A. Adaptive real-time level-of-detail based
rendering for polygonal models. IEEE Trans Vis Comput Graphics 1997;3(2):

171-83.

[14] Hoppe H. View-dependent refinement of progressive meshes. In: Proceesings
of SIGGRAPH 97, 1997, pp. 189-198.

[15] Pajarola R, Rossignac]. Compressed progressive meshes. IEEE Trans Vis
Comput Graphics 2000;6(1):79-93.

[16] Pajarola R, Rossignac J. Squeeze: Fast and progressive decompression of
triangle meshes. In: Proceedings of computer graphics international, 2000.
IEEE; 2000. p. 173-82.

[17] Alliez P, Desbrun M. Progressive compression for lossless transmission of
triangle meshes. In: Proceedings of SIGGRAPH 01, 2001, pp. 195-202.

[18] Gandoin P-M, Devillers O. Progressive lossless compression of arbitrary
simplicial complexes. ACM Trans Graph 2002;21(3):372-9.

[19] Valette S, Chaine R, Prost R. Progressive lossless mesh compression via
incremental parametric refinement. Comput Graph Forum 2009;28(5):
1301-10.

[20] Kim J, Choe S, Lee S. Multiresolution random accessible mesh compression.
Comput Graph Forum 2006;25(3):323-31.

[21] Kim], Lee S. Truly selective refinement of progressive meshes. In: Proceedings
of graphics interface 2001, GI'01, 2001, pp. 101-110.

[22] Maglo A, Grimstead I, Hudelot C. POMAR: Compression of progressive oriented
meshes accessible randomly. Comput Graph 2013;37(6):743-52.

[23] Rossignac], Safonova A, Szymczak A. Edgebreaker on a corner table: A
simple technique for representing and compressing triangulated surfaces.
In: Hierarchical and geometrical methods in scientific visualization. 2003.
p. 41-50.

[24] IbarriaL, Rossignac]. Dynapack: space-time compression of the 3D animations
of triangle meshes with fixed connectivity. In: Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on computer animation, 2003,
pp. 126-135.

[25] Ahn JH, Kim CS, Ho YS. Predictive compression of geometry, color and normal
data of 3-d mesh models. IEEE Trans Circuits Syst Video Technol 2006;16(2):

291-9.

[26] Dey TK, Edelsbrunner H, Guha S, Nekhayev DV. Topology preserving edge
contraction. Publ Inst Math (Beograd) (NS) 1999;66(80):23-45.

[27] Hoppe H, DeRose T, Duchamp T, McDonald], Stuetzle W. Mesh optimization.
In: Proceedings of SIGGRAPH 93, 1993, pp. 19-26.

[28] Diaz-Gutierrez P, Gopi M, Pajarola R. Hierarchyless simplification, stripifica-
tion and compression of triangulated two-manifolds. Comput Graph Forum
2005;24(3):457-67.

[29] Gurung T, Luffel M, Lindstrom P, Rossignac J. LR: Compact connectivity
representation for triangle meshes. ACM Trans Graph 2011;30(4).

[30] Salomon D, Motta G. Handbook of data compression. Springer; 2010.

[31] Rossignac], Cardoze D. Matchmaker: Manifold BReps for non-manifold r-
sets. In: Proceedings of the 5th ACM symposium on solid modeling and
applications, 1999, pp. 31-41.

http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref3
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref6
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref7
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref8
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref9
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref10
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref13
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref15
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref16
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref18
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref19
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref20
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref22
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref23
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref25
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref26
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref28
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref29
http://refhub.elsevier.com/S0010-4485(16)30036-7/sbref30

	eBits: Compact stream of mesh refinements for remote visualization
	Introduction
	Overview
	Prior art
	Implementation details
	Results
	Comparison with prior art
	Acknowledgments
	References

