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a b s t r a c t

This paper presents a novel multi-frame graph matching algorithm for reliable partial alignments among
point clouds. We use this algorithm to stitch frames for 3D environment reconstruction. The idea is to
utilize both descriptor similarity and mutual spatial coherency of features existed in multiple frames to
match these frames. The proposed multi-frame matching algorithm can extract coarse correspondence
among multiple point clouds more reliably than pairwise matching algorithms, especially when the data
are noisy and the overlap is relatively small.When there are insufficient consistent features that appeared
in all these frames, our algorithm reduces the number of frames to match to deal with it adaptively.
Hence, it is particularly suitable for cost-efficient robotic Simultaneous Localization andMapping (SLAM).
We design a prototype system integrating our matching and reconstruction algorithm on a remotely
controlled navigation iRobot, equipped with a Kinect and a Raspberry Pi. Our reconstruction experiments
demonstrate the effectiveness of our algorithm and design.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Given a set of point clouds sequentially scanned from a 3D
scene, to match and stitch these partially overlapped point data
and reconstruct the entire scene is a fundamental problem in com-
puter graphics, reverse engineering, and robotic vision. A direct
application is the famous Simultaneous Localization And Mapping
(SLAM) problem where a robot equipped with a range scanning
sensor can navigate around an unknown environment to recon-
struct the surrounding and locate its own position. Professional
outdoor SLAM systems often use expensive LIDAR laser cameras
mounted on a vehicle for the urban scanning and mapping. For
indoor SLAM, in contrast, smaller and cheaper sensors such as
Kinect [1] and PrimeSense [2] can be used instead. These out-
door/indoor range scanning cameras often capture not only color
images, but also depth information of the scene. The produced
RGB-D image sequences, combining pixel-wise color and depth in-
formation, allow us to more easily match correlated frames, trans-
form and stitch all the scans into a global coordinate system, and
reconstruct the surrounding 3D environment.
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In this project, we design an indoor prototype SLAM system,
using a mobile iRobot to navigate and map an unknown envi-
ronment. The iRobot can either move randomly or be remotely
controlled. We mount on this iRobot a Kinect sensor, which con-
tinuously acquires RGB-D image data of the surrounding envi-
ronment. In general, several possible approaches can be adopted
to process these data for SLAM and environment reconstruction.
(1) One is to let the robot carry a powerful-enough processing unit,
e.g., a laptop, during its navigation. Then the acquired camera data
can be directly processed locally [3]. However, by this approach,
the size and cost of the robot will increase significantly, making
the system not suitable for narrow corridors or hazardous envi-
ronments (e.g. with flooding floors); also, the extra weight of the
(laptop) processor often takes up most of the load capacity of the
robot and makes it energy-inefficient. (2) The second approach is
to just let the robot carry a hard disk to save the scan data. The data
will be processed after the robot returns and the data in the disk are
extracted. However, with this approach, we are not able to simul-
taneouslymonitor the robot and control itsmovement. In addition,
to navigate inside a complex and unknown environment without
remote human control, the system needs an effective real-time au-
tonomous path planning scheme, which is highly challenging and
again requires a powerful processor to be carried by the robot. (3) A
third approach is to use an integrated system to obtain data from
the camera and transfer them to the control center through awire-
less network. The integrated systemcan be a small and inexpensive
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Fig. 1. Kinect-fusion (a–d) and ICP-based (e–h) algorithms fail to stitch frames
when camera shift is big (i.e., the overlap between frames is small). (a–b) are the
two frames to match, (c) is a global view of the offset between the two frames in
a same coordinate, and (d) shows a snapshot where the Kinect-fusion program [5]
fails in matching these frames. (e–g) illustrate another similar scene with offset of
two frames, and (h) shows undesirable stitching result based on pairwise matching
using SIFT+RANSAC [9].

chip such as Raspberry Pi [4], upon which data transfer and robot
control can be handled easily.With this design, the data can be pro-
cessed remotely, and a user can (nearly-) simultaneously monitor
and control the robot to finish the navigation and mapping. In our
experiments, we adopt this third approach in our design of robotic
navigation and mapping. Whichever way the robot is designed, a
key geometric modeling problem to tackle is how to reliably match
sequential geometric data sets obtained by the robot. Developing
such a reliable matching algorithm is the focus of this paper.

Considering the sequentially acquired RGB-D data sets, Kinect-
fusion [5] and its variants [6–10] are popular algorithms used
for real-time 3D reconstruction. In these algorithms, the acquired
RGB-D images are sequentially aligned with the previous frame
using variants of the iterative closest point (ICP) algorithm; GPUs
are fully utilized to accelerate the processing speed for real-time
performance.

However, a key assumption of these algorithms is that the
acquisition frame rate is high and adjacent frames do not shift
a lot. If a big camera shift exists between consecutive shots,
these algorithms are prone to fail, because ICP-based matching
easily gets trapped by local minima. Fig. 1(a–d) shows such an
example. Furthermore, efficiently handling such data may not
be easily achieved by a practical cost-efficient mobile-working
system: thewireless connection is often not fast enough to support
communication in such a high frame-rate speed, and matching
data in a 30fps rate requires a powerful processor with advanced
GPUs.

Another type of approach [11–14] is to extract a set of features,
then match them, rather than matching all the points, from differ-
ent frames. The general pipeline of such feature-matching based
methods has four steps: feature detection, feature descriptor com-
putation, feature mapping, and transformation estimation. Pair-
wise matches can also be globally refined to reduce accumulated
errors or ensure certain groupwise geometric consistency [15–
17]. These approaches model and prune many pairwise matchings
together, and hence, can work more reliably under noisy or small-
overlap scenarios. However, they do not handle sequential stream-
ing data well due to the high computational complexity. Although
many geometric matching algorithms have been developed in re-
cent years [18], with the decrease on data acquisition frame rate,
the overlap between two frames becomes smaller and smaller.
This still poses significant challenge to the current partialmatching
algorithms. Fig. 1(e–h) illustrate a failure example when match-
ing two frames with relatively small overlap using a SIFT–RANSAC
matching algorithm [9].

Based on above observations, we believe developing a novel
partial matching algorithm, which could more reliably align noisy
data frames undergoing significant camera shift (hence, correlated
frames only have small overlap regions), will greatly benefit the
practical reconstruction from dynamic robotic environment scan.
In this paper, we propose a new algorithm for more robust
matching of noisy and small-overlapped point cloud data sets. The
main contributions of this paper include:

1. a novel multi-frame graph matching algorithm to map noisy
data sets with relatively small overlaps;

2. an inexpensive robotic prototype system using iRobot, Rasp-
berry Pi, and Kinect sensors, which demonstrates our matching
algorithm’s application on 3D indoor environment mapping.

2. Related work

We briefly review closely related work on 3D reconstruction
from sequential RGB-D data, and refer the readers to the survey
papers [19,20]. There are two general reconstruction approaches:
(1) Dense matching methods, which analyze all points/pixels
between two frames based on their geometric and/or photometric
characters.

(2) Feature matching methods, which first solve a coarse
correspondence among features in different frames then compute
inter-frame alignment based on this coarse correspondence.

2.1. Dense matching approaches

One branch of environment reconstruction is to utilize all pixels
in the current RGB-D frame to match with the previous frame, also
knownasDense-SLAM.Kerl et al. [21] computedphotometric char-
acters fromRGB frame and geometric characters fromDepth frame
between every two frames to get camera positions. However, the
high requirements of photometric consistency limit the baseline of
the matches, typically narrower than those that features matching
algorithms allow. This has a great impact in reconstruction accu-
racy, which requires wide baseline observations to reduce depth
uncertainty. Also, they are quite affected by rolling-shutter, auto
gain, and auto exposure artifacts. To enhance the performance,
[22,23] perform offline analysis of camera trajectories to achieve
dense scene reconstruction and high fidelity texture mapping.
However, these approaches need to run off-line for hours using
parallel hardware, and thus are not suitable for a low-cost robot
carried sensing and computing device.

In the software Kinect fusion [5] developed byMicrosoft, conse-
quent frames are stitched using a GPU accelerated ICP algorithm.
The nearest correspondences of all the points in the RGB-D data
are iteratively calculated and used to refine the transformation
between frames. Whelan et al. [7] implemented an RGBD based
ICP and implemented it in GPU, which is an enhancement of the
original depth data based ICP. Nießner et al. [10] employ an iner-
tial measurement unit (a gyroscope embedded in Kinect) to record
camera pose, and to decide ICP initial position and reduce the num-
ber of ICP iterations needed in stitching RGB-D frames. Another ef-
fective invariant of Kinect fusion based densematchingmethod for
indoor scene reconstruction, suggested by Zhang et al. [24], em-
ploys surface fitting on point clouds to detect flat planar patches
which are the major salient structures exhibited in an indoor en-
vironment. This algorithm performs desirably in reconstructing
noisy Kinect scans for large indoor scenes. These approaches often
require a powerful graphic hardware to carry the parallel compu-
tation or need an assisting hardware to adjust the error generated
by the ICP algorithm [25,26]. This usually significantly increases
the cost of the robot. Furthermore, alignment based on ICP con-
verges to local optimum near the initial alignment, hence, it is not
robust when handling large inter-frame motion or planar surface
data, andwill result in incorrect stitching or visual artifacts in prac-
tical reconstruction from scans with low frame rates [27].
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2.2. Feature matching approaches

Features are points having salient geometric or texture proper-
ties. Instead of dense matching, feature matching approaches first
extract a set of features, then solve correspondences of features and
calculate the transformation based on that. Two components dic-
tate the effectiveness of a feature matching algorithm: feature de-
tection and description, and feature mapping.
Feature detection and description. In RGB-D data processing
literature, popular 3D features can be classified into the RGB-based
and geometry-based. RGB based detectors are widely used in image
registration [28]. When a 3D point cloud is equipped with RGB (or
grayscale) information, then features can firstly be detected in the
RGB or grayscale channel, then map to their corresponding points
in 3D [29,9]. For RGB-D data acquired by Kinect, however, motion
blur and rolling shutter occur frequently. Therefore, directly using
color information and RGB-based features to match Kinect scan
data is sometimes unreliable. Geometry-basedbedkowski2012real
detectors describe shapes using their depth information and local
geometry. The Gaussian pyramid is usually used in creating a
multi-scale space, facilitating the generalization of 2D descriptors
for RGB-D data. Such detectors include 2.5D SIFT [26,30], 3D
SIFT [31], 3D SURF [32], etc. However, building a Gaussian pyramid
is often expensive and these detectors often result in thousands
of keypoints, making the subsequent computation prohibitively
expensive. Without building a multi-scale space, one can also
use local keypoints in partial matching computation. Effective
detectors such as 3DHarris [33], Locality Sensitive Hashing [34], and
Intrinsic Shape Signature [35] are recently developed, based on local
geometric characteristics: they fit each point with its neighbors
into a quadratic surface, and decide whether it is a keypoint by
the surface’s mathematical description. Since the Kinect scan data
are very noisy, local descriptors could become unreliable, hence, a
preprocessing surface smoothing is often needed. However, after
smoothing, these detectors often result in very few extracted
keypoints when the surfaces are flat or lack salient geometric
variance in the scene.

The Normal Aligned Radial Feature (NARF) [36] computes
range images from a point cloud, then extracts characteristic
object borders and corner points as keypoints. NARF has several
advantages in modeling features in scan data from Kinect. (1) It
utilizes depth range image and its geometric information, hence, is
robust against the motion blur issue in RGB based detectors. (2) It
avoids the building of multi-scale space, and so is computationally
efficient. (3) It is viewpoint-invariant, and less sensitive to outliers
or local geometric perturbation; keypoints extracted from the
borders and corners of the range image can better describe the
silhouette structure of the objects.

Feature mapping is the procedure to establish a bijective cor-
respondence between features on different frames. In the recon-
struction problem we consider here, the Kinect scans are noisy,
possessingmany outliers, and the overlap between frames is small
due to the limited acquisition frame-rate. Hence, the outliers often
outnumber the inliers, and a robust feature mapping algorithm is
needed in such scenarios. Feature mapping algorithms developed
to tackle outliers generally include voting [37], RANSAC [38], for-
ward search [39], and graph matching [40].

The Voting-basedmethods like [37] allow each potential feature
pair to ‘‘vote’’ for its transformation model and the transformation
with the majority votes is the result. This voting strategy can
handle small number of outliers, but its success relies on the
assumption that the inliers are the majority. When the outliers
become the majority, the RANSAC strategy [38] could have better
robustness. RANSAC estimates solutions on randomly sampled
subsets. When a subset results in a solution whose score passes a
threshold, this solution is accepted. The RANSAC algorithm ismore
robust than voting against outliers. But when outliers dominate
the scene, many random subsets need to be generated before a
correct solution can be found, so the algorithm becomes slow
and unreliable. Henry et al. [12] introduce a RGB-D ICP algorithm
based on RANSAC. It firstly detects SIFT keypoints, then performs a
RANSAC to filter the keypoint correspondences and get the initial
rigid transformation. Then an ICP algorithm is performed to refine
the transformation. Endres et al. [19] propose a RANSAC based
matching algorithm. Using SIFT or SURF as keypoint detectors, they
further incorporate loop closure constraints and solve it by a graph
optimization, which greatly reduces the accumulating error. These
RANSAC-based algorithms require the offsets between frames to
be small: with large displacement frames, the ratio of outliers over
inliers could become very big and the result will be unreliable.
The Forward search method [39] is designed to handle large-sized
problems in the presence of outliers. It builds an initial set of
correspondences, then iteratively refines the matching based on
the inliers inside this set and simultaneously updates inliers based
on the refined matching. In many cases when the outliers are
not dominant, the forward search can be more efficient and more
accurate than the RANSAC, due to its iterative refinement strategy.
Unfortunately, if outliers are dominant in all the extracted features,
starting a forward search with reliable initial inlier sets is not
guaranteed. Also, the large number of outliers could easily affect
this deterministic search and yield an incorrect solution produced
by the majority of the features.

The Graph matching methods [40–42] construct a graph whose
vertices denote corresponding feature pairs and edges encode
their spatial relations. Based on the assumption that correct
corresponding feature pairs are mutually coherent while incorrect
pairs are not, a graph matching algorithm extracts the maximal
coherent cluster fromapre-computed affinitymatrix, and converts
the feature correspondence problem to a quadratic integer
programming problem, utilizing both feature similarity and
geometric spatial consistency among features’ locations. The graph
matching can often handle large number of outliers more reliably
than RANSAC and forward search. High-order graph matching
[43,44] has been studied to improve the reliability of pairwise
matching. These algorithms use higher order primitives such as
triangles or quadrilaterals (formed bymultiple features), instead of
lines (formed by two features) to reduce ambiguous mismatching
caused by outliers and improve the matching reliability. To
better circumvent local minima in integer quadratic programming
when solving the graph matching, Cho et al. [42] develop a
reweighted random walk stochastic optimization scheme to find
the approximate solution that is more resistant to deformation
and feature outliers. Leng et al. [45] add a perturbation to the
eigenvector of the Laplacian matrix and utilize the characteristic
that small eigenvalues are sensitive to perturbations, while large
eigenvalues are relatively stable, also producing more reliable
global solutions to graph matching with respect to noisy scenes
and structural corruption. However, when many outliers exist,
there is a certain chance that false correspondences are spatially
coherent with each other, yielding higher spatial consistency score
than true correspondences (see Section 3.6). In such a case pairwise
graphmatchingmay also become unreliable. How tomore reliably
extract correspondence fromnoisy and lightly overlappeddata sets
still remains a challenging problem.

3. Multi frame graph matching

3.1. Basic idea and algorithm overview

2-frame matching model. The graph matching algorithm [40] and
its variants [41,42] compute a bijective node-to-node assignment
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between two graphs G and G′ by solving a constrained quadratic
integer optimization problem: (1) identify possible corresponding
node pairs ck = (vi, v

′

j), vi ∈ G, v′

j ∈ G′ (where vi, v
′

j represent fea-
ture points in graph G and G′); (2) construct an affinity matrix M ,
whose diagonal elements mkk encode similarity between descrip-
tors of vi and v′

j in node pair ck, and non-diagonal elements mrs
measure spatial geometric coherency between node pairs cr and
cs; (3) maximize f (x) = xTMx subject to bijectively constraints,
where x = (x1, x2, . . . , xn)T is the n-dimensional indicator vector
to solve: xi = 1 if the pair ci is in the final assignment and xi = 0
otherwise.
N-frame matching model. We can generalize the above 2-frame
model to maximize spatial consistency of corresponding features
in the matching of N frames. Given the N frames F1, F2, . . . , Fn, we
construct a graph G = (V , E), where each node ci = (v1i1 , v2 i2 ,
. . . , vN iN ) is an N-correspondence tuple, v1 i1 ∈ F1, v2i2 ∈ F2, vN iN
∈ FN . We denote it as ci = (i1, i2, . . . , iN) for simplicity. An edge
eij = (ci, cj) ∈ E is constructed if the correspondence tuples ci and
cj are spatially consistent to each other. A weight function w(eij)
defined on eij measures the spatial consistency between ci and cj.
Intuitively, if frames differ by rigid transformations, then the ex-
act spatial consistency means the distance between corresponding
points should be preserved, namely, |v1 i1 − v1j1 | = |v2 i2 − v2j2 | =

· · · = |vN iN −vN jN |. Details on the design of consistencymetric are
discussed in Section 3.5.
N-frame graph matching algorithm.With the generalized matching
model, our idea is that instead of just iteratively stitching a new
frame to its previous frame, we try to correlate N frames at the
same time, where N > 2 is a predetermined number. This will
make the algorithm more reliable against noise and ambiguous
alignment due to small overlap among frames. On the other hand,
requiring all the corresponded features always appear in N con-
secutive frames is sometimes not easy. The overlapped regions of
scenes and available salient features vary during the cameramove-
ment. In our implementation, we require at least ηL = 10 consis-
tent feature points to be obtained in all the N frames. Thus, first,
the frame number N should not be too big. Second, our following
algorithm adaptively degenerates into the matching using smaller
number of frames. Our algorithm can be summarized as follows.
In: Parameters N and ηL;
(1) When a new frame Fi is obtained: if i > N then k = N , else

k = i;
(2) Extract keypoints on Fi and compute their descriptors (Sec-

tion 3.2);
(3) IF k > 1, try to match Fi with its previous (k − 1) frames:

(3.1) Extract initial corresponding k-tuples, L0
k , using KNN

(Section 3.3);
(3.2) IF |L0

k | < ηL, THEN no enough tuples found, k = k − 1,
GOTO (3);

(3.3) ELSE solve k-frame graph matching to get the final
correspondence Lk (Section 3.4);

(3.4) Calculate the rigid transformation byLk and transform Fi
accordingly.

(4) IF this is not the last frame, THEN i = i+ 1 and GOTO (1), ELSE
STOP.
In this algorithm, N indicates the number of frames we want

the multi frame graph matching to start with. As discussed
above, the size should be moderate. In our experiments we found
N = 3 or 4 is a practically suitable number, which maintains a
good balance between available feature numbers and matching
reliability. ηL determines during k-frame graph matching, how
many initial corresponding k-tuples are considered enough to run
a robust graph matching. We simply set ηL = 10; and in all our
experiments, |L0

k | > 10 satisfies easily for k = 2. In the worst
case, even between two consecutive frames there are no enough
features for pairwise matching, then simply stop matching frames
and restart over, setting the current frame as the new first frame.
This is like when i = 1 and no matching for F1 is computed.
Fig. 2. Comparisons between SIFT3D and NARF, with correct repeatable keypoints
in green and wrong ones in red: (a) Some features extracted by SIFT3D detector
are not repeated in both frames. (b) NARF detector results in better repeatability in
feature detection. To help visualize the correspondence, we add a few rectangles
to highlight the corresponding features. Green and red rectangles indicate correct
and incorrect correspondences, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.).

3.2. Feature extraction

Using features reduces the amount of points for which
similarity computation has to be performed, hence, it significantly
reduces the number of correspondences that we need to examine.
The challenging issue in feature detection from Kinect scans is
keypoint robustness against noise. Here we choose the Normal
Aligned Radial Feature (NARF) keypoint detector [36], which was
reported to be efficient and reliable in describing features in
noisy point cloud. Extracting NARF keypoints consists of six steps:
(1) take the input 3D point cloud and convert it to a spherical
range image (i.e., three 2D range images), (2) perform a heuristic-
based detection of object borders, (3) compute normals for border
points, (4) compute principal curvature for non-border points,
(5) compute interest value for all points, (6) isolate keypoints.
Please refer to Steder et al. [36] for details.

We observed several desirable properties of the NARF detector
for our problem here: (1) NARF creates a range image of the
point cloud. It does not require a Gaussian pyramid creation, and
hence is very efficient. (2) NARF takes object borders into account,
which arise from view dependent noncontinuous transitions from
the foreground to the background. Thus, the silhouette of an
object can be detected robustly from the range image, even with
big view change. (3) Directly built upon the characteristics of
borders’ geometry and normal, the descriptor of NARF is natural
and more effective than many artificially combined keypoint
detectors and feature descriptors in describing noisy scenes. A
recent comparative study [46] shows that NARF and 3D Sift
keypoints are representative fixed-scale and multi-scale keypoint
detectors dealing with indoor and noisy Kinect scan. Keypoint
quantity and detection time are documented in the paper, indicating
3D SIFT is significantly slower and results in many more keypoints
than NARF, which will introduce significant extra computation
complexity of the subsequent matching computation. We also
perform a comparison on repeatability of these two keypoint
detectors. As shown in Fig. 2, the 3D SIFT detector misses quite
a few salient matchable features in the second scene; in contrast,
NARF results in keypoints with better repeatability. Through these
observations and experiments, due to the better behaviors of
NARF [36] in partial matching of noisy data, in this work, we utilize
it as our keypoint detector.
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Fig. 3. Using directed loops to extract corresponding 3-tuples from KNN. (a) KNN correspondence set C12 between features from frame 1 and frame 2, and respectively,
correspondence set C23 between features from frames 2 to 3. (b) The correspondence set C31 defined by KNN of features from frames 3 to 1. (c) Each (green, blue, red) triangle
indicates a corresponding triplet C123 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
3.3. Initial correspondence

Given N frames, suppose from frame j we extract nj feature
points, denoted as Pj = {pj,ij , ij = 1, . . . , nj}. Their NARF de-
scriptors are histograms Hjij , respectively. We establish an initial
correspondence among keypoints from different frames using a
K-Nearest Neighbor (KNN) matcher using the L2-norm between
Hj,ij and Hj+1,ij+1 .

Given two keypoints pi and pj, we compute their NARF
descriptors Hi and Hj which are 36-dimensional vectors with
each element ranging from −1 to 1, then measure their L2-norm
similarity:

d(Hi,Hj) = 1 − ∥Hi − Hj∥ = 1 −


36
s=1

(Hs
i − Hs

i′)
2

36
. (1)

We observe from our experiments that a typical Kinect scanned
indoor frame usually contains about 200NARF keypoints. Sowe set
K = 10 for the KNN matcher in all our reconstructions. Therefore,
each keypoint’s 10 most similar keypoints are kept.

If there are N correspondence pairs extracted by KNN, that
c1,2 = (p1i1 , p2i2), . . . , cn1,n = (p(N−1)iN−1 , pNiN ), and cn,1 =

(pNiN , p1i1), we say they form a directed loop. The elements in one
loop are likely to correspond to one feature point, and we create
an N-tuple ci1...iN = (p1i1 , p2i2 , . . . , pNiN ), or called a consistent
N-tuple, to encode such a potentially consistent feature.

Using KNN,we first compute all the corresponding feature pairs
between frames j and h = j + 1, Lj,h = {(pjij , phih)}. Then,
extract all the indexN-tuples (i1, i2, . . . , iN) such that (p1i1 , p2i2) ∈

L1,2, (p2i2 , p3i3) ∈ L2,3, . . . , (p(N−1)iN−1 , pNiN ) ∈ LN−1,N , and
(pNiN , p1i1) ∈ LN,1. A set of corresponding N-tuples is extracted,
and it forms an initial correspondence setL0 (whichwill be refined
in the subsequent N-frame graph matching). Fig. 3 illustrates an
example of this process where N = 3. In (c), each triangle (formed
by red, green, and blue edges) indicates a corresponding 3-tuple in
the initial correspondence set.

3.4. Multi-frame graph matching

From the initial set of corresponding N-tuples L0
= {ci =

(i1, i2, . . . , iN)}, we solve an optimization problem to extract a
subset L ⊂ L0 which maximizes (1) similarity among features in
each selected N-tuple, and (2) mutual spatial consistency between
pairs of N-tuples in L, subject to a bijectivity constraint. The
bijectivity constraint enforces that if a feature pri in frame r is
mapped to another feature psj in frame s, then it should not be
mapped to another feature in frame s. We construct a graph, then
an associate affinity matrix, to solve this optimization.
3.4.1. Graph construction
We construct a graph G = (V , E) as follows. A node ci ∈ V

is an N-tuple in L0, and on each edge eij ∈ E we use a weight
function wij = S(ci, cj) to describe the spatial consistency be-
tween two correspondence N-tuples ci = (i1, i2, . . . , iN) and cj =

(j1, j2, . . . , jN). Here since the transformation between two point
clouds is rigid, the S function should evaluate how well the geo-
metric shape formed by (i1, j1) is preserved after it is transformed
to (i2, j2), and to (iN , jN), etc.

3.4.2. Affinity matrix construction
We define an affinity matrix M from graph G. Each diagonal

elementMi,i describes the similarity among theN features in these
N-tuples ci = (p1i1 , p2i2 , . . . , pNiN ). We set Mi,i = D(p1i1 , p2i2 ,
. . . , pNiN ) to measure similarity of features,

D(p1i1 , p2i2 , . . . , pNiN ) =
1
N

(d(Hp1i1
,Hp2i2

)

+ · · · + d(Hp(N−1)iN−1
,HpNiN

) + d(HpNiN
,Hp1i1

)). (2)

A non-diagonal element, Mi,j, should measure the spatial consis-
tency between two corresponding N-tuples ci and cj. Transforma-
tions between point clouds acquired by Kinect are rigid. Therefore,
each pair of corresponding features should preserve its distance in
different frames. We say two pairs of corresponding features spa-
tially consistent if the distance does not change. We measure this
spatial consistency value using a function S(ci, cj), which will be
detailed in Section 3.5.

3.4.3. Bijectivity constraint
The bijectivity constraints can be formulated as follows.

N-tuples (i, j, . . . , k) and (i, j′, . . . , k′), (j ≠ j′, k ≠ k′) should not
be selected together. Namely, if point p1i1 corresponds with p2j2 ,
then it should not be mapped to p2j′2 again. Similarly, (i, j, . . . , k)
should not co-exist with (i′, j, . . . , k′) or (i′, j′, . . . , k). Therefore,
the bijectivity constraint can be formulated as a linear constraint
Ax ≤ b. A is a sparse matrix consists of 0 and 1 elements. On
each row of A, the non-zero elements give the indices of tuples that
are associated with a same keypoint in one frame. Therefore, these
tuples havemutual conflicts. Nomore than one among these tuples
should be selected in the final solution, as indicated by the vector
b = (1, 1, . . . , 1)T .

3.4.4. Solving node-to-node assignment
The assignment problem finally reduces to solving an integer

quadratic problem:

x∗

b = argmax(xTMx), s.t.Ax ≤ b, x∗

b ∈ {0, 1}n, (3)

where Ax ≤ b is the aforementioned bijectivity constraint, and
the final solution x∗

b should be rounded to only contain 0 and 1
elements.
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Fig. 4. Applying multi-frame matching (here N = 3) to align sequential frames.
Some frames are aligned through 3-frame graph matching. But for some frames,
coherent features (among them and their previous two frames) are insufficient to
support 3-frame matching. Then pairwise (2-frame) graph matching is applied to
stitch these frames.

We simply use the spectral matching algorithm from [40]
to solve x∗

b: first compute the principal eigenvalue and its
corresponding eigenvector, denoted as x∗, then sort elements in x∗,
and find the greatest element p and set x∗

b(p) = 1. Then, iteratively,
following the descending order, find all elements q in x∗ that do not
have conflict with existing marked elements and set x∗(q) = 1,
while marking the indicator of each conflict element to 0.

3.4.5. Cross-frame transformation
Finally, when feature correspondence between Fi and its

previous frames is obtained, a singular value decomposition can
be used to compute the transformation between Fi−1 and Fi, which
is the least square solution of rotation matrix and translation
vector [47].

Our multi-frame matching algorithm adaptively decreases the
number of frames to match if no enough potential features
coherently exist in multiple frames. Fig. 4 illustrates such an
example: The 3rd frame in this figure is matched with the first two
frames through a 3-frame graph matching, the 4th and 5th frames
do not share sufficient features with the previous two frames, so
they are stitched through pairwise matchings.

3.5. Measuring spatial consistency

Given two corresponding N-tuples ci and cj, we need to define
a function S(ci, cj) to measure their spatial consistency. In this
Kinect SLAM problem from Kinect scans, the transformations
between different frames are rigid. So S(ci, cj) should be maximal
if ∥p1ip1j∥ = ∥p2i′p2j′∥ = · · · = ∥pNiN′ pNjN′ ∥. And S(ci, cj) should
define a metric to measure the deviation among these distances.
Here we propose two metrics, with the second one slightly better.

3.5.1. Metric one: Simple deviations
In the 2-frame graph matching, the spatial consistency score

is defined by a deviation of the pairwise distances between point
pairs [40].
This idea can now be generalized to match N frames:

Sd(ci, cj)

=

C −

N
k=1

(dik jk − dik+1 jk+1)
2

2Nθ2
d

if ∀k, |dik jk − dik+1 jk+1 | < 3θd

0 otherwise

(4)

where dikjk = ∥pkikpkjk∥ is the distance between the pair of feature
points and the index is treated as kmodulo N (hence, the last term
is diN jN − di1j1 ). C is a constant simply set to 4.5 in [40], and θd
is a threshold to filter out edge pairs with significantly different
lengths.

3.5.2. A second approach: Scale Jacobian metric
Scale Jacobian is a term commonly used to evaluate the quality

of triangular meshes [48]. In a 3-frame matching, we measure
aforementioned distance similarity by creating a triangle using
the three distances and measure the equality of this triangle.
The three distances dij, di′j′ , di′′j′′ can be used to construct a 2D
triangle: let (x1, y1) = (0, 0), (x2, y2) = (dij, 0), and (x3, y3) =

(
d2ij+d2

i′ j′
−d2

i′′ j′′

2dij
,


d2i′′j′′ −

d2ij+d2
i′ j′

−d2
i′′ j′′

4d2ij
), where dij = ∥p1ip1j∥, di′j′ =

∥p2i′p2j′∥, di′′j′′ = ∥p3i′′p3j′′∥. Then, the function is defined as
follows.

If distances satisfy the triangle inequality dij − di′j′ < di′′j′′ <
dij − di′j′ , we have Eq. (5) given in Box I .
If dij, di′j′ , and di′′j′′ do not satisfy the triangle inequality, it is clear
the three distances deviate a lot from each other, and we set
SJ(ci, cj) = 0.

These 3-frame Scale Jacobian metrics can be generalized to N-
frame:

SJ(d1, d2, . . . , dn)

=

C ∗
n+1
2

 n(n−1)/2

n−2

n
i=1


n

j=1
dj − 2di


n

j=1
dj

n
j=1

d2j

(6)

where dk is the Euclidean distance between the keypoint pair in
the kth frame. Note here we simplify the subscript from dij and di′j′
to d1, d2 for a more succinct formulation in the above equation.

The generalized spatial consistency can be geometrically
depicted as measuring the deviation of an N-sided polygon from
an N-sided equilateral polygon. Although geometrically, N-sided
equilateral polygon does not exist for all the integer numbers N ,
algebraically, we can alwaysmeasure the spatial consistency using
Eq. (6).

3.5.3. Scale Jacobian metric versus simple deviation metric
Between Scale Jacobian Metric and Simple Deviation Metric,

we find the Scale Jacobian in practice can better detect incorrect
corresponding pairs. We analyze their responses to the sudden
deviation in feature pair distance, which often corresponds to
wrong matches. Taking an N = 3 (3-frame matching) case as an
example, suppose the distances of the three feature pairs are d, d,
and d+αd, whereαd describes a perturbation on one distance. The
deviation score Sd and the Scale Jacobian score SJ , respectively, can
be expanded as,

Sd(d, d, d + αd) = 4.5 −
2 ∗ (αd)2

6θ2
d

, (7)
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5)
SJ(ci, cj) =
C ∗


3 ∗ (dij − di′j′ + di′′j′′)(dij + di′j′ − di′′j′′)(−dij + di′j′ + di′′j′′)(dij + di′j′ + di′′j′′)

d2ij + d2i′j′ + d2i′′j′′
. (

Box I.
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Fig. 5. The responses of Sd and SJ functions on a perturbation αd from the distance
d. The red solid curve indicates the Scale Jacobian function, and the blue, green, and
purple curves indicate the simple deviation measures when α = 1.0, 0.5, 0.2, in
which the solid and dotted curves are Sd(α) when d = 1 and d = 10 respectively.
When using a big θd (e.g. 1, as suggested by Leordeanu and Herbert [40]), the curve
of Sd is flat near the origin and less distinctive than SJ . When using a small θd, Sd
becomes sharper but also narrower, and hence,more sensitive to noisy feature pairs
with big distance.

and

SJ(d, d, d + αd)

=
4.5 ∗

√
3 ∗ (d − αd)(d + αd)(d + αd)(3d + αd)

d2 + d2 + (d + αd)2

=
4.5 ∗


3 ∗ (1 − α2)(1 + α)(3 + α)

2 + (1 + α)2
. (8)

We illustrate the response functions of Sd and SJ with respect
to a perturbation αd in Fig. 5. When using a relatively big θd such
as 1 suggested by Leordeanu and Herbert [40] or 0.5, the curve
of Sd is flat near 0 and less distinctive than SJ . When using a
small θd, the response function can be made sharper but it also
becomes very narrow. For feature pairs that are far away from
each other (e.g. their d are big), such a sharp response could be
sensitive to noise. Furthermore, this variation in sensitivity shows a
more important limitation of Sd: besides the need of tuning θd, the
sensitivity of response varies for different d values. In a practical
scene, against different feature pairs with different lengths, this
makes the measure inconsistent. It is difficult to find an always
suitable constant θd to consistently evaluate feature pairs with
different spatial distances. In contrast, the scale Jacobian measure
is independent of the scale of d and more consistent. Therefore, in
our experiments, we use SJ as the spatial consistency metric.

3.5.4. Tolerance threshold and computational efficiency
In practice, various noise affect the spatial consistency:

(1) scanning error, (2) point cloud sampling difference, and (3)
keypoint repeatability error. Scanning error is generated by the
optics noise of the Kinect camera. Point cloud sampling difference
is due to the different sampling locations in the scene that are
covered by the camera’s pixels. Keypoint repeatability error is
produced due to the inconsistency of keypoint detector applied
on noisy data noise or due to the ambiguity of shape descriptor.
Because of these inevitable errors, the spatial consistency score SJ
of even correct correspondences is often slightly smaller than 1
(after normalization, 4.5. The following discussion is based on the
function value before normalization). We use a threshold η < 1
to filter spatially inconsistent pairs. In the affinity matrix, if the
spatial consistency score of (ci, cj) is smaller than η, we consider
them to be inconsistent and set Mij = 0. With the control of
η, a great number of incorrect correspondences are filtered out.
This sparsifies the affinity matrix and eliminates small elements.
Consequently, (1) the objective function becomes more smooth,
having fewer local minima; and (2) the solving of our graph
matching becomes numerically more stable and efficient.

We design an experiment to observe the effect of threshold
η. A relatively dense keypoint parameter is used to extract
more features and a larger initial correspondence set so that
the difference of η selection can be better shown. We set η
to 0.01, 0.8, and 0.9 out of the full score 1. The results are
documented in Table 1: larger η results in faster computational
time, but fewer identified correspondence (many not-perfectly-
aligned features are rejected). Since in this 3D reconstruction,
frames differ by rigid transformations and we do not need many
correspondences to uniquely decide the transformation. Therefore,
in all our experiments, we set η = 0.9.
Efficiency of N-frame matching. (1) The computational complexity
of the KNN algorithm is O(KN−1

· M), where K is the number of
nearest neighbors to consider, N and M are the number of frames
and average size of keypoints in one frame. When the number of
frames to match increases from N to N + 1, the computational
complexity of KNN increases K times. Since in our experiments,
K = 10−20, this step is 10 to 20 times slower. However, compared
with the graph matching step, this step is less time-consuming
and is not the bottleneck. (2) The computational complexity of the
graph matching, however, may not increase (especially when the
frame-rate is low). This is because the consistent feature tuples
obtained in the KNN-computed directed loops usually decreases
with the increase of the number of frames to match. Therefore,
the number of potential corresponding tuples to be modeled in
the multi-frame graph matching, namely, the dimension of the
graph matching problem, may not increase. In our experiments,
we found that in about a half of scenarios, this dimension remains
about the same; while in the other half of scenarios, the dimension
either increases or decreases and is decided by both the number
of repeated features and the size of overlap, which varies case by
case.

3.6. Improved robustness: N-frame vs 2-frame matching

Compared with traditional 2-frame graph matching, the multi-
frame graph matching offers more robust alignment for noisy
frames relatively small overlap region. This can be justified from
the following two observations:

(1) ConsideringN frames inmatching is more robust against noise
than only considering adjacent 2 frames.

(2) Matching N frames simultaneously is more robust than
mutually doing pairwise 2-frame matching in a loop for N
times.

Observation 1. Due to the existence of large scan noise, ambiguity
of shape descriptors, and the small overlap region, incorrect corre-
spondence inevitably exists in the pairwise graph matching result.
Specifically, considering three consecutive frames, suppose feature
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Table 1
Tolerance threshold η is related tomatching efficiency and accuracy. The experiment is performed on the first 10 frames of data set ‘‘fr1 desk’’ in [19]. The non-zero elements
ratio, total computed correspondingN-tuples, and the total graphmatching computation time (in seconds) are reported. Bigger η results in a sparser affinitymatrix and faster
computation; fewer correct correspondences are detected since some corresponding features are rejected. For rigid alignment, a small number of corresponding features is
enough, so η = 0.9 is used in our reconstruction experiments.

η Non-zero elements ratio N-tuples computed TGM (s) for 10 frames

0.01 40.9% 248 48.473 s
0.8 9.1% 175 22.724 s
0.9 5.0% 124 18.073 s
Fig. 6. The initial correspondence (a) is refined after performing a pairwise graph matching, but may still possess incorrect corresponding pairs that are spatially consistent
(b). When matching the three frames together, incorrect corresponding pairs are filtered out.
pairs ci = (p1i, p2i, p3i) and cj = (p1j, p2j, p3j) are keypoint pairs
that are NOT indeed corresponded, then after graphmatching, they
may be incorrectly matched if (1) pki and pkj have similar descrip-
tors, (2) their distance dk = |pkipkj| between each other remains
unchanged in different frames, and (3) their matching (pki, pkj) can
coexist with other correct corresponding pairs without violating
the bijectivity constraint. Between two frames k and k′, among all
selected n corresponding pairs, suppose there are n′ pairs that are
actually incorrect while satisfying the above (1)–(3) criteria, then
µ = n′/n ≪ 1. If we verify the above criteria across all the three
frames (by either checking them in 3 frames together, or pairwise
checking each frame pair for 3 times), then the chance for an incor-
rect pair to remain in the final selection reduces from µ to µ3. The
algorithm results in a more reliable filtering for the incorrect pairs.
Fig. 6 illustrates an example where incorrect corresponding pairs
may existwhen only pairwise graphmatching is performed (b), but
they may be filtered out when multiple frames are considered.

Observation 2. To improve the robustness against incorrect
corresponding pairs by considering N frames in the matching,
we can either (1) compute the pairwise 2-frame matching for
N times then filter out inconsistent ones through a directed
loop connecting all these frames (which is commonly adopted
in existing literature), or (2) compute the matching using all the
N frames together (as what we propose here). We observe that
the first approach is more likely to result in an undesirable local
optimal solution. Due to noise, locally optimal solution in pairwise
matching may not be the correct one. Consecutively combining
such local solutions, therefore, also becomes unreliable. Fig. 6(b)
shows such an example: {(B1, C1), (B3, C2), (B5, C3)} is a local
optimum. So simply combining local solutions in a directed loop
will finally result in {(A3, B5, C3)} being reported as the only final
corresponding triplet, which is incorrect. In contrast, solving one
global N-frame matching by extracting N-tuples from N frames
simultaneously, often results in a better global solution (c).

Fig. 7 shows another example in the reconstruction of an
office scene using 3-frame matching (a) scanned by a camera
under relatively big shift. When pairwise 2-frame graph matching
is adopted (b), even after the directed loop refinement, the
reconstruction is undesirable (c). Applying a 3-frame graph
matching, in contrast, results in spatially consistent 3-tuples and
a desirable reconstruction (e).
Further discussion.Note that, if the common overlap region is really
small and not enough consistent feature points can be found on
multiple frames, thenmatching thesemany frames simultaneously
will not work. In our implementation, we perform themulti-frame
matching if at least ηL = 10 consistent feature points are found
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Table 2
Comparison of SLAM and Reconstruction Results from Different Algorithms, in Data sets [19] with Ground Truth. The derived camera trajectory error is reported (in meters,
following the unit used in [19]). Our 3-frame graphmatching algorithm results in 28%, 69%, and 68% smaller error in average than [19], and also better than the SIFT+RANSAC
and pairwise graph matching algorithms. The SIFT+RANSAC algorithm results in a larger error than the others, probably due to the existence of motion blur.

Methods Data Sets (Mean Error\ RMSE)
fr1 desk fr1 room fr2 desk

SIFT+RANSAC [29,9] 0.075\0.083 0.115\0.095 0.092\0.088
SURF+RANSAC+Loop Closure [19] 0.021\0.026 0.087\0.087 0.053\0.057
Pairwise Graph Matching 0.031\0.04 0.070\0.187 0.040\0.083
Our Multi-frame Graph Matching 0.015\0.023 0.027\0.058 0.017\0.045
Fig. 7. (a) Three scans of an office. (b) Pairwise 2-frame graph matching identifies
many corresponding pairs, among which both correct and incorrect ones exist.
This results in an undesirable stitching and reconstruction (c). (d) shows the
consistent 3-tuples through 3-frame graph matching, which results in a better
reconstruction (e).

in all the N frames. In practice, the Kinect is generating frames
rapidly. For example, on the public benchmark data sets [19],
even if we down-sample the frame rate to 1/20 (about the same
bandwidth our Robot can send out for processing), finding enough
consistent feature points on consecutive 3 to 4 frames is usually
not a problem. Meanwhile, also note that our proposed algorithm
chooses suitable number of frames to match adaptively: when
there are no enough common feature points, fewer number of
consecutive frames will be taken for matching computation.

4. Experimental results

We evaluate our algorithm using two types of experiments. (1)
3D reconstruction on some public data sets. (2) Run our algorithm
on an iRobot that navigates inside a building and performs the
reconstruction.

4.1. Reconstruction on public data sets

We use our multi-frame graph matching algorithm to stitch
several publicly available data sets from [19]. Our results are
compared with that of the RANSAC-based algorithm, pairwise
graph matching, and the ground truth data set. Table 2 shows the
transformation mean error and RMSE (Root Mean Square Error) of
these results. In the table, we show the results of three randomly
selected data sets, ‘‘fr1 desk’’, ‘‘fr1 room’’, and ‘‘fr2 desk’’ in [19],
comparing with our approach, the method of Endres et al. [19],
SIFT + RANSAC approach (recently adopted in [29,9]), and the
pairwise graphmatching. Two reconstruction results are shown in
Figs. 8 and 9. Error Metrics: The data sets from [19] are measured
by an Asus Xtion Pro Live sensor. They come with ground truth
that records the sensor trajectory. Therefore, we also compute the
sensor trajectory using transformation matrix derived from the
matching of frames.We compare the computed trajectorywith the
ground truth.
Fig. 8. Public data set of fr1 room. Details in the scanned RGB pictures are restored
and constructed in the 3D scene.

Fig. 9. Public data set of fr1 desk. This scene is constructed by downsampling the
frame rate to 1/20 from the original data set. The result shows that the multi-frame
graph matching is robust against noise and big camera shifts.

In these experiments, to mimic the low-frame rate in the
practical low-bandwidth robotic reconstruction environment like
ours, we downsample the frame rate to 1/20 from the original
data set. Smaller overlaps then exist between consecutive frames.
Our algorithm stitches these downsampled frames and obtains the
camera trajectory reliably.

In common SLAM algorithms, the loop closure constraint is
often utilized to suppress the accumulated error and refine the
alignments [49,19]. Here we can also adopt such a loop closure
refinement in the end. But since this is not the focus of this project,
and we want to demonstrate the effectiveness of the multi-frame
matching algorithm (over the pairwisematching), here all the data
we report are without any loop closure refinement.
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Fig. 10. (Left): Diagram of system architecture. The Raspberry Pi acts as a hub and controller for the rest of the devices in the system. (Right): Our iRobot carrying a Raspberry
Pi and a Kinect.
Fig. 11. Reconstructing a printing room.

When solving matching for these low-bandwidth scenarios
(namely, temporal data are not densely sampled and have
relatively small overlap), our multi-frame matching algorithm
outperforms dense matching approaches (e.g. Kinect Fusion)
that utilize the ICP-based algorithms to align consecutive frame
pairs. Due to ICP’s sensitivity to local optima, these approaches
require high frame-rate scan data to have small inter-frame
transformations. In contrast, our algorithm can handle data with
sparse sampling rates and bigger inter-frame transformations,
because of its feature-based matching strategy. Also, compared
with other pairwise feature matching based approaches, multi-
frame matching exhibits better reliability, especially when the
overlap is relatively small and pairwise feature correspondence
could be ambiguous (see an example in Fig. 6).

4.2. Reconstruction using our iRobot system

Design of the iRobot SLAM system. Our robotic navigation system
is built on an iRobot Create carrying a Microsoft Kinect 360, a
Raspberry Pi I with 700 MHz single core, a USB WIFI adaptor, and
two batteries for Kinect and Raspberry Pi. Remotely, the SLAM and
reconstruction are done on a PC system with Intel Core i5-4440
CPU at 3.1 GHz and an 8G memory. The matching and control
programs are implemented in C++. Each frame of the Kinect scan
includes a 640 × 480 resolution depth image and an RGB image.
System pipeline. We remotely control the navigation of the iRobot
inside each room by sending commands to the Raspberry Pi; the
Raspberry Pi drives the iRobot, and simultaneously collects and
transmits each frame scanned by the Kinect to the remote PC.
After the transmitted data arrive, the PC starts to match themwith
previous frames. Fig. 10 shows the system structure and a moving
iRobot carrying the Raspberry Pi and Kinect.

We use our SLAM system to scan and map three indoor
environments: a printing room, a geology lab, and aworking office.
The 3D reconstruction results are shown in Figs. 11–13. Data from
the first two experiments are collected by a navigating iRobot,
while data from the third scene is done by a hand held Kinect
(simply because we would like to test the reconstruction from
Fig. 12. Reconstructing a laboratory.

Fig. 13. Reconstructing an office room.

Table 3
Runtime Table for our Multi-frame Graph Matching. |P| is the average size of
keypoint set in each frame; #F is the frame number; L0 is the average size of initial
corresponding N-tuples. TMGM is the total computational time of the multi-frame
graph matching algorithm (in seconds); and TPF is the average stitching time per
frame. The ‘‘fr1 desk’’, ‘‘fr1 room’’, and ‘‘fr2 desk’’ are public data sets from [19].

Scenes #F |P| L0 TMGM TPF

‘‘fr1 desk’’ 29 78 2999 41.715 1.545
‘‘fr1 room’’ 68 107 4029 171.27 2.595
‘‘fr2 desk’’ 148 226 1495 66.576 0.456
‘‘Printing Room’’ 35 82 3187 45.573 1.381
‘‘Geology lab’’ 29 97 3513 45.522 1.686
‘‘Office Room’’ 31 208 4411 72.819 2.511

a larger variation on the scanner’s altitude and orientation). We
do not implement the matching algorithm in parallel using GPUs.
The running time of the matching algorithm on CPU is reported in
Table 3. With about 100–200 features in each frame, the average
time cost to compute a multi-frame graphmatching is about 1.7 s.

5. Conclusions

We presented a novel N-frame graph matching algorithm to
handle partial matching for 3D reconstruction. The algorithm is
effective for aligning data sets with relatively small overlap and
is robust in handling noisy data obtained by low-cost scanner
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scanners such as Kinect and PrimeSense. We also develop an
iRobot SLAM system to navigate and reconstruct a 3D indoor
environment. The proposed N-frame graph matching model first
extracts a set of N-corresponding tuples. Then the mutual spatial
consistency of these features (among multiple frames), together
with their descriptor similarity, is used to find an optimal
correspondence among these features. Feature correspondences
are then used to align and stitch frames together. Experiments
show that our algorithm has better reliability than existing
algorithms in the reconstruction of noisy and low-frame-rate 3D
scans.

Despite better accuracy and robustness, a limitation of multi-
frame matching is efficiency, especially when simultaneously
matching many frames. Now that in 3D reconstruction, frames
only differ by rigid transformations, the correct rate of the corre-
spondence is more important than the number of corresponding
pairs that are identified. Hence, increasing the similarity thresh-
old of descriptors will suppress the size of initial correspondence
set, and will greatly reduce the dimension of the affinity ma-
trix. We also plan to explore better optimization strategies [50]
and parallel implementation to improve the speed of matching
computation.
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