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a b s t r a c t

Decomposing a 3Dmodel into approximately convex components has gainedmore attention recently due
to its ability to efficiently generate small decompositions with controllable concavity bounds. However,
current methods are computationally expensive and require many user parameters. These parameters
are usually unintuitive thus adding unnecessary obstacles in processing a large number of meshes with
various types and shapes or meshes that are generated online within applications such as video games.
In this paper, we investigate an approach that decomposes a mesh P based on the identification of convex
ridges. Intuitively, convex ridges are the protruding parts of the mesh P . Our method, called CoRiSe,
extracts nearly convex components of P by separating each convex ridge from all the other convex
ridges through the new concept of residual concavity. CoRiSe takes a single user parameter: concavity
tolerance which controls the maximum concavity of the final components, as input, along with other
two fixed parameters for encoding the smoothness term of graph cut. We show that our method can
generate comparable (sometimes noticeably better) segmentations in significant shorter time than the
current state-of-art methods. Finally, we demonstrate applications of CoRiSe, including physically-based
simulation, cage generation, model repair and mesh unfolding.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In interactive applications, it is necessary to create simplified
representations of a mesh to support various computationally in-
tensive operations. In this work, we are interested in obtaining
such simplified representations via decomposition. Taking defor-
mation as an example, a mesh that has been decomposed into vi-
sually meaningful parts (e.g. head, torso, limbs) eases the process
of creating deformation at semantic level. On the other hand, if
a mesh is caged and partitioned by a set of convex shells, artists
can use these shells to perform physically-based deformation ef-
ficiently. In many situations, both of these higher-level (semantic)
and lower-level (physical or geometric) deformations are required.
While it is ideal to keep both representations, it is also desirable to
have an unified representation. An unified representation not only
reduces space requirement but also allows deformations created at
various semantic levels to be applied to the originalmesh through a
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single approximation. Therefore,we recognize the need to have de-
composition methods, such as the one proposed in this paper, that
provide users both visual saliency and bounded geometric proper-
ties.

The first type of decomposition above is called shape decomposi-
tion. In the past decade, significant progress has beenmade in pro-
ducing high quality results [1–7]. Shape decomposition provides
implicit shape approximation and is useful for shape analysis and
recognition and semantic level shape editing and deformation. The
second type of decomposition can be accomplished through the
Approximate Convex Decomposition (ACD) [8]. ACD decomposes
a 3D mesh into nearly convex parts. Unlike shape decomposition,
ACD provides explicit approximation with bounded approxima-
tion errors and is therefore suitable for lower level processing. For
example, Bullet physics library uses hierarchical ACD (HACD) [9]
to speed up the collision detection and response computation of
the non-convex shapes, and Muller et al. [10] proposed an inter-
active tool to generate approximate convex parts for speeding up
dynamic fracture simulation.

The most challenging task in developing such a decomposition
method stems from the fact that current convex decomposition
and shape segmentation methods are computationally expensive
and require different parameter settings for different shapes
which are usually unintuitive and make processing a massive
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(a) Input. (b) Convex ridges. (c) Iterative decomposition. (d) Cage-based deformation. (e) Physically-based
simulation.

Fig. 1. An example of CoRiSe with concavity tolerance τ = 0.05. (a) Input mesh. (b) Ten convex ridges (shown as translucent ellipsoids) are connected by deep valleys
(shown as the geodesic paths). Formal definition of convex ridge and valley can be found in Section 4. (c) Left is the decomposition result of the first iteration; right is final
decomposition (the second iteration). Note that colors are just used to distinguish different parts. (d) CoRiSe used for automatic cage generation. (e) The convex hulls of
CoRiSe components can be used to speedup the computation in physically-based simulation. (For interpretation of the references to color in this figure legend, the reader is
referred to the electronic version of this article.)
number of meshes in applications difficult. Recently, learning
based segmentation methods [4,5] are proposed to learn common
parameters in an unsupervised or supervised manner, but the
computation time of these methods is often intolerably high
(minutes to hours), in particularly, for interactive applications.

Contribution. In this paper, we will describe an efficient de-
composition method, called CoRiSe. The only user input pa-
rameter is a concavity tolerance which directly controls the
approximation error. The novelty of CoRiSe comes from the idea of
convex ridgewhich can be efficiently and robustly determined. Es-
sentially, CoRiSe extracts nearly convex components of a 3D mesh
P by separating each convex ridge from all the other convex ridges
using graph cut. An example of convex ridge and CoRiSe decompo-
sition is shown in Fig. 1. Formal definition of convex ridge can be
found in Section 4. In addition, through the new concept of residual
concavity, CoRiSe is insensitive to the parameter in graph cut and
requires only a single user parameter: concavity tolerance.Wewill
discuss residual concavity and graph cut in Section 5.

Using the Princeton Segmentation Benchmark, we show that
CoRiSe generates noticeably better segmentation in significant
shorter time than the existing methods [9,1]. Finally, we demon-
strate applications of CoRiSe, including physically-based sim-
ulation, cage generation, model repair and mesh unfolding in
Section 6. Fig. 1 shows two of these applications.

2. Related work

Many methods have been developed to decompose 3D mesh
models. Comprehensive surveys can be found in [11–13]. In this
section, we will reviewmore recent works on shape segmentation
and convex segmentation. After this short review, we will point
out that the needs for developing a more intuitive and efficient
method, such as CoRiSe.

Shape segmentation. Many of the existing single-shape
segmentation methods are based on clustering mesh faces, such
as k-means clustering [14], fuzzy clustering [15], mean-shift
clustering [16], and spectral clustering [17]. Shape features, such
as geodesic distance, local concavity, curvature, have significant
impact on these clustering methods. More advanced features
include shape diameter function [6] that is a measure of the
diameter of the object’s volume in neighborhood of a point,
Mumford–Shah model [3] that measures the variation within a
segment and continuous visibility feature [18] that uses more
restricted visibility to better capture shape than the traditional
line of sight visibility. Methods that are not clustering based do
exist. For example, the method proposed by Wang et al. [19] uses
the training segmentation of 2D projection images. Random cuts
method [7] uses other different segmentation algorithms with
various parameters to generate a collection of segmentations to
find consistent cut positions.
Recently, we see more techniques using data-driven approach.
These methods usually provide more consistent segmentations
over a set of models [20] and produce segmentations that are
more natural via machine learning approaches [4,5]. However,
these methods are computationally intensive (require hours of
computation) and are not suitable for interactive use.

Primitive segmentation. While many algorithms focus on de-
composing a model into visually meaningful parts, other algo-
rithms focuses on partitioning models into geometric primitives
such as ellipsoids [21] and convex objects [8]. In other words, mul-
tiple primitives are used to jointly approximate the original shape.

In this paper, we are interested in producing nearly convex
components. We found that many methods in the literature use
again clustering (bottom-up) approach. Mamou and Ghorbel [9]
proposed a method called Hierarchical Approximate Convex De-
composition (HACD) for 3D meshes. HACD iteratively clusters
mesh facets by successively applying half-edge collapse decima-
tion operations (see more detailed discussion in Section 6). Attene
et al. [22] proposed to convert a model into tetrahedral mesh and
thenmerge tetrahedra to formnear convex components. However,
this method requires human interaction, thus not suitable for seg-
menting a large number of models. The method proposed in [23]
is based on a region growing approach controlled by convexity,
compactness and part cost. Top-down approaches are rare. For ex-
ample, Ghosh et al. [24] proposed a notion named relative concav-
ity to model the concavity measure before and after every mesh
cut. Nearly convex components are obtained by finding the cuts
that have largest relative concavities via dynamic programming.
In many of these methods, several parameters are needed to be set
to balance various features.

We would like to note that there are also methods that use
convexity and concavity but do not produce segmentation with
bounded convexity or concavity. For example, Au et al. [2] used
concavity-aware field to form potential cuts and the final cuts
are achieved by maximizing the cut score. Even though concavity
is used, it does not have direct control of concavity for final
components and several parameters and thresholds need to be
set. Asafi et al. [25] defined the convexity using the line-of-
sight and applied spectral clustering on the visibility matrix to
achieve segmentation. van Kaick et al. [1] applied merging on
the initial result of [25] based on the Shape Diameter Function.
However, since the pairwise visibility needs to be computed, the
computation is time-consuming.Moreover, even though these two
methods use convexity as clue for segmentation, they did not
directly control the convex/concave geometric property for the
final components.

Concavity and its counterpart, convexity, have shown to be
valuable for various decompositionmethods. Intuitively, concavity
of a polyhedron P measures howdifferent P is froma convex object,
which is typically the smallest convex object enclosing P , i.e. the
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Fig. 2. The left figure shows one bridge and its valley in 3D. The right part shows its projected concavity polygon in 2D. Concavities are measured in this 2D polygon using
the shortest-path distance.
convex hullH(P) of P . Concavity can bemeasured globally from the
difference between the volumes of P and H(P) or the difference of
their projections [26]. Concavity can also be measured locally for
every point on the surface ∂P of P . Local concavity measures how
far away a point on the surface of P is from the surface ofH(P), thus
provides richer information to guide the decomposition process.

There have been several definitions of local concavity, such as
curvature [2]. A more general definition of the concavity of a point
p is the length of the shortest distances from p ∈ ∂P to H(P)
without intersecting P . Due to the high computational complexity
of 3D shortest-path problem, approximation is required. For
example, Zimmer et al. [27] proposed to compute the shortest
path by tessellating the space between ∂P and ∂H(P) using
constrained Delaunay triangulation (CDT). However, this solution
required ∂P to be closed. Many other approaches resort to the
Euclidean distance between the vertex and the convex hull in
the outward normal direction of the vertex. It is clear that the
association between ∂P and ∂H(P) is usually complex and cannot
be captured by the surface normals of P . This can result in
inaccurate measurement of the concavity and lead to incorrect
decomposition. Lien and Amato [8] proposed to determine the
association by projecting the edges and then facets of ∂H(P) to ∂P .
Unfortunately, such an association between ∂P and ∂H(P) is not
always well defined as it usually depends on how P and ∂H(P) are
tessellated.

3. Overview

CoRiSe takes a single 3D mesh and a concavity tolerance
parameter τ as input anddecomposes thismesh into nearly convex
components in a top-down fashion that includes three main steps:

Step 1. Build bridges and compute concavities. Bridges are
the convex hull edges, and the shortest geodesic path on the mesh
connecting the end vertices of a bridge is called valley. Then, the
concavity of a point in the valley is measured as the shortest-path
distance to the bridge. Exact shortest geodesic path and shortest-
path distance are computationally expensive thus we will discuss
how we approximate them. We say that a valley is deep if the
maximum concavity in the valley is greater than τ , otherwise the
valley is shallow. It is important to remember that, throughout the
entire segmentation process, concavity is only defined for points in
the valleys and undefined elsewhere.

Step 2. Identify convex ridges. In CoRiSe, a convex ridge con-
sists of a group of convex-hull vertices connected only by shallow
valleys. Intuitively, a convex ridge can be viewed as a protruding
part of the mesh that is guaranteed to be convex enough. This im-
plies that a continuous subset of the mesh containing two or more
convex ridges must be too concave. Fig. 1(b) shows an example of
10 convex ridges.

Step 3. Partition using convex ridges. CoRiSe segments the
mesh by ensuring that each component in the segmentation
contains only a single convex ridge. The segmentation process is
bootstrapped by splitting each deep valley into shallow ones at the
valley separators. Then CoRiSe applies graph cut using the region
definedby valley separators as data termand edge angle and length
as smoothness term to find optimal cut loops near these valley
separators.

The above three steps are repetitively applied to the segmented
part whose concavity is greater than τ .

4. Bridge, valley and convex ridge

To approximate a mesh using convex shapes, we should
establish relationships between the mesh and its convex hull. Let
the input be a polyhedron P = {VP , FP , EP} composed of a list of
vertices VP and faces FP connected by edges EP . We assume that P
consists of a single connected component. The convex hull of P is
denoted as H(P) = {VH , FH , EH}, where VH ⊂ VP . Let us consider a
convex hull edge e = {a, b} ∈ EH . Since e is the shortest Euclidean
path connecting a and b, let us call e a bridge. Because a and bmust
also be the vertices of P , we can always find a path connecting a
and b on ∂P . We call the shortest geodesic path connecting a and b
on ∂P a valley underneath the bridge eβ .

A bridge eβ and its associated valley e∨ form a 3D polygon. We
call this polygon the concavity polygon, which plays an important
role in many stages of our algorithm. For example, we project the
concavity polygon into a 2D space and only measure the concavity
in the projected 2D space. More specifically, each point p ∈ e∨ =

(a, b) is projected to

p′
= (

−→ap ·
−→
ab, d(p, eβ)), (1)

where−→ap ·
−→
ab is the inner product of−→ap and

−→
ab , and the function d

defines the Euclidean distance between a point and a line segment.
Fig. 2 shows an example of bridge, its valley and the projected
2D concavity polygon. Then, the concavity C(p) of the point p
is determined as the shortest-path distance between p′ and the
projected eβ . It is known that the shortest-path distance can be
measured in O(n) time for a polygon of size n.

It is possible that the projected polygon can self-intersect.
However, self-intersection seldomhappens; all projected polygons
of models studied in this work are free of self intersection.
However, when the projected polygon is self-intersecting or has
large concave regions, we use a more sophisticated concavity
measure proposed in [28], which decomposes the polygon into
several near convex parts and determines a hierarchy of bridges.
The concavitywill bemeasured by the accumulated distance of the
point-to-adjacent bridge distance and bridge-to-bridge distances.
For example, in Fig. 3, the concavity of p will be the distance sum
of the distance between p and β1 and the distance between β1 and
ab.
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Fig. 3. The concavity of the projected polygon with highly concave regions or self-
intersections.

The concavity of a valley e∨ (and its associated bridge eβ ) is
defined as the maximum concavity of its vertices, i.e., C(e∨) =

C(eβ) = maxp∈e∨(C(p)). Let us call e∨ deep valley if C(e∨) is larger
than the tolerance, otherwise e∨ is called a shallow valley. For the
convenience of our future discussion, we also classify bridges into
high and low bridges (as measured by the deck height of bridge) if
their corresponding valleys are deep and shallow, respectively.

4.1. Convex ridge

Now let us formally define the convex ridge. A convex ridge
R of P is a graph representing a subset of convex hull H(P). We
say a subset of R ⊂ H(P) is a convex ridge if all bridges of R are
shallow and there are no high bridges connecting two vertices in
R. More specifically, a convex ridgeRmust satisfy the following two
conditions:

∀e ∈ ER, C(e) < τ, and
@e = (a ∈ VR, b ∈ VR), C(e) > τ,

(2)

where VR and ER are the vertices and edges of R, respectively. In
short, a convex ridge can only have vertices connected by bridges
whose valleys are shallow.

The convex ridges of a givenmesh are constructed by iteratively
greedy clustering the convex hull vertices while ensuring that the
properties in Eq. (2) are maintained for each cluster. The clustering
proceeds by collapsing low bridges sorted in an ascending order
based on the length of the associated valleys. Each final cluster
would become a convex ridge. The detailed procedure can be found
in Algorithm 1 in the supplementary materials (Appendix A). Fig. 4
shows examples of convex ridges. We can also see that convex
ridges are quite insensitive to surface noise in Fig. 4. In fact, as
long as shallow valleys remain shallow, all convex ridges will be
unaffected.

4.2. Residual concavity

Residual concavity measures the concavity of a valley e∨ after
e∨ is split into two subpaths at a vertex of e∨. Let e∨ =

{v0, v1, . . . , vn−1} be a deep valley, and let ek
∨

= {v0, v1, . . . , vk−1}

be a prefix subset of e∨, where k ≤ n. We further let ê∨ =

{vn−1, vn−2, . . . , v0} be the reverse of e∨. The residual concavity of
e∨ at the kth vertex is then defined as:

RC(e∨, k) = max

C(ek

∨
), C(ê(n−k+1)

∨
)

. (3)
Recall that the concavity is alwaysmeasured in the 2D concavity
polygon projected using Eq. (1). It is important to note that once
the valley e∨ is split, two or more new bridges must be formed to
determine the concavity of e∨’s sub-valleys. Therefore, at the first
glance, computing RC seems to be time consuming, but we have
shown that RC can be computed in linear time.

Lemma 4.1. The computation of residual concavity RC(e∨, k) takes
time linear to the size of e∨, i.e. O(n) for e∨ with n edges.

Proof. See details in the Appendix Proof 8 given in the supplemen-
tary material (Appendix A). �

4.3. Shape of a valley

The residual concavity gives us a way to estimate the shape of
a valley. We say a valley e∨ is V-shaped if there exists a vertex vk
such that the residual concavity of e∨ is less than the tolerance τ .
Otherwise e∨ is U-shaped. An example of a U-shaped valley can be
found in Fig. 5. If e∨ is U-shaped, we can always find the bottom of
e∨ as the sub-polygon bounded by the prefix and suffix of e∨ that
have residual concavities less than τ . In Fig. 5, we show that the
bottom of the U-shaped valley is defined as (vi, vj), where i and j
are the maximum indices such that C(ei

∨
) < τ and C(ê(n−j)

∨ ) < τ ,
respectively; recall that ê∨ is the reverse of e∨. As we will discuss
in Section 5, the shape of valley can be used to determine the
number of vertices needed to separate each convex ridge in the
wired representation to ensure that its concavity is less than τ .

5. Convex ridge separation

CoRiSe segments a mesh by ensuring that each component in
the segmentation contains only a single convex ridge. Essentially,
CoRiSe finds such segmentation in two steps: first, CoRiSe only
focuses on the wireframe representation of the mesh that consists
of vertices and edges of all convex ridges and deep valleys. An
example of such a representation can be found in Fig. 1(b). For each
deep valley, CoRiSe determines one or two key vertices (depending
on whether it is a V - or U-shaped valley) that can separate each
deep valley into at least two shallow valleys. In Section 5.1, wewill
discuss how CoRiSe decomposes this wireframe representation.
Then, once the wireframe is decomposed, CoRiSe switches back to
the originalmodel and applies a two-way graph cut to find optimal
cut loops near the valley separators. This step will be discussed in
Section 5.2.

5.1. Valley separators

To separate the convex ridges in the wireframe presentation,
CoRiSe finds valley separators for each deep valley and ensures that
each convex ridge only connects the subset of the valley that has
concavity less than the tolerance. For a V -shaped valley e∨, the
valley separator is a single vertex that has the largest concavity
in e∨. By splitting at the vertex with the largest concavity, we can
guarantee that the two new sub-valleys of e∨ are shallow.
Fig. 4. Convex ridges found in these models. Each ellipsoid represents a convex ridge. Even though several convex ridges in these examples concentrate around small
compact regions, the convex ridges in (c) manifest various ridge-like shapes (regions that locally have higher ‘‘elevation’’). Fig. 4(e), (f) and (g) show the convex ridges on
the ant model with random noise added. The convex ridges of Fig. 4(e), (f) and (g) are all generated using τ = 0.08.
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Fig. 5. A deep U-shaped valley e∨ and its valley separators vk and vg . The sub-
valleys ei

∨
and êj∨ are subsets of e∨ whose residual concavity is less than the

concavity tolerance τ . The valley separators vk ∈ ei
∨
and vg ∈ êj∨ minimize the

residual concavities RC(ei
∨
, k) and RC(êj∨, g).

For a U-shaped valley e∨, things are a bit more complex. Basi-
cally, CoRiSe splits e∨ into three sub-valleys and guarantees that
two sub-valleys incident to two convex ridges are shallow even
though the bottom of e∨ may not be. Let eβ = (a, b) be a bridge
whose valley e∨ is U-shaped. Using the residual concavity defined
in Eq. (3) in Section 4.2, we can find two vertices vi and vj such that
ei
∨
, a sub-valley between a and vi, and êj∨, a sub-valley between vj

and b, are shallow. See Fig. 5 for the illustration of ei
∨
and êj∨. Our

goal is to define two valley separators in ei
∨
and êj∨, respectively. It

is true that we can use vi and vj as the valley separators and still
guarantee that ei

∨
and êj∨ are shallow. However, the locations of vi

and vj are quite arbitrary in most cases. Therefore, the valley sep-
arators for a U-shaped valley e∨ are defined as a couple of vertices
(vk, vg):

(vk, vg), where k = arg min
k

RC(ei
∨
, k), g = arg min

g
RC(êj∨, g).

From Fig. 5, we can see that the valley separators vk and vg of
e∨ are identified at the locations of large concavity if the valley
is split at vi and vj. Once the valley separators are identified for
all deep valleys, all convex ridges are separated and only attached
to shallow valleys. Next, CoRiSe switches back to the original
representation and segments the mesh using graph cut.

5.2. Convex ridge separator

Graph cut [29] is a powerful optimization tool that has
been proven to be successful in segmentation. In the previous
section, we have found separators for deep valleys. And the
valley separators have roughly defined where the cuts should be.
However, since the valley separators are merely feature vertices
capturing concavity constraints, separating convex ridges needs
close cut loops. We formulate finding the cut loops as a simplified
graph cut problem. We say simplified graph cut because the data
term value is either infinity or zero, which corresponds must-link
region and fuzzy region. The smoothness term is defined using
dihedral angle and edge length. Fig. 6 shows the simplified graph
cut formulation. In the rest of this section, we will discuss the data
term and smoothness term in detail.

Data term. To formulate the graph cut problem, we introduce
two terms: must-link region and fuzzy region. Must-link region
would have infinite data term values associated with the source
or sink. Fuzzy region would have zero data term values. For each
iteration of graph cut, a facet belongs to either must-link region or
fuzzy region. In other words, must-link region plus fuzzy region will
cover the whole model. Intuitively, each convex ridge has a must-
link region which is a set of faces that must be segmented with the
convex ridge. To get the must-link region and fuzzy region, we will
introduce another term named potential region. We call it potential
region because a facet belonging to potential region has the chance
Fig. 6. Simplified graph cut: black nodes and blue nodes represent the must-link
regions. They have infinite data term associated with source or sink. Red nodes
represent the fuzzy region. (For interpretation of the references to color in this
figure legend, the reader is referred to the electronic version of this article.)

to become either part ofmust-link region or part of fuzzy region. The
ways to determine these regions are described as follows Potential
region. We will collect a potential region for each convex ridge Rk.
This potential region is the union of the facets collected by Rk’s
all the sub-valleys using geodesic distance. How each sub-valley
collects its facets is described as follows:

1. Collecting using Geodesic Distance: for each sub-valley ei
∨

(recall that ei
∨
is created from valley separator as described in

Section 5.1) incident to Rk, we let Ti be a set of facets whose
geodesic distance to the end point of ei

∨
in Rk is less than the

path length of ei
∨
.

2. Union: from Ti, we can determine a set URk of facets that forms
a superset containing Rk. The set URk is the potential region of
convex ridge Rk. More specially,

URk =


1≤i≤n

Ti, (4)

where n is the number of sub-valleys incident to Rk.

Potential region’s overlapping issue. Two neighboring convex
ridges Rk and Rj are likely to compete on certain facets. In this case,
URk andURj overlap. The overlapping region of IRk with other convex
ridges is then defined as:

IRk =


∀j≠k


URk


URj


. (5)

Must-link and fuzzy regions. With URk and IRk , we are ready to
define the must-link and fuzzy regions. The must-link region CRk
of Rk is simply URk with facets in IRk removed,

CRk = URk \ IRk . (6)

Then the fuzzy region is the union of the facets that do not
belong to any convex ridge’smust-link region.

FR = F \


CRk , (7)

where F is the facets of the mesh.
We give an example here. In the left part of Fig. 7, the black

segments show the potential region of a convex ridge. The black
vertices are the vertices of a convex ridge. The crossing vertices
are the valley separators. The right part of Fig. 7 shows the must-
link region and fuzzy region. The red segments represent the fuzzy
region. Except the red, each of other colors stands for the must-
link region for each convex ridge. There are three parts of fuzzy
region (red regions). The left part corresponds to the area that is not
covered by deep valley’s potential region. Themiddle part is part of
fuzzy region because it lies in the middle part of a U-shape valley
and it is not within the potential region of either of end vertices
from two convex ridges. The right part becomes fuzzy region due
to the fact that it has been covered by two convex ridges.
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Fig. 7. Left: the potential region (including all the black and red regions).
Right: must-link region and fuzzy region. In the right part, the convex ridges are
differentiated by colors (4 in total). The colored circles (dots) are the end vertices
of the deep valleys. The crossings are the detected valley separators. The red lines
(region) are the fuzzy region. The colored lines attached to circles with same color
are must-link region attached to corresponding convex ridge. (For interpretation of
the references to color in this figure legend, the reader is referred to the electronic
version of this article.)

Fig. 8. The must-link regions connected by the deep valleys.

Fig. 8 shows the must-link regions on the 3D models. The
filtered out regions are the fuzzy regions.

Smoothness term. The smoothness term evaluates the similar-
ity/compatibility between two adjacent triangle facets. In this pa-
per, we use the same definition of smoothness as that in [15].

A parameter α is introduced to balance the importance of
dihedral angel and edge length. The definition is as below: Let
vi and vj be two adjacent vertices, namely the two end vertices
of an edge (denoted as eij) on the mesh. And let fi and fj be the
two triangle facets sharing this edge. Let θij be the dihedral angle
between fi and fj, |eij| be the length of eij. Let Θij be a function of
θij such that Θij is a positive small number (the second parameter,
fixed to be 0.3) for concave edges and 1 for convex edges. Then the
smoothness term defined in [15] is:

wij = α


Θij

µΘ


+ (1 − α)

|eij|
µe

, (8)

where µΘ and µe are the average values of Θ and edge length,
respectively, of the entire mesh. In this paper, we set α = 0.8 (the
third parameter, fixed) in all experiments.

Segmentation using graph cut. We solve n − 1 times (n is the
number of convex ridges) binary graph cut optimization using the
max-flow algorithm. The order of n − 1 graph cut is determined
by the bounding box’s diameter of convex ridges’ vertices. We
separate one convex ridge at one time using the graph cut. At
each graph cut iteration i, we will assign infinite data term values
associated with source for the facets in its must-link region CRi and
assign infinite data term values associated with sink for the facets
in other convex ridges’ must-link region


∀j≠i CRj . Facets in fuzzy

region do not have data term with neither source nor sink. The
smoothness termwill be defined for any pair of neighboring facets
using the Eq. (8). We separate this convex ridge from the model
and the rest of model will be used for applying region for next
binary graph cut. Segmentation is performed iteratively until all
components have smaller concavity than τ . Fig. 1(c) shows the
first iteration decomposition result on the left and second (final)
iteration decomposition result on the right.

Discussion. One may argue that there are three issues in the
above formulation of graph cut problem. 1. Why use must-link
Fig. 9. Approximate shapes using the convexhulls of decomposedparts. The results
in this figure are generated by CoRiSe using models in the Princeton Segmentation
Benchmark.

region? The must-link region is defined using valley separators,
which roughly defines where the cut should be and satisfied the
concavity constraints. The must-link region can fully utilize the
rough cut positions proposed by valley separators. 2. Why use
n − 1 binary graph-cut? Another option is to k-way graph cut.
However, choosing a right k is important for k-way graph cut. A
proper k would be the number of final components. However, the
problem is the number of final components is unknown and the
number of convex ridges is not the real number corresponding to
the number components. Some components may have not been
detected by the current convex hull. The real number should be
≥ n. We apply n − 1 times graph cut and postpone handling
of the issue of undetected components in the further iteration of
decomposition, because these components may be detected after
wehave already cut some components out of themodel in previous
iteration. 3. How to decide the order of cutting which convex ridge
and how to deal with overlapping labeling issues? The order of
applying graph cut is based on the heuristic that we handle the
small components first (in terms of the bounding box’s diameter
of convex ridges’ vertices). For each graph cut, if we apply on the
same region, theremay be one issue that a facet has been labeled as
‘‘source’’ for several times. In this paper, after we apply one graph
cut, we separate one convex ridge from the model and the rest of
the model would be used as the applying region for further graph
cut. In this way, wewould be able to avoid the issue of overlapping
labeling issues.

6. Experimental results

We have implemented CoRiSe in C++. In order to evaluate
CoRiSe, we compare CoRiSe extensively to existing approximate
convex decomposition methods HACD [9] that is available in
the Bullet Physics Library and WCSeg [1]. We also compare
CoRiSewith shape decompositionmethods using the Princeton 3D
Mesh Segmentation Benchmark [13], which includes 380 surface
meshes of 19 different object categories (see Fig. 9). All the models
are scaled to have a 1.0 radius bounding sphere. The quality of the
decomposition is measured via the Rand Index that estimates the
similarity by measuring facet pairwise label difference between
the segmentations generated by CoRiSe and those generated by
humans and the state-of-art methods [6,7,3,1]. All experimental
results are collected on aworkstationwith two Intel Xeon 2.30GHz
CPUs and 32 GBmemory. HACD and CoRise are implemented using
C++ and WCSeg uses MATLAB.

6.1. Comparison of approximation

Given a concavity tolerance, we compare CoRiSewith HACD [9]
and WCSeg [1] based on (1) the number of decomposition
components, (2) decomposition time, and (3) approximation
accuracy. HACD first simplifies the model using Quadric Error
Metrics (QEM) and then hierarchically merges facets and ensures
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(a) CoRiSe. (b) HACD.

Fig. 10. Shape approximation using the convex hulls of all components in the decompositions from CoRiSe and HACD.
Table 1
Statistical results of the number of final components, computation time and the volume ratio which is approximations’ volume compared to that of the original model on
the Princeton 3D Mesh Segmentation Benchmark. All results are obtained using concavity tolerance = 0.1.

Category # of components Time (s) Volume ratio
HACD WCSeg CoRiSe HACD WCSeg CoRiSe HACD WCSeg CoRiSe

Human 12.10 18.85 9.85 84.80 677.92 2.33 1.23 1.24 1.31
Cup 18.90 5.50 4.55 372.09 1362.30 1.25 2.66 3.02 3.15
Glass 6.40 8.90 5.53 433.84 416.09 0.63 1.69 1.90 1.75
Airplane 5.20 7.70 7.55 1103.85 431.91 1.07 1.30 1.25 1.37
Ant 13.45 11.25 14.50 223.99 413.63 1.76 1.11 1.17 1.14
Chair 9.50 16.35 10.64 297.72 1021.50 1.86 1.67 1.56 1.45
Octopus 14.40 9.10 14.45 903.44 599.90 1.98 1.23 1.83 1.27
Table 6.00 5.55 6.05 3385.97 2762.60 1.25 1.33 1.68 1.42
Teddy 6.80 7.45 7.05 1548.05 1026.30 2.16 1.05 1.05 1.07
Hand 9.10 9.20 9.00 205.92 670.00 1.67 1.14 1.16 1.27
Plier 5.20 6.50 5.89 393.18 368.90 0.88 1.30 1.37 1.33
Fish 5.05 6.25 5.20 2969.80 546.04 0.84 1.12 1.16 1.18
Bird 5.55 11.10 6.39 547.89 515.03 0.73 1.36 1.26 1.35
Armadillo 15.30 20.10 14.90 56.89 1914.80 5.46 1.12 1.12 1.19
Bust 9.30 8.70 7.80 118.18 2285.80 4.50 1.05 1.08 1.11
Mech 4.45 3.70 3.65 1286.43 2587.30 1.04 0.87 1.02 1.02
Bearing 5.47 3.00 1.58 1095.92 1188.90 0.25 0.95 1.08 1.17
Vase 9.80 5.65 5.15 1059.17 1247.60 1.63 1.06 1.10 1.12
Four-leg 12.95 14.05 12.25 61.85 614.97 1.86 1.20 1.23 1.25
Average 9.21 9.42 8.00 849.95 1086.90 1.75 1.29 1.38 1.36
that the concavities of all clusters are lower than the tolerance
concavity. WCSeg creates initial segmentation using line-of-sight
concavity/convexity measurement and then uses Shape Diameter
Function [6] to merge the initial segmentations. Table 1 shows the
decomposition size, computation time, and the ratio between the
volume of the convex hull approximation and the volume of the
original model (see Fig. 10).

FromTable 1,we can observe that, on average,CoRiSe generates
fewer components than HACD and WCSeg. In addition, CoRiSe is
significantly faster than HACD and WCSeg. This is because HACD
requires many concavity evaluations in the bottom-up approach
clustering process. Note that even though it is not totally fair
to directly compare the computation time of CoRiSe and WCSeg
shown in Table 1 due to WCSeg’s matlab implementation, doing
spectral clustering that involves solving the eigen-decomposition
of a large pairwise matrix (whose size is square to the number
of facets) would still be a bottleneck using the faster C++
implementation.Without simplifyingmodels, HACD can even take
more than several hours to decompose amodelwith around10,000
vertices.

Table 1 also shows the comparison of volume ratios. The volume
ratio is defined as vol(∪i(CHi))/vol(P), where vol(∪i(CHi)) is the
volume of the union of all convex hulls and vol(P) is the volume of
the input mesh. From Table 1, HACD has smallest average volume
ratios. However, the result is biased because HACD simplifies
the input model before decomposition, thus these convex hulls
created by HACD do not guarantee to enclose the original model.
This may also produce noticeable penetration if these convex
hulls are used in collision detection. We can also see that the
approximation volume of CoRiSe is slightly smaller than WCSeg.
However, because WCSeg produces more segments, we can say
that CoRiSe is more effective (use less components to provide
tighter approximation). This is especially true in the human and
octopus category. Fig. 11 shows an example of the segmentations
of a human model and an octopus model from both CoRiSe and
WCSeg. The main differences between CoRiSe and WCSeg stem
from how concavity is used for segmentation. CoRiSe cares about
the approximation error, thus ignores the fingers of the human
model because the concavity between two fingers is smaller
than the concavity tolerance. On the other hand, the legs of
the octopus model are bended and CoRiSe cuts the legs into
several components to satisfy the concavity tolerancewhileWCSeg
merges them together.

6.2. Comparison using benchmark dataset

We should first note that CoRiSe aims at resolving the concavity
of a model and is not designed for semantic segmentation. For
example, in Fig. 17, the bird is decomposed into over 30 parts
which is much more than that of other shape segmentation. This
will certainly influence the evaluation if CoRiSe is compared to
segmentations created by human. However, we feel it is important
to compare CoRiSe to shape segmentation methods since, after
all, convexity is one of the important properties used in shape
segmentation, and we also believe that a visually meaningful
decomposition can provide visually convincing simulation.

Fig. 12 shows the Rand Index (RI) scores obtained from seven
methods on the same benchmark. Although CoRiSe performs
worse than the learning-based approach, CoRiSe outperforms
some single-model based methods [6,7] that require more
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Fig. 11. WCSeg vs. CoRiSe. Top row from left to right: WCSeg decomposition,
CoRiSe decomposition and convex hulls of CoRiSe components. Bottom row
from left to right: WCSeg decomposition, convex hulls of WCSeg components,
CoRiSe decomposition, and convex hulls of CoRiSe components.

Fig. 12. Rand Index (RI) comparison on the Princeton Benchmark data. human:
human cut; PT: CoRiSe with a τ for each model; CT: CoRiSe with a τ for
each category; CR9: CoRiSe with τ = 0.09; CR10: CoRiSe with τ = 0.1;
Additional comparisons evaluated using other metrics such as consistency error,
cut discrepancy, Hamming distance all show similar trend as RI and can be found in
the supplementary materials (see Appendix A).

user parameters, such as number of clusters. If CoRiSe can
choose a concavity tolerance for each category, its performance
is comparable to [1] which also has several parameters and
thresholds. Moreover, if CoRiSe chooses concavity tolerance
for each model individually, just as other methods selecting
component size for eachmodel, its RI score is lower than all single-
model methods in Fig. 12.

Comparedwith other shape-segmentationmethods,CoRiSehas
three major advantages: First, CoRiSe provides the bounded
convexity that can be used by broader applications. Second,
CoRiSe has less number of parameters, while others require several
user parameters for each model to specify component number,
soft-clustering number, or smooth factors. Table 2 summarizes the
number of parameters of each method. Finally, CoRiSe is efficient
without simplification as pre-processing.

Although it is true that only a small subset of concavity
tolerances produces semantic decomposition of a given shape,
those that do create semantic decompositions reflect the geometric
property of the shape. We encourage readers to look at our
supplementary materials (see Appendix A) which show the RI, HD,
CE and CD scores for a range of concavity tolerances.
Table 2
Number of parameters of segmentation methods (including fixed parameters).
WCSeg: the parameterswill be used for encoding pairwisematrix, computing Shape
Diameter Function and post-merging; RC: rand cut uses the statistics of other
approaches’ decomposition results. The parameter number will be more the sum of
those approaches; SDF: Shape Diameter Function method ≥5 parameters (number
of rays per facet; cone angle; component number of GMM; two fixed parameters
in encoding smoothness term same as CoRiSe; other parameters); HACD: many
parameters in mesh simplification and thresholds for angles and edges during
decomposition;CORISE: 3 parameters (the first is the concavity tolerance; the other
two are the fixed parameters in encoding smoothness term).

WCSeg RC SDF HACD CoRiSe

>5 >5 ≥5 7 3

Fig. 13. Simulation created using the convex hulls of CoRiSe.

7. Applications

CoRiSe is designed to approximate a 3D shape with a set
of convex objects. In this section, we demonstrate several
applications using this type of approximation.

7.1. Physically-based simulation

Physics simulation libraries, such as Bullet and Box2D, use
multiple convex shapes to approximate the original non-convex
shape. Approximating a shape with bounded concavity error
allows computations, such as collision response and penetration
depth, become much more efficient. In these applications, we
care about the number of approximation components and
the approximation error. Exact convex decomposition has no
approximation error, however, the number of components is
usually prohibitively huge, thus the computation, e.g., penetration
depth, is inherently expensive. It is therefore desirable to
have smaller number of components while the approximation
error is bounded. From the comparisons between HACD and
CoRiSe shown in Table 1, CoRiSe provides following advantages:
(1) CoRiSe guarantees to enclose the original model while HACD
does not; (2)CoRiSe ismuch faster thanHACD; (3)CoRiSeproduces
smaller segmentation given the same concavity tolerance.

We have successfully integrated CoRiSe with the Bullet
library (see Fig. 13). This allows us to generate convincing
physically-based simulations using only the convex hulls of
CoRiSe decompositions. We encourage the readers to view the
supplementary video (see Appendix A).

7.2. Cage-based deformation

Cage based deformation technique aims to be an easy-to-
use tool for graphics modeling, texturing and animation. The
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Fig. 14. A cage created from CoRiSe decomposition.

Fig. 15. (a) Noisy mesh with missing facets. The bottom figure provides a close-up
view. (b) CoRiSe results. (c) Top: Convex hulls of 16 segmented parts in (b). Bottom:
Convex hulls of HACD segmentation (138 components). All results are obtained
using concavity tolerance 0.1.

advantage of cage-based space deformation is its simplicity,
flexibility and efficiency. Most cages in cage-based deformation
are created manually, and the process can be tedious. Xian
et al. [30] proposed an automatic cage generation technique based
on iteratively splitting the bounding boxes. However, theirmethod
requires mesh voxelization that is both time consuming and, more
importantly, ignores important structural features of the input
shape. For example, their cage usually misses vertices near the
concave regions of the input mesh. Moreover, their method is not
suitable for interactive applications as for a shape with only 10k
vertices, their method can take several minutes. CoRiSe generates
a cage in almost real-time. We first use CoRiSe to generate a
nearly convex decomposition of the shape. Then convex hulls are
computed for each part. These convex hulls are slightly expanded
and simplified. The final cage is the union of the convex hulls.
Fig. 14 shows a cage created for the Armadillo model and its
deformation usingGreen coordinates.More examples can be found
in the supplementary materials (see Appendix A).

7.3. Model repair

All the models used in Table 1 are watertight. However, many
digitizedmodels have degenerated features andmay requiremesh
repair. The convex hulls of CoRiSe decomposition provide a conve-
nient way to generate a watertight representation. In Fig. 15, we
show a mesh that has 45% of the facets removed, and CoRiSe suc-
cessfully decomposes the mesh and produces better approxima-
tion than HACD does. In fact, CoRiSewill be able to produce similar
results as long as the mesh edge connectivity has not been signif-
icantly changed. For models with many holes, CoRiSe can get help
frommethods such as [31] that can be used to ensure that the pro-
jected geodesic path of the bridges is still well defined.

7.4. Origami

Origami has many applications in material engineering, man-
ufacturing and packaging, such as solar panel packing and
Fig. 16. Left: Segmentation result using CoRiSe. Right: Paper craft created by
unfolding/folding each nearly convex component.

self-folding origami. Edge unfolding a convex polyhedron to a non-
overlapping planer polygon (called a net) by cutting along its edges
remains an openproblem [32], in particular for non-convex shapes,
which usually need to be segmented then a net can be found
for each component [33,34]. Using CoRiSe to decompose a non-
convex shape into nearly convex components can significantly re-
duce the computational time of finding the nets and make folding
easier [35]. Fig. 16 shows an example of this approach.

8. Conclusion, limitations and future work

In summary, in this paper we proposed a 3D decomposition
method that produces components with bounded concavity. Our
method called CoRiSe meets the needs of real-time simulations
and computer games better than the existing methods. We also
showed that the decomposition results can produce semantically
meaningful decomposition with low computation cost when
proper concavity tolerances are given. The decomposition is
achieved by identifying convex ridges and then solving a graph
cut optimization problem formulated with valley separators and
must-link regions. Comparing CoRiSe with other methods on the
public benchmark dataset, we show that CoRiSe can generate
results close to manual decomposition. Comparing CoRiSe with
other approximate convex decomposition methods, we show that
CoRiSe is significantly more efficient.

Known limitations. Each of the major step of CoRiSe is quite
robust. For example, the convex ridges are always identified at ex-
pected locations for all the models that we tested (see the supple-
mentary material, Appendix A for more examples). A main limita-
tion ofCoRiSe is that its semanticmeaning ofCoRiSe components is
significantly influenced by the concavity tolerance τ .When τ is too
small, small components are produced and the semantic meaning
of these components diminishes. For example in Fig. 17(b) and (c),
even though CoRiSe still provides a tight approximation of the ini-
tial model using a relatively small concavity tolerance (0.05), many
small components do not have significant meanings.

Another limitation of CoRiSe is that CoRiSemay not decompose
a cup-like shape if none of the valleys reach the bottom of the
cup’s concavity (see Fig. 17(d)). This is caused by the fact that a
valley is the (approximated) shortest geodesic path. We believe
that this can be addressed by ensuring that the vertex pwith largest
concavity of a valley has the local maximum concavity. If this is not
the case, then we iteratively descend p until a point p′ with local
maximum concavity is reached. A new valley is then computed by
enforcing it to pass through p′.
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