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Implicit representations have gained an increasing popularity in geometric modeling and computer
graphics due to their ability to represent shapes with complicated geometry and topology. However,
the storage requirement, e.g. memory or disk usage, for implicit representations of complex models is
relatively large. In this paper, we propose a compact representation for multilevel rational algebraic
spline (MRAS) surfaces using low-rank tensor approximation technique, and exploit its applications in
surface reconstruction. Given a set of 3D points equipped with oriented normals, we first fit them with
an algebraic spline surface defined on a box that bounds the point cloud. We split the bounding box into
eight sub-cells if the fitting error is greater than a given threshold. Then for each sub-cell over which the
fitting error is greater than the threshold, an offset function represented by an algebraic spline function
of low rank is computed by locally solving a convex optimization problem. An algorithm is presented to
solve the optimization problem based on the alternating direction method of multipliers (ADMM) and
the CANDECOMP/PARAFAC (CP) decomposition of tensors. The procedure is recursively performed until
a certain accuracy is achieved. To ensure the global continuity of the MRAS surface, quadratic B-spline
weight functions are used to blend the offset functions. Numerous experiments show that our approach
can greatly reduce the storage of the reconstructed implicit surface while preserve the fitting accuracy
compared with the state-of-the-art methods. Furthermore, our method has good adaptability and is able
to produce reconstruction results with high quality.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past two decades there has been an immense amount
of efforts dedicated to obtain digital representations of objects in
the real world. Techniques for digitizing objects include optical
laser-based range scanners, structured light scanners, LiDAR scan-
ners, multi-view stereo and so on. A recent trend has seen the
massive proliferation of point clouds from commodity real-time
scanners such as the Microsoft Kinect. As a result of the ability
to acquire point cloud data, the need for the development of sur-
face reconstruction techniques continues to increase. Moreover,
since acquisition methods tend to produce point clouds contain-
ing a variety of properties and imperfections, e.g., the presence of
geometric features or missing data, noise or outliers, etc., surface
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reconstruction is a challenging task. A good survey can be found
in [1].

Existing surface reconstruction methods can be broadly cate-
gorized as polygonal mesh approaches and implicit surface ap-
proaches [2]. The methods in former class typically generate a
triangular mesh by interpolating a subset of the input points as
vertices. Although these approaches produce mesh representation
directly, they are difficult to handle non-uniform, incomplete or
noisy data. Please refer to [3,4] for details.

Implicit surface approaches usually create an implicit function
or an indicator function for the underlying surface the point
cloud is sampled from, and perform iso-surfacing to extract a
triangular mesh for rendering. Implicit representations greatly
facilitate the classification problem of whether a given point is
on, inside or outside a surface. They are able to represent shapes
with complicated topology and geometry, even with dynamic
topology [5,6]. Implicit representations are more suitable for
reconstructing surfaces from datasets that are noisy, incomplete
or non-uniformly distributed. As a result, they are widely used in
surface reconstruction. Many representations of implicit surfaces
have been proposed, e.g. the Blobby model, the signed distance
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fields, the radial basis functions (RBFs), the moving least squares
(MLS) surfaces, the algebraic spline (AS) surfaces, the multilevel
partition of unity (MPU) and so on. However, no matter which
implicit representation is used, the storage requirement for state-
of-the-art reconstruction methods is usually large for complex
models [7]. To our knowledge, little work has been done on
compact representations in implicit surface reconstruction.

In this paper, we propose an algorithm for creating compact
representations for Multilevel Rational Algebraic Spline (MRAS)
surfaces using low-rank tensor approximation technique, and
exploit its applications in surface reconstruction. MRAS surfaces
have an analytic spline representation which is advantageous
over mesh representation in problems such as point classification,
and in subsequent computations such as function/derivative
evaluation, boolean operations, shape blending, etc. An MRAS
surface can be conveniently stored by its control coefficients.
However, for complex models the storage requirement for the
control coefficients can be very large, ranging from several
hundred megabytes to tens of hundred megabytes [7]. Large
storage requirement is a big burden for memory costs in the
computation with the implicit surface and in the transition of the
implicit surface on the internet. Thus how to reduce the number
of control coefficients in MRAS representation is an important
research problem. Our approach is outlined as follows.

Given a point cloud with oriented normals, our aim is to build
a MRAS surface that approximates the scanned surface as much
as possible while uses less storage space. We start with fitting an
algebraic spline surface defined on a box that bounds the given
point set. We split the box into eight sub-cells if the fitting error is
greater than a given threshold. For each cell over which the fitting
error is larger than the given threshold, a local offset function
represented by an algebraic spline function is computed to reduce
the fitting error. In order to obtain a compact representation, a
low-rank regularization term is introduced in the fitting model,
and the optimization problem is solved locally based on the
alternating direction method of multipliers together with the CP
decomposition of tensors. The above procedure terminates when
the fitting error over each cell is less than auser-specified threshold
or the maximum subdivision level reaches.

The remainder of this paper is organized as follows. Section 2
reviews some related work. Section 3 presents some preliminary
knowledge about algebraic spline surfaces and tensor decompo-
sitions. In Section 4, we introduce a new implicit representation,
i.e., the MRAS surface. Section 5 describes our adaptive surface
reconstruction algorithm in detail. To achieve compact represen-
tations, a convex optimization model equipped with a low-rank
regularization term and a corresponding algorithm based on the
alternating direction method of multipliers and the CP decom-
position are proposed. Section 6 demonstrates some experimen-
tal results and performance of our algorithm. Comparisons on the
storage requirement with the state-of-the-art methods are also in-
cluded. Finally, we conclude the paper with proposals for future
work.

2. Related work

Since surface reconstruction has been well studied in the past
several decades, there is a large body of related work. For the sake
of clarity, we shall focus on the approaches that are most related
to ours.

2.1. Surface reconstruction

Most implicit surface reconstruction methods are based on
Blinn’s idea of blending local implicit primitives [8], called blobs.
Fitting scattered data with algebraic surfaces was discussed by
Pratt [9]. Muraki [10] combined the above two ideas and proposed
the Blobbymodel for fitting an implicit surface to a given point set.

Hoppe et al. [11] proposed a reconstruction algorithm based
on the signed distance function, which is locally defined. Curless
and Levoy [12] used the volumetric representation consisting
of a cumulative weighted signed distance function. Kazhdan
et al. [13] presented the Poisson surface reconstruction by
approximating the indicator function of the underlying surface.
To avoid over-smoothing of the data, they further introduced
positional constraints into the optimization, resulting in a screened
Poisson problem [2]. The work of Manson et al. [14] solved the
Poisson equation using awavelet basis, which provided a localized,
multi-resolution representation of functions.

Using projection moving least squares (PMLS) to reconstruct
a C∞ surface from the point cloud (i.e., point-set surface) was
originally proposed by Levin [15], and was used by Alexa et al. [16]
in point-based graphics. An explicit definition of point-set surface
as the set of local minima of an energy function was given by
Amenta and Kil [17]. An implicit MLS (IMLS) approach proposed
by Shen et al. [18] based on the classical MLS method, has been
used to build interpolating or approximating implicit surfaces
from polygonal data. Fleishman et al. [19] devised the robust MLS
fitting technique, which could deal with noise and sharp features
simultaneously. To separate mixed scanning points received from
a thin-wall object, Feng et al. [20] proposed a model called moving
multiple curves/surfaces approximation that is an second-order
extension of PMLS.

Although the signed or unsigned distance function and theMLS
surface have some desirable properties, the absence of analytical
expression limits their usage in many applications. Radial basis
functions (RBFs) interpolant is a linear combination of radially
symmetric functions with distinct centers. The early surface
reconstruction algorithms based on RBF interpolants are usually
credited to Carr et al. [21], and Turk andO’Brien [22]. To reconstruct
surfaces from large datasets, Morse et al. [23] proposed to use the
compactly supported RBFs. A thorough treatment of the RBFs is
given by Buhmann [24].

Another family of implicit surface reconstruction algorithms is
the partition of unity. Ohtake et al. [25] used the multilevel par-
tition of unity (MPU) together with three types of local approxi-
mation quadratic functions to reconstruct implicit surfaces from
very large sets of points, including surfaces with sharp features.
Furthermore, Ohtake et al. [26] combined RBFs and the partition
of unity as a mean for large, non-uniform datasets. Piecewise al-
gebraic surface patches defined within a tetrahedral lattice of con-
trol points were firstly introduced by Sederberg [27]. Its successor
A-patch proposed by Bajaj et al. [28] was used to reconstruct a
C1 continuous surface and a scalar field defined over it. To have
some desirable properties from both global and local representa-
tions, Jüttler and Felis [29] applied algebraic spline surfaces into
fitting scattered data. By extending the geometric distance mini-
mization and using the trust region technique, Yang et al. [30] pro-
posed to use active implicit B-spline curves for fitting unorganized
point clouds. Rouhani and Sappa [31] presented an extension of
the 3L algorithm to the implicit tensor-product B-spline solution
space. Recently, they [32] further developed a reconstruction al-
gorithm using the partition of unity technique. The applications
of algebraic spline surfaces in approximate implicitization can be
found in [33]. Polynomial splines over hierarchical T-meshes (PHT-
splines) [34] are a useful generalization of B-splines over T-meshes.
Wang et al. [7] proposed an adaptive surface reconstruction al-
gorithm based on implicit PHT-splines, which can produce high
quality reconstruction surfaces very efficiently at the cost of large
storage requirement.
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2.2. Low-rank tensor approximation

Low-rank approximation of matrices is helpful for dimension
reduction, classification, denoising, and has been successfully
applied in many fields like signal processing, computer vision,
pattern recognition, computer graphics, etc. A thorough survey
on this topic is out of our scope, and we refer the reader
to [35,36] and references therein. Tensors, as a generation of
matrices in higher dimensions have important applications in
science and engineering, e.g., psychometrics, psychometrics and
datamining [37]. The details of low-rank tensor approximation and
applications can be found in [38]. Recently, the low-rank tensor
optimization is also applied in finding the upright orientation
of 3D shapes in [39]. Mantzaflaris et al. [40] applied low-rank
matrix approximation for accelerating the assembly process of
stiffness matrices in isogeometric analysis. For other applications
of low-rank tensors in geometric modeling and processing, please
refer to [41] and references therein. However, to the best of our
knowledge, no previous attempts have been made at compact
representations for implicit surfaces and surface reconstruction
using low-rank tensor approximation technique.

3. Preliminaries

In this section, we give some preliminary knowledge about
algebraic spline surfaces followed by the basic concepts on tensor
and tensor decomposition.

3.1. Algebraic spline surfaces

Let f (x, y, z)be a trivariate tensor-product spline function of tri-
degree (d1, d2, d3) defined over a cubic domain Ω:

f (x, y, z) =
m

r=1

n
s=1

l
t=1

crstNr(x)Ns(y)Nt(z) (1)

where {crst}m×n×l are the control coefficients, {Nr(x)}mr=1,
{Ns(y)}ns=1, {Nt(z)}lt=1 are B-spline basis functions w.r.t knot se-
quences {ξr}

m+d1+1
r=1 , {ηs}

n+d2+1
s=1 , {ζt}

l+d3+1
t=1 respectively. The zero

level set of the function f in Ω is defined by

V (f ) = {(x, y, z) ∈ Ω | f (x, y, z) = 0} (2)

and it is called an algebraic spline surface [29].

3.2. Tensor and CP decomposition

A tensor is a multidimensional array. More formally, an nth-
order or n-way tensor is an element of the tensor product of n
vector spaces, each of which has its own coordinate system [37].
A first-order tensor is a vector, a second-order tensor is a matrix,
and tensors of order three or higher are called higher-order tensors.
An nth-order tensor is denoted by boldface Euler script letters, e.g.
X ∈ RI1×I2×···In . It is sometimes convenient to unfold a tensor into
a matrix. The unfold operation along the kth order on a tensor X is
defined as unfoldk(X) := X(k) ∈ RIk×(I1...Ik−1Ik+1...In).

An nth-order tensor X ∈ RI1×I2×···In is rank one if it can be
written as the outer product of n vectors, i.e.,

X = a(1)
◦ a(2)

◦ · · · ◦ a(n),

where ◦ denotes the outer product, and a(i)
∈ RIi .

(CP decomposition) Let X ∈ RI1×I2×···In be an nth-order tensor, the
CP decomposition factorizes X into a sum of component rank-one
tensors as follows:

X ≈
R

r=1

λra(1)
r ◦ a

(2)
r ◦ · · · ◦ a

(n)
r , (3)
whereR is a positive integer andλr > 0, a(i)
r ∈ RIi for r = 1, . . . , R.

It is often useful to assume that a(i)
r are normalized to length one

with the weights absorbed into λr .
The rank of a tensor X, denoted as rank(X), is the smallest

number of components in an exact CP decomposition, where
‘‘exact’’ means that (3) is an equality. However, finding the above
‘‘exact’’ decomposition with the minimum R is NP-hard [37]. In
practice, the rank of X is usually determined numerically by
solving the following rank-R CP model:

argmin
X̂
∥X− X̂∥

s.t. X̂ =
R

r=1

λra(1)
r ◦ a

(2)
r ◦ · · · a

(n)
r ,

(4)

with different R until one is satisfied. In this paper, the initial value
of R is automatically provided by our method, and we adjust R
adaptively according to the fitting error. Once R is given, there are
many algorithms to compute the CP decomposition. State-of-the-
art methods include the alternating least squares (ALS) method,
which is proposed in the original papers byCarroll andChange [42].
For recent developments of the ALS method, e.g. acceleration,
convergence analysis, efficiency and robustness etc., please refer
to the survey papers [38,37].

The rank of a tensor is a nonconvex function, and solving a rank-
constrained problem is often NP-hard. Recently several works
[43,44] use the trace norm of a tensor to approximately calculate
the rank, which leads to a convex optimization problem. The trace
norm of a tensor is defined as follows:

∥X∥∗ :=
n

i=1

γi∥X(i)∥∗, (5)

where {γi} are constants satisfying γi ≥ 0 and
n

i=1 γi = 1, and
∥X(i)∥∗ denotes the trace norm of the matrix X(i), i.e.,

∥X(i)∥∗ =


j

σj(X(i))

where σj(X(i)) is the jth largest singular value of X(i).

4. Multilevel rational algebraic spline surfaces

Before going into the details of our reconstruction algorithm,we
introduce a new implicit representation, i.e., Multilevel Rational
Algebraic Spline (MRAS) surfaces. Such representation offers
several advantages, such as compact and analytic expression,
efficient evaluation and sufficient flexibility for subsequent
processing.

The key to constructing a multilevel or multiresolution model
is choosing a proper sequence of nested spaces

V1 ⊂ V2 ⊂ V3 ⊂ · · · ⊂ VK ,

where {Vk} are spanned by a set of basis functions. These basis
functions are also called the scaling functions, and in this paper
we choose tensor-product B-spline basis functions defined in (1)
as the scaling functions.

In order to build a multiresolution function, the domain Ω is
subdivided in an adaptive manner (see 5.1). Let Ωk

j andMk denote
the jth cell and the number of cells at level k respectively, we have
Ω = ∪

Mk
j=1 Ωk

j . For each cell Ωk
j , we define a tensor-product B-

spline function

φk
j (p) =

mk
r=1

nk
s=1

lk
t=1

ckrstN
k
r (x)N

k
s (y)N

k
t (z), (6)

where p = (x, y, z) ∈ Ωk
j and {Nk

r (x)}
mk
r=1, {N

k
s (y)}

nk
s=1, {N

k
t (z)}

lk
t=1

are B-spline basis functions whose knot sequences compose a
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Fig. 1. An illustration of the adaptive subdivision of domain: from left to right are
level 0, level 1 and level 2 meshes, and the blue, red and green grid denote the
tensor-product mesh of level 0, 1, 2 respectively, the black dashed lines highlight
the adaptive subdivision of the domain.

tensor-product mesh T k
j . Fig. 1 illustrates how our adaptive

subdivision scheme works in 2D.
We construct the sequence of nested spaces in the following

way:

Vk = span{φ l
j, j = 1, 2, . . . ,Ml, l = 1, 2, . . . , k}.

A multilevel model is constructed by finding a sequence of
functions {f k}Kk=1 from {Vk}

K
k=1 respectively. Similar to the work of

Forsey and Bartels [45], we represent {f k}Kk=1 as follows:
f k(p) |Ωk

j
:= f kj (p), j = 1, 2, . . . ,Mk,

f kj (p) = f k−1(p)+ φk
j (p), p ∈ Ωk

j ,
(7)

where φk
j (p) is called the local offset function and is used to

represent the fine details of the model.
In our method, the local offset functions {φk

j (p)} are computed
locally and independently. Thus, in order to obtain a global
smooth function, we adopt the technique of the partition of
unity [25]. The main idea is to blend the local functions together
using smooth and local weight functions, which sum up to one
everywhere on the domain. The resulting global function inherits
many properties from the local functions, such as the maximum
error and convergence order.

For each cell Ωk
j , we introduce the weight function by a

quadratic B-spline basis function

wk
j (p) = b


3|p− cj|
2αRj


, (8)

where cj and Rj are the center and radius of Ωk
j respectively, b

is a quadratic B-spline function and α is constant. Typically, we
set α = 0.75. Then, the partition of unity functions {ϕk

j } can be
generated by

ϕk
j (p) =

wk
j (p)

Mk
i=1

wk
i (p)

.

We finally construct the global function as follows:

f k(p) :=

Mk
j=1

ϕk
j (p)f kj (p). (9)

Consequently, a sequence of implicit surfaces definedby {V (f k)}Kk=1
are obtained:

V (f k) = {(x, y, z) ∈ Ω | f k(x, y, z) = 0}

and they are called the MRAS surfaces.

5. Adaptive surface reconstruction in compact representation

Now we turn to our adaptive surface reconstruction method.
Given an unorganized collection of points P = {p1, . . . , pN}
sampled from a surface S in R3, and associated with oriented
normals N = {n1, . . . ,nN}, our aim is to construct a sequence
of MRAS functions {f k}Kk=1 whose zero level sets provide a coarse-
to-fine approximation to the scanned surface S. At the same time,
the storage requirement for {f k}Kk=1 should be as small as possible.

5.1. Outline

Our algorithm for creating {f k}Kk=1 is driven by adaptive octree-
based subdivision of the domainΩ , which typically is the bounding
box of point set P . We start with f 0 = 0,M1 = 1, Ω1

1 = Ω , and
repeat the following two steps:

1. Solve a convex optimization problem (15) locally and do the
CP decomposition (4) to obtain the local offset function φk

j (p)

defined in each Ωk
j , then generate the global function f k using

(7) and (9) at level k.
2. Check the fitting error for every cell Ωk

j , and split it into eight
sub-cells if the fitting error is greater than a given threshold; Let
k← k+ 1.

Over each cell, the fitting error is defined according to the
Sampson distance of the point set to a surface [46]:

ε = max
pi∈Ωk

j

|f k(pi)|

|∇f k(pi)|
. (10)

If the number of sample points in Ωk
j is greater than Nmin

(default value Nmin = 16 in our implementation) and the fitting
error is greater than a user-specified ε0, then we split Ωk

j into
eight sub-cells. The above procedure stops when no cell needs to
be subdivided or the maximum level of subdivision reaches.

Fig. 2 shows an example of our adaptive surface reconstruction
in multilevel representation.

5.2. Fitting model

A key ingredient in our approach is to compute the local offset
function of low rank φk

j defined in Ωk
j . Before proceeding further,

let us explain the reason for using the low-rank representation. Let
Ck be a third-order tensor associated with the coefficients {ckrst} as
defined in (6), and denote N(x) = (N1(x),N2(x), . . . ,Nmk(x))

T .
N(y) and N(z) are defined similarly. If the rank of Ck is Rk and
perform the CP decomposition of Ck numerically as

Ck
(4)
≈

Rk
l=1

λk
l a

(k)
l ◦ b

(k)
l ◦ c

(k)
l := Ĉk, (11)

then φk
j can be approximately represented in a separated form:

φk
j ≈

Rk
l=1

λk
l g

(1)
l (x)g(2)

l (y)g(3)
l (z) := ˆφk

j , (12)

where g(1)
l (x) = N(x)Ta(k)

l , g(2)
l (y) = N(y)Tb(k)

l and g(3)
l (z) =

N(z)T c(k)
l . Now,we only need to store about (mk+nk+ lk)Rk entries

for recording φk
j instead of mknklk entries. The key observation is

that if we want to have a compact representation of φk
j , the rank of

tensorCk should be as small as possible. In such a case, ˆφk
j is called a

low-rank approximation of functionφk
j andRk is called the rank of ˆφk

j .
Based on the above analysis, our MRAS surface fitting model

takes the following form:

argmin
Ck

rank(Ck)

subject to E
1
2 (φk

j ) ≤ δ,
(13)
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Fig. 2. Adaptive reconstruction of the Igea model, from left to right are the input point set, and the intermediate results at level 1 to level 4.
where E(φk
j ) is an energy functional whichmeasures howwell the

MRAS surface approximates the given point cloud:

E(φk
j ) =

Nk
j

u=1

[f kj (pu)]
2
+ ω1

Nk
j

u=1

∥∇φk
j (pu)− nu∥

2

+ω2


Ωk

j

∥∇
2φk

j ∥
2
F dxdydz. (14)

Here Nk
j is the number of sample points contained in Ωk

j , ω1 and
ω2 are non-negative weights, and δ is the error tolerance.

In the energy functional, the first term describes the sum of
squared algebraic distances, the second term reflects the normal
difference that also helps to avoid the trivial solution of (13), and
the third term is a smoothing term or regularization term that tries
to pull the resulting surface to a simple shape [29].

By choosing an appropriate multipliers, we convert the
constrained optimization problem (13) into an unconstrained
optimization problem as follows:

argmin
Ck

E(φk
j )+ λrank(Ck)

where λ is the multiplier and depends on the parameter δ. Since
the function rank(Ck) is nonconvex, we further replace it with the
trace norm∥·∥∗ [44] and thusweobtain the following optimization
problem:

argmin
Ck

E(φk
j )+ λ

3
i=1

γi∥Ck
(i)∥∗, (15)

which is a convex optimization problem and the problem is locally
defined.

5.3. Numerical algorithm

Next, we present some details of our numerical algorithm
for solving (15) based on the alternating direction method of
multipliers (ADMM) [47] and the CP decomposition of tensors. The
ADMM can be viewed as an attempt to blend the benefits of dual
decomposition and augmented Lagrangianmethods, and is used to
solve constrained optimization problems with separable objective
functions.
Variable splitting Since the objective function in (15) is the sum of
two functions and one of which is dependent on the other, using
variable splitting technique leads to the following constrained
optimization problem:

min
c

E(φk
j )+ λ

3
i=1

γi∥Zi∥∗

s.t. Pic = zi (i = 1, 2, 3)
(16)

where c is the vectorization of Ck as before, Pi is the matrix
representation of mode-i unfolding (note that Pi is a permutation
matrix, and satisfies PT

i Pi = I), Zi is an auxiliary matrix of the same
size as the mode-i unfolding of Ck, and zi is the vectorization of
Zi. For the sake of simplicity, we omit the superscript k for some
variables in (16).
Augmented Lagrangian One typical way for solving (16) is to use
an augmented Lagrangian scheme. In our problem, the augmented
Lagrangian function is defined as

Lη(c, {Zi}3i=1, {αi}
3
i=1) = E(φk

j )+ λ

3
i=1

γi∥Zi∥∗

+

3
i=1

αT
i (Pic− zi)+

3
i=1

η

2
∥Pic− zi∥22, (17)

where αi is a vector of Lagrangian multiplier corresponding to the
constraint Pic = zi, and η > 0 is the penalty parameter.
ADMM algorithm Now the ADMM algorithm can be outlined as
follows:

Algorithm 1 The ADMM algorithm
Input:

λ, ω1, ω2, {γi}
3
i=1, η > 0, and

initial values for {Z0
i }

3
i=1, {α

0
i }

3
i=1

Output:
an optimal c∗

1: t ← 0
2: repeat
3: ct+1 = argmin

c
Lη(c, {Z t

i }
3
i=1, {α

t
i }

3
i=1)

4: Z t+1
i = argmin

Zi
Lη(ct+1, {Zi}3i=1, {α

t
i }

3
i=1)

5: αt+1
i = αt

i + η(Pict+1 − zt+1i )
6: t ← t + 1
7: until stopping criterion is satisfied.

c-subproblem The subproblem for c is

argmin
c

Lη(c, {Z t
i }

3
i=1, {α

t
i }

3
i=1) = E(φk

j )

+

3
i=1

(αt
i )

T (Pic− zti )+
3

i=1

η

2
∥Pic− zti∥

2
2. (18)

This is a quadratic optimization problem and the solution can
be obtained by solving a sparse and symmetric linear system of
equations. The preconditioned conjugate gradient method with
incomplete Cholesky factorization is applied in our algorithm.
Z-subproblem The subproblem for {Zi}3i=1 is

argmin
Zi

Lη(ct+1, {Zi}3i=1, {α
t
i }

3
i=1) = λ

3
i=1

γi∥Zi∥∗

+

3
i=1

(αt
i )

T (Pict+1 − zi)+
3

i=1

η

2
∥Pict+1 − zi∥22, (19)
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which has the following closed form solution

Z t+1
i = proxtrλγi/η

(Pict+1 + αt
i /η), i = 1, 2, 3. (20)

Note that the argument Pict+1 + αt
i /η must be converted into a

matrix of the same size as Z t
i . Here the proximal operator proxtrλγi/η

can be considered as a shrinkage operation on the singular values
and is defined as follows:

proxtrλγi/η
(Y ) = Umax(S − λγiI/η, 0)V T , (21)

where Y = USV T is the singular value decomposition (SVD) of
Y , and the max operation is taken element-wise. See [48] for the
derivation.

In our implementation, the stopping criterion is that the value
of c has almost no change or the maximum number of iterations
reaches.

5.4. Compact representation

To obtain a compact representation of φk
j , we need to do the

CP decomposition of Ck and store the resulting coefficients λk
l and

rank-one tensors a(k)
l ◦ b(k)

l ◦ c(k)
l . We complete this task by the

fast ALS algorithm [49], which is contained in the TENSORBOX
package [50]. To start, we need to provide the number of rank-
one components Rk. Since the trace norm ∥ · ∥∗ can give a good
approximation of rank(Ck), we choose

R0
k =


3

i=1

γi∥Ck
(i)∥∗


as an initial guess. Then we gradually increase Rk based on the
fitting error until it is less than a user-specified tolerance εk

cp.
Algorithm 2 gives a detailed description of this strategy.

Algorithm 2 Adaptive CP decomposition
Input:

Ck, ε
k
cp, initial guess R

0
k

Output:
Rk, {λ

k
l }

Rk
l=1, {a

(k)
l }

Rk
l=1, {b

(k)
l }

Rk
l=1, {c

(k)
l }

Rk
l=1

1: Rk ← R0
k

2: Obtain Ĉk by the CP decomposition (11) with Rk components
3: while ∥Ck − Ĉk∥ > εk

cp do

4: Rk ← Rk +


3 log ∥Ck−Ĉk∥

εkcp


5: Obtain Ĉk by the CP decomposition (11) with Rk components
6: end while

6. Implementation and results

In this section, we evaluate the performance of our compact
surface reconstruction method based on theMRAS representation.
Some details of our implementation, comparisons with other
methods and discussions are provided.

6.1. Implementation

The algorithms are implemented in C++ and MATLAB, and
we use the Bloomenthal’s polygonizer [51] for polygonization
(i.e., isosurface extraction). All the experimentswere performed on
a PCwith a quad-core Intel i5 @3.1 GHz processor and 8GB of RAM.

In our method, there are several parameters. Most of them
can be set as default values or chosen by programs automatically,
e.g., the convex combination coefficients γi in (15) are set to 1

3
as suggested in [43], the penalty parameter η in (17) is typically
(a) Input. (b) λ = 0.0005. (c) λ = 0.004.

(d) λ = 0.02. (e) λ = 0.1. (f) λ = 0.5.

Fig. 3. Reconstruction of the Bunny model using various parameters λ while
leaving other parameters fixed.

set to 1, and the tolerance in Algorithm 2 is set as εk
cp = 10−k−1.

In our experiments, the knot sequences of B-spline basis func-
tions in (6) are chosen uniformly in domain Ωk

j for the sake of
simplicity, although nonuniform knot sequences may achieve bet-
ter results. The degrees of freedom in (6) are determined by the
numbers of B-spline basis functions, i.e., mk, nk, lk, which lead to
a tradeoff between efficiency and accuracy. Since the fitting error
is decreasing dramatically as the level k increases, we can choose
mk = m0 − ⌊βk⌋ , β ∈ [1, 3], nk and lk can be chosen in a similar
way. The values ofm0, n0 and l0 are usually specified by users. Un-
less specified, we use quadratic B-spline basis functions, i.e., d1 =
d2 = d3 = 2, in our examples, which is proved to work well.

There are three weights, i.e., w1, w2 and λ in our local
fitting model (15). We typically set w1 ∈ [5E-5, 1E-3]. The
weight λ can be used to balance the reconstruction quality and
the storage requirement for the reconstructed implicit function.
Clearly, smaller λ leads to reconstruction results of higher quality
while larger λ can reduce the storage requirement greatly. We
observe that λ ∈ [0.01, 0.05] provides a good compromise
between them. For an illustration, see Figs. 3 and 4.

6.2. Results

Low-rank approximation of algebraic surfaces To verify the validity
of our method, we sample some points from several algebraic
surfaces, and then test our method on the resulting point sets.
Due to the simplicity and the symmetry of algebraic surfaces, only
a single level representation is used here. As demonstrated in
Fig. 5, ourmethod canproduce very compact representations of the
ground-truth surfaces with the specified accuracy, i.e., low-rank
representations.
Storage. To demonstrate the compactness of our low-rank MRAS
representation, we provide a comparison on storage requirement
with several state-of-the-art surface reconstruction methods:
Algebraic Spline surfaces (AS) [29], Multi-level Partition of
Unity (MPU) [25], implicit PHT-splines (IPHT) [7], and Screened
Poisson (SP) [2]. We measure the storage space of the implicit
representations by the number of coefficients/parameters in the
representations. For example, our method needs to record the
information of all the local offset functions. Each local offset
function φk

j has (mk + nk + lk)Rk coefficients to store. Thus
the total storage requirement by our method is the sum of the
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Fig. 4. Plot of the storage requirement for the reconstructed implicit function as a
function of the relative fitting error. Here, the relative fitting error is measured by
the maximum distance between the given point set and the reconstructed surface,
which is then divided by the length of the main diagonal of the bounding box. And
to provide better illustration, the storage requirement and the relative fitting error
are normalized by their maximum values respectively.

Fig. 5. Low-rank approximation of some algebraic surfaces with (a) sphere, ε =
9.68E-4, Rk = 4; (b) torus, ε = 8.32E-4, Rk = 10; (c) double torus, ε =

2.88E-3, Rk = 18; (d) 3-fold torus, ε = 4.68E-4, Rk = 12.

number of coefficients in all the offset functions, plus the number
of parameters in all the quadratic blending functions. For MPU
method, the storage requirement is the sum of the number of
coefficients in all the three kinds of local shape functions over each
cell, i.e., the general 3D quadric, the bivariate quadratic polynomial
in local coordinates and the piecewise quadric surface. To store
IPHT splines, we need to store the Bézier ordinates defined over
each cell in the hierarchical T-mesh. The SPmethod needs to record
the information in each node, which includes the width, the center
and the corresponding weight coefficient.

For the sake of fairness, we carefully adjust the parameters
for each approach to produce reconstruction results with roughly
the same accuracy. Complete storage statistics are provided in
Table 1. Clearly our method significantly outperforms other state-
of-the-art surface reconstruction methods in terms of the storage
requirement, thanks to the multilevel representation of MRAS
and the low-rank tensor approximation technique. Some of our
reconstruction results are shown in Fig. 6.
Fine detailsWhen the given point set contains fine-scale scans, the
reconstruction approaches should be fully self-adaptive and have
the capability to recover fine details of the scanned surface. The
construction of our MRAS representation is a dynamic process and
is particularly suitable for producing multilevel description of the
underlying shape in an adaptive fashion, e.g., see Fig. 2. As shown in
Fig. 7, the outputs of ours are comparable in quality to two state-
of-the-art methods: MPU and SP, although our method uses less
storage space.
Raw scan data and non-uniform sampling data We have tested
our method on the raw scan data, e.g., the Stanford bunny raw
Fig. 6. Reconstructions of (a) the Hand model with 36,619 points, (b) the Horse
model with 48,485 points, and (c) the Elephant model with 1,512,290 points.

dataset of 362,272points assembled from ten range scans as shown
in Fig. 8(a). Here, the oriented normals are estimated using the
connectivity informationwithin each individual range scan. And as
demonstrated in Fig. 8(b), our method is also robust for the highly
non-uniformly sampled input data. In this example, the sharp drop
of the sampling density does not cause obvious visual artifact in the
output of ours, even though the right part of the original Igeamodel
was resampled by removing 90% points.
Noisy data To evaluate the robustness to noise and outliers, we
have also applied our method to some point clouds from multiple
virtual scans. Fig. 9 shows the reconstruction results with different
levels of noise and outliers applied to different regions of the
input point cloud. Our method outperforms MPU and SP in terms
of the resilience to noise and outliers, because the low-rank
regularization term in our fitting model is able to suppress noise
and outliers efficiently. Fig. 10 gives another example, in which
the histograms of the fitting errors are shown. Again, our method
achieves the best result among three methods.
Incomplete data As we might expect, the presented method can
reconstruct surfaces from the incomplete data well owing to
the multilevel representation using overlays and the low-rank
inducing regularization technique. Fig. 11 shows an example.
Running time Table 2 summarizes the running time performance
of our method on a variety of models. When compared to
some state-of-the-art methods, our current implementation with
minimally optimized code takes more computational time. The
reasons are as follows. Currently, our main algorithms (ADMM
algorithm and ALS algorithm) are implemented by MATLAB which
can be speed up by using C/C++ and MKL library. Secondly,
accelerating the convergence of the ADMM algorithm and the
fast ALS algorithm is also possible. Thirdly, our method is very
suitable for parallelization, due to the independence of the
MRAS representations in all the cells of each level. Hence, we
believe that the running time of our method can be reduced
dramatically by considering the above factors. On the other hand,
we should emphasize that our principal goal is to find a compact
representation of MRAS surfaces, and it is worthwhile to sacrifice
some speed.

7. Conclusions and future work

In this paper, we have developed an adaptive surface re-
construction method based on a new implicit representation—
Multilevel Rational Algebraic Splines. To generate a compact
representation in order to reduce the storage requirement, we pro-
pose a local fitting model by introducing a low-rank regularization
term.We then convert thismodel into a convex optimization prob-
lem, which can be solved by the ADMM algorithm efficiently. We
obtain the compact representation of the MRAS surface using the
low-rank tensor approximation technique based on CP decompo-
sition. A number of experimental results have shown that our ap-
proach not only produces very compact representations, but also
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Table 1
Comparison of the storage requirement for our method with AS, MPU, IPHT, and SP under roughly the same relative error. The storage in each row is normalized by ours to
provide easy comparisons.

Model AS MPU IPHT SP Ours
Relative Storage error Relative Storage error Relative Storage error Relative Storage error Relative Storage error

Igea 3.42e−3 4.94 2.94e−3 5.33 3.41e−3 169.54 2.96e−3 11.62 2.97e−3 1
Bunny 1.38e−3 5.18 1.72e−3 6.22 1.36e−3 127.90 1.36e−3 35.02 1.42e−3 1
Sphere 1.11e−3 12.45 9.13e−4 32.97 1.05e−3 2293 1.1e−3 36.12 9.68e−4 1
Torus 7.85e−4 3.76 9.23e−4 31.58 8.60e−4 620.18 7.96e−4 33.69 8.32e−4 1
Double torus 3.47e−3 4.22 3.15e−3 15.72 3.62e−3 219.11 3.26e−3 52.63 2.88e−3 1
3-fold torus 5.99e−4 17.26 5.07e−4 266.13 6.51e−4 1412 6.31e−4 498.23 4.68e−4 1
Hand 2.7e−3 4.23 2.66e−3 4.54 2.36e−3 91.71 2.57e−3 10.51 2.45e−3 1
Horse 3.54e−3 4.29 4.01e−3 4.48 3.96e−3 82.46 3.56e−3 13.43 3.41e−3 1
Elephant 2.22e−3 5.21 2.02e−3 4.94 2.05e−3 29.75 1.88e−3 8.28 1.92e−3 1
Dragon 6.1e−3 5.70 6.35e−3 8.32 5.65e−3 23.98 5.19e−3 14.26 5.71e−3 1
Buddha 6.21e−3 4.81 6.02e−3 4.47 6.15e−3 26.08 6.3e−3 9.22 6.18e−3 1
(a) MPU. (b) SP. (c) Ours.

Fig. 7. Reconstructions of the Dragon model and the Happy Buddha model using our method and two state-of-the-art methods: MPU and SP.
Fig. 8. Reconstructions of (a) the Stanford bunny raw dataset, and (b) the Igea model with non-uniform sampling density.
achieves comparable results with some state-of-the-art surface re-
construction methods. The capability to handle the non-uniform
sampling data, the noisy data and the incomplete data has also
been evidenced by the numerical examples.

Regarding future work, our method should greatly benefit
from the parallelization of our approach on GPU for acceleration,
since the calculations of the MRAS representation in all the
cells of each level are independent and can be carried out
simultaneously. Another interesting direction for acceleration is
to develop specialized fast algorithms for solving our local fitting
model and performing the CP decomposition. We believe that
our method can be useful in many applications, such as mesh
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(a) Input points. (b) Ground truth. (c) MPU. (d) SP. (e) Ours.

Fig. 9. Reconstructions from the input point cloud of the double torus model corrupted by four different levels of noise (σ = 0.002, 0.006, 0.01, 0.018) and outliers at
bottom-right, top-right, bottom-left and top-left regions, respectively.
Fig. 10. Reconstruction errors on the noisy scan of the Max Planck model. The reconstruction errors are measured by the distance between the reconstructed mesh and
the ground truth and visualized by the color-coding, where the errors are normalized by the diagonal of the bounding box of the ground truth model. The histograms of the
errors are also displayed on the top row, which show that our method results in an error distribution closest to the zero.
Fig. 11. Reconstruction of the incomplete data: (a) the Squirrel model in the
presence of holes on the back and the head. (b) the reconstructed surfacewith holes
filled.

Table 2
Runtime performance of ourmethod on different datasets. All timings aremeasured
in seconds.

Model #Points Octree depth Relative error Time

Igea 134,345 4 2.97e−3 505.35
Bunny 72,027 4 1.42e−3 248.21
Torus 33,693 1 8.32e−4 5.46
Hand 36,619 4 2.45e−3 194.19
Horse 48,485 4 3.41e−3 242.63
Elephant 1,512,290 5 1.92e−3 1383.64
Dragon 435,545 5 5.71e−3 1257.78
Buddha 537,142 5 6.18e−3 1368.45

compression, level of details and progressive compression and
transmission, where the ability to produce compact andmultilevel
representation is crucial. Applications of tensors in other geometric
modeling problems are also worthy of further study.
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