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a b s t r a c t

Wepresent a novel approach for optimizing acoustic parameters using sensitivity analysis for computer-aided design and analysis of architecturalmodels.
Our approach builds on recent low-dispersion wave-based acoustic solvers that can accurately compute the pressure field in large models. We present an
efficient technique to compute the gradient of the pressure field using automatic differentiation and combine that with a quasi-Newtonian optimization
method to automatically compute the optimal material properties. We highlight the performance onmany complex CADmodels to optimize the strength
and clarity acoustic parameters, and thereby improve the acoustic characteristics of large models. To the best of our knowledge, this is the first practical
and accurate approach for acoustic material optimization of large indoor CAD models.
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1. Introduction

Architectural and engineering design of structures often re-
quires the incorporation of various design goals, such as function-
ality, reliability, operation, and aesthetics. Moreover, the design of
these structures is often governed by specific constraints, such as
performance, cost, maintainability, testability, and so on. Of par-
ticular importance is the interaction between sound waves and
the structure. These soundwaves are typically produced by human
speech and noise, machines, musical performances, etc. The acous-
tic characteristics of a space can have an effect on the perception
of that space, human communication, and behavior. These charac-
teristics are usually determined by the shape, topology, structure
and surface materials, and objects inside the acoustic space. Fig. 1
shows an example of how the sound Strength, or sense of fullness
of the sound, is affected by the materials inside the space.

The acoustic characteristics of architectural models are mea-
sured in terms of sound clarity, strength, delay, reverberation, etc.
Different architectural models impose varying requirements on
these acoustic characteristics. For example, the premium seats in
concert halls often require a sound clarity measure (C80) of be-
tween −2 and 4 dB. Other constraints or standards are imposed
due to health or environmental factors. The WHO recommends
that the equivalent continuous noise level from the environment in
hospitals during the night should not exceed 30 dB [1]. The imple-
mentation of noiseminimization procedures in hospitals can result
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in a significant drop in medical errors [2]. Studies have also shown
that poor acoustics can have a negative effect on classrooms [3].

Recent trends in computer-aided design for acoustic design
have focused on simulation technologies for prototyping architec-
tural and engineering structures. For example, acoustic models are
used in thedesign of airplanes to predict thenoise causedby engine
vibration and the propagation of acoustic waves throughout the
aircraft cabin [4]. Additionally, manufacturers use large noise engi-
neering laboratories for measuring airframe and aircraft noise [5].
Urban habitation designers [6] and automobile manufacturers [7]
have also used acoustic simulation for prototyping designs. How-
ever, current acoustic simulation tools are limited in their accuracy
and domain capabilities. Often they do not provide reliable solu-
tions. A direct consequence of this lack of reliability is that acoustic
design is frequently performed by human designers with a limited
set of acoustic simulation tools. It is also common for acoustic en-
gineers to build physical prototypes to validate the acoustic char-
acteristics of their design. This can cause long design cycles or even
non-optimal acoustic designs [8–10].
Main results: We present a novel approach for optimizing the
acoustic material properties of CAD models for the purpose of
simulation-based acoustic engineering design. Our approach is
designed for large architectural models and is based on accurately
computing the acoustic pressure field as a function of the material
properties.

Our formulation is based on using a low-dispersion numerical
solver for the acoustic wave equation, called adaptive-rectangular
decomposition (ARD). We present a novel and efficient sensitivity
analysis of the ARD wave solver with respect to the input acoustic
materials. The resulting sensitivities are used to drive a gradient-
based iterative algorithm that can automatically optimize the
material properties to satisfy the acoustic design criteria of the
space. Overall, the three novel components of our work include:
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(a) Acoustic scene and materials. (b) High absorption. (c) Low absorption.

Fig. 1. An example of how the materials in a building can affect the acoustic properties of that building. In this figure the materials are each assigned a different color in
(a). Parts (b) and (c) show the acoustic Strength (G), or feeling of loudness and fullness of sound, at each point in the scene for different material configurations. The brighter
color corresponds to a higher Strength. Part (b) shows the scene with almost fully absorptive materials, where sound waves are mostly absorbed by the walls and floor.
Note how overall, high acoustic Strength values are limited to those areas with a direct line of sight to the sound source. Part (c) shows a low absorption scene, where sound
waves are reflected and keep most of their energy. In this case, listeners can get a better feeling of fullness and loudness without being directly in front of the sound source.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
• Wave-based sensitivity analysis of the acoustic pressure field
for design optimization.

• A fast acoustic design optimization algorithm based on the ARD
acoustic wave solver.

• A multi-objective acoustic material optimization that can si-
multaneously optimize for various acoustic properties includ-
ing strength and clarity.

We show the results of optimizations using our algorithm on
large scale 3D scenes, including CAD models of well-known ar-
chitectural models. We automatically compute the material prop-
erties to give tight bounds on the acoustic characteristics of the
resulting models. The overall approach is general purpose and
takes many tens of minutes on large architectural models of about
20 000 m3 volume on a desktop computer. To the best of our
knowledge, this is the first method able to perform accurate sen-
sitivity analysis for acoustic material design optimization of large
CAD models.

The rest of the paper is organized as follows. Section 2 gives
an overview of prior work in acoustic simulation and application.
Section 3 introduces the acousticwave solver used in our algorithm
and the acoustic metrics used to evaluate the design. Section 4
describes our algorithm for acoustic material optimization and
our method for performing sensitivity analysis on the acoustic
pressure field. Section 5 presents the efficient implementation of
our algorithm. Section 6 provides an overview of our results and
analysis of those results. Finally, Section 7 highlights the benefits
of our algorithm.

2. Prior work

Computational acoustics is an area of active research in en-
gineering design and scientific computing, and is also studied in
seismology, geophysics, and meteorology. In this section, we limit
ourselves to computational acoustic methods for large architec-
tural models.

2.1. Simulation and computer aided design

Extensive research and software development has focused on
vibration analysis, interior and exterior acoustic radiation compu-
tation, vibro-acoustics, and aero-acoustic modeling [11,12]. Much
work has focused on modeling of Noise, Vibration, and Harshness
(NVH) measurements for car interiors [13]. Additionally, many
commercial tools are available for acoustic analysis of objects,
structures, or small spaces. Often, these tools are not sufficiently
accurate or applicable to large acoustic spaces prevalent in archi-
tectural design such as auditoriums, concert halls, or outdoor en-
vironments where the volume may exceed 10 000–100 000 m3.

Analysis of the acoustic characteristics of architectural spaces
is often studied in the context of room acoustics [14]. Work in
this field has been done by Sabine dating back to the early 1900s.
This work was conducted through ray-based acoustics and Sabine
and Eyring’s reverberation time formula for rectangular rooms.
More recently, geometric acoustic techniques based on ray-tracing
[15–17] have becomeprevalent in the evaluation of indoor acoustic
designs such as concert halls, theaters, and auditoriums. Geometric
acoustic methods are used in several commercial packages but
suffer accuracy issues because of the underlying assumption that
sound propagates as rays rather than as waves. Therefore, wave
effects of sound that are prevalent at lower frequencies, such as
diffraction and scattering, are often neglected.

Wave-based methods, on the other hand, directly solve the
acoustic wave equation and do not suffer from these accuracy
issues. Numerical solvers for wave-based methods include finite
difference methods [18], finite element methods [19], and
boundary element methods [20]. However, the computational and
memory requirements for these methods are much higher and, as
a result, wave-based techniques are usually limited in practice to
small spaces (less than 1000m3, for example) and low frequencies
(less than 2 kHz). Recent advances in wave-based methods have
reduced the computational and memory complexity of these
algorithms. These works include low dispersion methods such as
the Adaptive Rectangular Decomposition (ARD) method [21–23]
and the equivalent source method [24].

2.2. Acoustic optimization

A common problem in mechanical and architectural design is
the automatic optimization of a set of parameters on the com-
putational domain. This field, part of Multidisciplinary Design
Optimization (MDO), is widely used in many areas including the
aerodynamic optimization of wings and entire aircraft, architec-
tural features such as bridges and buildings, railway cars, micro-
scopes, automobiles, turbines, and ships [25]. Many commercial
design optimization tools are available for building information
modeling (such as Autodesk Revit building design software tools)
and are frequently used for lighting analysis, structure analysis, en-
ergy analysis, and so on. Often these tools can take advantage of the
computational capabilities of large distributed clusters or large-
scale cloud computing. However, the state of the art in acoustic
design for large architectural spaces is still at its infancy.

The acoustic optimization problem is a subset of MDO, and
is useful for designing acoustic spaces or engineering structures
according to certain target acoustic metrics. These metrics can
range in complexity from sound intensity minimization to sound
clarity or reverb time to binaural acoustic evaluations [26]. Much
of the prior work in acoustic optimization has focused on Noise,
Vibration, andHarshnessmeasurements (NVH). Amore limited set
of methods has focused on space optimization, such as methods
targeting architectural acoustics. We introduce two terms to
describe thesemodels. The first term, object models, refers to sound
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and vibration traveling through the objects. Spatial models, on
the other hand, refers to sound waves propagating through the
atmosphere in the space within a structure.

2.2.1. Object models
Objectmodels of acoustic optimization deal with the analysis of

vibrations or sound propagation through individual objects rather
than through acoustic spaces.Most of thesemodels have been used
for the design of automobiles, engines, and architectural support
structures such as beams. Maressa et al. [27] introduce a method
for NVH measurements for a car interior that is represented
by a finite element mesh. This method explicitly studies the
relationship between the structure of the object and the acoustics
in the object. Other techniques that study the acoustic-structure
interaction are based on a unified approach [28], which uses a
mixed formulation to represent both the acoustic propagation and
the elastic displacement of the structure. Nandy et al. [29] bypass
acoustic simulation entirely in the optimization process. Du, Song,
and Olhoff [30] present a method of acoustic-structure interaction
at a finite boundary around the vibrating object. Shu et al. [31] use a
level set based topology optimization to minimize sound resulting
from vibrations in an outer structure. The topology optimization
allows certain structures, such as beams, to be generated in order
to reduce the sound.

2.2.2. Spatial models
Our goal is to optimize the acoustic material properties of

architectural models to satisfy some constraints on the acoustic
characteristics. This is an example of spatial acoustic optimization
and the driving application is acoustic design and optimization
of large architectural models. In this context, there are three
main subproblems. The first, material optimization, involves the
modification of the materials of the scene as parameters of the
optimization problem. The second, shape optimization, deals with
the modification of dimensions of certain aspects of the scene, but
not the actual topology. The third and last one deals with topology
optimization.

Material optimization problems limit the number of parame-
ters being optimized to a discrete set of materials for each sur-
face or to an arrangement of material placements. Work on this
has been done by Saksela et al. [32] andMonks [9] using geometric
acoustic solvers. Shape optimization, on the other hand, reduces
the optimization parameters to a smaller set of dimensions or
measurements. For example, Robinson et al. [33] parameterize the
shape of balconies in a concert hall in order to determine the best
shape for sound clarity and strength in all areas in the concert hall.
Other shape optimization approaches [34] minimize the acoustic
pressure in a specific section of a room by modifying a series of
columns at the top of the room. Floody and Venegas [35] mod-
ify the dimensions of a rectangular room in order to reduce res-
onance frequencies. In the area of topology optimization, Dühring
et al. [36] minimize the noise in a target area in an output domain
by modifying the topology of the design domain. The modification
is performed by discretizing the design domain and assigning each
element a value between 0 and 1, where 0 corresponds to air and
1 represents an aluminummaterial. They use an adjoint sensitivity
approach and use the Method of Moving Asymptotes to solve the
optimization problem.

3. Background and acoustic wave solver

In this section, we give a brief overview of room acoustics and
the wave propagation solver. We also highlight various symbols
and notation used in the rest of the paper in Table 1.

Our main goal is to optimize for a set of acoustic properties
for the scene. Some commonly used acoustic properties are:
Table 1
Notation used for the acoustic solver and optimization algorithm.

c The constant speed of sound
t Time
1t Time step
k Material index
Ω, Ωk Scene configuration and materials
i Acoustic metric index
fi(Ω) Acoustic metric of the domain Ω

Zi Target acoustic metric
IR(Ω) Impulse response on the domain Ω

g(Ω) Acoustic solver output
x⃗ Spatial position
p, p(x⃗, t) Acoustic pressure in Pascals
F , F(x⃗, t) Acoustic forcing term
wi Weighting function for acoustic metric i
zi Target value for acoustic metric i
ω Characteristic frequency
M Pressure in mode-spaceF Forcing term in mode-space
S FDTD stencil operator
Ωi, Ωj Subdomain in the rectangular decomposition
Γij Interface between subdomains Ωi and Ωj

Onset Delay (Onset), Onset Direction (Dir), Reverberation (RT60),
definition (D), Clarity (C80), and Strength (G) [26,14]. These
properties are all derived from the impulse response (IR) of
the scene, as it is excited by an impulse sound. The acoustic
characteristics are also dependent on the scene configuration, Ω .
The scene configuration includes the acoustic material properties
of objects in the scene in addition to the geometric representation
and layout of the scene. The actual process of computing a single
acoustic parameter is represented as f (Ω), where f () is an acoustic
wave propagation solver that computes the sound pressure field
throughout the space and then evaluates the acoustic metric.

In order to solve the function f (Ω), we want to use an efficient
and accurate acoustic solver. At a broad level, prior work on
acoustic simulation can be divided into two categories: geometric
solvers and wave-based solvers. The former can compute efficient
and often real-time evaluations of the impulse response of a scene
for different sources. However, they are only accurate for high
frequencies, and do not accurately capture the wave nature of
sound,which includes suchproperties as diffraction and scattering.
Wave-based numerical methods on the other hand directly solve
the wave equation, and compute the pressure field throughout the
space. However, their complexity increases as a linear function
of the volume of the acoustic space and the fourth power of the
frequency.

In our optimization method, we use an accurate wave-based
solver that can accurately compute the pressure field. In particu-
lar, we use a low-dispersion method (ARD) that can handle large
acoustic spaces efficiently, and is more than an order of magni-
tude faster than prior time domain solvers such as FDTD [21]. Fur-
thermore, ARD has been parallelized for computational efficiency
on both GPUs and distributed memory CPU clusters [22,23]. As a
result, it can also be used for higher frequency simulations. The
main advantage of using ARD is computational efficiency. Since our
acoustic optimization algorithm requires several evaluations of the
optimization function, the computational efficiency of evaluating
this function is important.

ARD solves the time-domain wave equation:

∂2

∂t2
p(x⃗, t) − c2∇2p(x⃗, t) = F(x⃗, t), (1)

where x⃗ is a 3D position, t is time, p(x⃗, t) is the pressure at point
x⃗ and time t , F is a forcing term at point x⃗ and time t , and c is the
speed of sound. ARD assumes a homogeneous environment where
the speed of sound c is constant.
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Each subdomain inARDassumes a perfectly reflective boundary
condition. The sound field is then propagated across subdomains
using an FDTD stencil at the interface. The FDTD stencil is
equivalent to a (2, 6) FDTD scheme used for full-field acoustic
simulation. Therefore, this stencil solves the acoustic wave
problem at the interface between rectangular regions. Since it acts
as a close approximation to the exact solution, the stencil matches
and cancels out the reflections induced by the reflective boundary
condition of the subdomain and propagates the pressure field
across the interface. Additionally, ARD implements the Perfectly
Matched Layer (PML) absorbing boundary condition in special
partitions both at the boundary of the scene and at the walls.
Variable absorptivity of the walls is done by using an absorptivity
factor on the result of the interface to the wall. If this value is
zero, then the FDTD stencil is not taken into effect and the wall
is regarded as perfectly reflective. On the other hand, if the value is
one, the FDTD is taken into full effect and the wave is propagated
into the PML partition where it is absorbed. Similarly, values used
between zero and one result in partial reflectance [21].

A limitation of this approach is that only a single absorption
value is used that does not take into account the dependence on
the frequency. For more realistic materials, it is necessary to run
the simulator for multiple frequency bands, i.e. multiple bands in
the human hearing range 20–20000 Hz, though in practice current
solvers are limited to a few thousand kilohertz.

4. Acoustic optimization and sensitivity analysis

In this section, we present our novel approach for wave-based
sensitivity analysis for acoustic design optimization. In the process
of designing such an approach, many issues arise in terms of
automatically determining the best acoustic materials for the
desired acoustic characteristic.

4.1. Acoustic optimization

Our goal is to design an optimizer that can target multiple
acoustic design parameters. For example, a designer might want
a specific Strength and a specific Clarity value for a concert hall.
We use a linear weighted sum optimization function, in which
different target characteristics are weighted according to their
importance. This allows a designer to put more emphasis on some
acoustic characteristics over others. Therefore, our formulation of
the optimization problem is expressed as:

min
n

i=1

wi ∥ fi(Ω) − Zi ∥ , (2)

where n is the number of acoustic properties, wi ≥ 0 is the
weighting for the acoustic property i, fi() is the calculation of the
acoustic property on the domain Ω , and Zi is the target value for
the acoustic property i.

The function f (Ω) is calculated by using an acoustic solver. This
solver could be wave-based or geometric, but in our case we use
a wave-based simulator. The input to the function is the geomet-
ric representation and layout of the scene and the set of acoustic
materials in the scene (Ω). The output is a vector of the character-
istic acoustic propertiesmentioned earlier.We use this linear com-
bination in preference to a weightless norm because we wanted
designer control over the relative importance of different acoustic
characteristics. For example, in a concert hall, the parameter C80
is probably the most important along with RT60 [14]. Moreover, a
linear-weighted objective function has been shown to be sufficient
for combining various acoustic metrics [9].

Our optimization pipeline (Fig. 2) computes the full derivative
of the optimization problem. This is used to guide a gradient-based
Fig. 2. Our optimization pipeline, which computes the full derivative at the same
time as it computes the pressure field. The scene input determines the initial
material values and geometry. At each optimization step, a new set of material
absorption values is computed.

Fig. 3. Domain decomposition of a cathedral using the ARD method.

method such as gradient descent, conjugate gradient methods,
or quasi-Newtonian methods. As detailed in Section 4.4, the full
derivative of the acoustic pressure field is actually computed along
with the ARD based acoustic pressure solver.

4.2. Sensitivity analysis

As part of our optimization algorithm, we need to design
a method to efficiently compute the sensitivity of the ARD
solver with respect to the input material properties. Our goal in
terms of sensitivity analysis is to determine how each acoustic
characteristic of the scene changeswhen these inputs are changed.
For example, if we have a scene with the set of material properties
Ω , the sensitivity is the full derivative of the function f (Eq. (2)).
We assume that the input parameters to this equation (i.e. the
acoustic materials) do not occur in any other parameter, so the full
derivative is simply the gradient of f . Therefore we have:

f (k)′
= ∇Ωk f , (3)

where f (k)′ is the full derivative of f when one of the materials is
modified. The calculation of this derivative can be performed using
finite differences, but this approach has inaccuracies that can lead
to issues in the optimization problem [37] or may take a greater
number of steps to converge to the target value.

The computation of this full derivative can be non-trivial. ARD
is a domain decomposition method in which each subdomain
Ωi is tightly coupled with a neighboring subdomain Ωj over the
interface Γij. In ARD, the analytic solution to the wave equation
over each subdomain is used for the pressure computation, but
the interfaces use a 6th order FDTD stencil for the computation.
Fig. 3 shows an example of this decomposition and the spatial
complexity of a scene with many subdomains and interfaces.
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4.3. Computing the pressure field gradient

ARD decomposes the scene into rectangular subdomains which
can solve the time-domain acoustic wave equation analytically.
The analytical solution inside these domains can be described by
the discretization in the modal space of Eq. (1) [21]:

∂2M
∂t2

+ ω2M = iDCT(F(t)), (4)

whereM is the mode coefficient, ω is the characteristic frequency,
t is time, and F(t) is the forcing term. This leads to the following
update rule for the rectangular subdomains:

Mn+1
= 2Mn cos(ω1t) − Mn−1

+
2F n

ω2
(1 − cos(ω1t)), (5)

where 1t is the time step and F n is the forcing term in mode-
space [21].

Our goal is to compute the gradient of the pressure field as the
acousticmaterial characteristics in the scene change. Therefore,we
propose a modification of the update rule that take the derivatives
into account. For a single material, Ωk, we have:

∂Mn+1

∂Ωk
= 2

∂Mn
i

∂Ωk
cos(ωi1t) −

∂Mn−1
i

∂Ωk

+
2
ω2

i

∂ F n

∂Ωk
(1 − cos(ωi1t)). (6)

We then apply the chain rule, and can therefore expand the

three terms in this equation. ∂Mn
i

∂Ωk
and ∂Mn−1

i
∂Ωk

are similarly updated

at different time steps. Of particular interest is ∂ Fn
∂Ωk

, however. F n is
the mode-space component of the forcing term F :F n = DCT(F n). (7)

The DCT is the sum of coefficients of cosines, so the derivative is
simply expressed as:

∂ F n

∂Ωk
=

∂ DCT(F n)

∂Ω
(8)

= DCT


∂F n

∂Ω


. (9)

However, F n may ormay not be dependent on certainmaterials.
If the forcing term is not dependent on any material, such as the
forcing term originating from a sound source, then the derivative
is zero. However, forcing terms originating from interfaces may
be dependent on the material parameter. Finally, forcing terms
originating fromwall interfaces are directly and possibly indirectly
dependent on the wall material. Consider the case where F n

originates from a wall interface. This is governed by the following
equation:

F n
= Ωkc2Sn, (10)

where Sn−1 is a (2, 6) FDTD stencil applied at the interface. This
yields the following derivative:

∂F n

∂Ω
= c2


Ωk

∂Sn

∂Ωk
+ Sn


. (11)

This formulation isolates the material term. However, ∂Sn
∂Ωk

may
still be dependent on thematerial, since the stencil covers pressure
field locations that may have sound dependent on other walls or
even previous steps of the same interface.

These dependencies present problems for computing the
derivative. We aim to present a general purpose optimization
Fig. 4. Dependencies of different subsystems of the ARD solver. These dependen-
cies add to the complexity of the derivative calculation. Automatic Differentiation
inherently deals with the problems of subsystem dependencies. The impulse re-
sponse is an acoustic measurement of the room used to calculate various acoustic
metrics.

method that does not depend on a specific scene configuration.
However, the derivations presented in this section show several
cases in which the dependency of various forcing terms or
pressure values is unknown. These dependencies are intrinsically
related to the geometry and material parameters of the scene,
or the pressure field at previous time steps. ARD is composed of
many coupled systems including an analytical solver inside the
cuboid subdomains, an FDTD solver at the interface, and a PML
implementation at the boundary and wall partitions. The way
in which these different systems are coupled together depends
heavily on the scene configuration. Fig. 4 shows the relationship
and dependencies among the equations of different subsystems of
ARD.

4.4. Automatic Differentiation (AD)

Recently a class of methods called Automatic Differentiation
methods (AD) has been developed in order to find the sensitivities
of various simulation and engineering codes [38]. The advantage of
AD methods is that they compute the analytical derivative of the
code (as written). As such, they produce more accurate gradients
than numerical methods such as finite differences. Automatic
Differentiation works through repeated applications of the chain
rule. In this way, a tree of operations and their derivatives can be
combined automatically. Twomethods of derivative accumulation
can be used: forward accumulation and reverse accumulation that
determine the order in which the chain rule is applied. Reverse
accumulation can allow an AD technique to easily compute a large
number of derivatives.

These properties make AD an ideal candidate for a general
purpose solver like ARD. AD techniques can deal with the inherent
complexity of the system, as dependency information is retained
with each operation and application of the chain rule. For example,
Eq. (8) can either use a forcing termderivative from awall interface
(Eq. (11)) or an air interface. In Automatic Differentiation, the
computation of these derivatives is performed at the same time
that the pressure field is computed. If the scene configuration or
the rectangular decomposition is changed, the application of AD
will yield the correct derivative for that configuration.

Additionally, our AD-based algorithm takes advantage of some
of the efficiencies of ARD. Since ARD is a low-dispersion method,
we can use a coarser discretization of the spatial domain as
compared to other methods such as FDTD. This means that the
update equation (Eq. (5)) needs to be evaluated at fewer points. As a
result, the derivative update (Eq. (6)) can be computedwith similar
efficiency. This is especially important considering that computing
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the derivative essentially multiplies the memory requirements
of the system by the number of components in the gradient. In
our case, the number of components is the number of materials
in the scene. The number of components in the gradient has a
similar effect on computation, where the time cost of evaluating
the gradient is linearly proportional to the number of components
in the gradient.

5. Implementation

The following section discusses the implementation details of
our algorithm. We also discuss the scientific computing software
we use to provide a fast and efficient implementation of both our
optimization step and gradient computation step.

5.1. Optimization

For the optimization method, we chose to use a standard BFGS
algorithm. Using this method is advantageous because of the non-
smooth nature of the optimization function. BFGS is a gradient-
based optimization method that can deal well with non-smooth
functions [39]. Additionally, BFGS is a subset of quasi-Newtonian
methods that are designed to solvemultidimensional optimization
problems [40]. Because we are interested in architectural models
that havemultiple materials that we would like to optimize, this is
particularly useful.

The implementation we use is the Dlib library which provides
both BFGS and LBFGS and algorithms. The optimizer is driven by
the acoustic solver ARD (see Section 3) andderivatives produced by
Automatic Differentiation on the solver code (see Section 4.2). We
use a delta stop condition to detect minima—when there is little
change in value the optimizer finishes.

Part of the input of the solver is a set of material segments.
These are regions of the architectural model that are assigned
the same material. For example, if an acoustic engineer wanted
to determine the optimal absorption of the carpet for obtaining
a certain acoustic strength value, she could mark the floor as a
material segment. These segments can be specified in any standard
modeling program.

For optimization, material values are directly driven by the
optimization algorithm. Some materials must remain constant,
however. These materials are either specified by the user to not be
optimized (as would be in the case where parts of the architecture
must be made of a certain material) or are part of the free-field
boundary condition of the scene. ARD implements a perfectly
absorbing boundary condition at the edges of the scene to simulate
open areas. Therefore, the solver and optimizer work well with
both indoor and outdoor scenes, including hybrid scenes with
aspects of both.

The vector of these material segments is initialized with a
specified or random starting value per material segment and then
modified by the optimizer until convergence. The random starting
value allows multiple processes of the optimizer to run in parallel
in order to avoid local minima.

5.2. Automatic Differentiation

Our algorithm for acoustic material design optimization uses
Automatic Differentiation for computing the sensitivity of the
acoustic ARD solver. It takes advantage of ARD’s inherent efficiency
and to handle the complexity of the ARD solver.

For computing the sensitivity of ARD, we use an implementa-
tion of the Sacado AD library developed by Sandia National Lab-
oratories as part of the open source Trilinos scientific computing
package [41]. Sacado is used in many scientific computing appli-
cations for calculating the sensitivity of various simulation codes.
Wechose it because of the inherent efficiency of the library—it uses
expression templates and operator overloading in C++ to simplify
expressions at compile time.

Because Sacado uses operator overloading, we can compute the
derivative of the impulse response at the same time we compute
the impulse response itself. As a result of the chain rule, further
post-processing to derive the acoustic characteristics of the scene
(strength, clarity, etc.) will also contain the correct derivatives.
Furthermore, we only have to evaluate this once per optimization
step. This favorably compares to finite difference techniques,
where we would need two evaluations of the simulation and
acoustic characteristics to compute the derivative.

6. Results and analysis

In this section we examine the results of our design optimiza-
tion process for acoustic materials. We show convergence on var-
ious scenes and the effect of the optimization, including impulse
responses and the value of various acoustic characteristics before
and after optimization.

6.1. Benchmarks

A variety of scenes and acoustic materials were used in our ex-
perimental setup. All simulations were done with a low frequency
(187 Hz) Gaussian derivative pulse as a sound source. Source and
listener positions were placed in reasonable locations. We used
three benchmark scenes in total: Cathedral, Twilight, and Concert
Hall. These provide three locations in which the acoustic proper-
ties of the scene are important. Cathedral provides a large, open
area that can be particularly reverberant even at higher absorp-
tion values. Twilight has a unique architecture including parts of
the structure that are open-air. Finally, the Concert Hall model al-
lows us to explore the acoustic characteristics of music hall design.
The geometry and material segmentation of each scene is shown
in Fig. 5. These scenes range in volume from the smallest (Cathe-
dral), which is 20 000 m3 to the largest (Concert Hall), which is
35 000m3. Table 2 shows a summary of the scenes, their respective
volumes, their geometric complexity, the number of material seg-
ments used, and the iteration time for a single optimization step.

6.1.1. Acoustic materials
The acousticmaterials in our scene are determined as a result of

our optimization process (see Fig. 2). Acoustic materials determine
the absorption coefficients of different walls or other geometric
elements in our scene. These coefficients were constrained to
a range of 0.1–0.7 (where 0 is fully reflective and 1 is fully
absorptive), which limits absorption to a more realistic range.

Some typical absorption values for our range of materials can
vary frompainted concrete at a coefficient of about 0.1 tomaterials
representing an audience in upholstered seating with a coefficient
of about 0.6.

6.1.2. Acoustic metrics and the impulse response
We determine the values of various acoustic metrics by

measuring the impulse response at a particular listener location.
The impulse response is a measure of sound pressure over time
when the room is excited by a sound impulse at a specific source
location. We used a Gaussian derivative impulse, which has a
zero DC-component (which insures the correctness and numerical
stability of the solver). The length of the IR is dependent on how
much sound energy remains in the scene.

We measured two different acoustic measurements: Strength
(G) and Clarity (C80). These acoustic properties were specifically
chosen for their importance in concert hall design [42,43]. All of
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(a) Cathedral. (b) Twilight. (c) Concert Hall.

Fig. 5. Geometry and material segmentation of the various benchmark scenes. These are specified by the designer. Our algorithm is general purpose and allows arbitrary
flexibility in the assignment of these materials. In this figure, different acoustic materials are assigned different colors. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
(a) Strength (G). (b) Clarity (C80). (c) Combined optimization.

Fig. 6. Comparison between different derivation methods: Automatic Differentiation and finite differences at 10−5 . We show much faster convergence using Automatic
Differentiation for the Strength and Clarity measure. In the combined optimization, the finite differences result finishes early without converging on the target metric. The
combined optimization attempts to optimize for both strength and clarity.
Table 2
Summary of the various benchmark scenes. The running time of the underlying ARD solver does not depend on the
geometry of the scene, but rather the volume of the scene and the number of materials.

Scene Volume (m3) Num. triangles Num. materials Iteration time (s)

Cathedral 20 686.03 55665 2 62.0645
Twilight 26759.28 270 3 85.4107
Concert Hall 34 510.03 5532 5 138.113
these acoustic properties were derived from the impulse response.
Acoustic Strength is computed from the IR by comparing the log-
arithmic ratio of energy in the impulse response with the energy
of an impulse response computedwith an equivalent sound source
10 m away in a free-field condition. Generally, Strength indicates
the fullness of the sound. Clarity, on the other hand, gives an idea of
how clearly the listener can hear the original sound source. Com-
puting clarity is done by comparing the logarithmic ratio of the
first 80 ms of sound to that of the remaining portion of the im-
pulse response. This essentially measures direct sound and early
reflections and compares it to the less clear reverberant tail of the
impulse response. In all cases, we chose target values that were re-
alistic and represented common practice for the design of concert
halls. We chose a target value for acoustic Strength between 3 and
5 dB [44] and a target Clarity value between −3 and 4 dB [45].

6.2. Convergence

Our approach using Automatic Differentiation compares favor-
ably to computing the derivative via a finite differences technique.
The finite differences technique is a simple approach thatmeasures
the slope of a function using an epsilon x-component rather than
an infinitesimal. In our experiments we picked an epsilon of 10−5.
Fig. 6 shows the number of optimization steps requiredwhen com-
puting sound Strength (G), Clarity (C80), and a combined acoustic
measurement of both Strength and Clarity on the cathedral scene.
We compare the AD approach with the finite difference approach.
The AD approach converges faster, and in some cases the finite dif-
ference approach does not converge. In this case, it is stuck in a
local minimum that is not the optimal result that the AD approach
computes. Overall, using AD is advantageous since it converges to
the correct result in addition to converging faster.

6.3. Optimization results

In addition to examining the convergence of our optimization
method, we show the effect our optimization has on both the
entire pressure field and individual impulse responses at specific
listener positions. We ran various experiments one each scene,
including one for each acoustic metric and a third experiment
for a combined metric that targeted both Strength and Clarity for
optimization. Table 3 shows various material values before and
after optimization for the various acoustic characteristic metrics
and combinations.

Fig. 7 shows the impulse responses at each scene before
optimization and after optimizing for the different acoustic
metrics. Materials with lower absorption values will generally
tend to yield impulse responses with more energy after the direct
sound impulse (the firstmaxima in the impulse response). Because
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Table 3
The various starting and ending material values for optimization. The value w represents the assigned weight for each value. We show close convergence for all scenes in
this example. The material range was limited to absorptions of between 0.1 and 0.7.

Scene Metric Target value Initial materials Final materials Final metric values

Cathedral G 4 dB (w = 1) 0.3, 0.3 0.0455, 0.2333 4 dB
C80 1 dB (w = 1) 0.3, 0.3 0.0472, 0.6814 1 dB
G, C80 4 dB (w = 0.25), 1 dB (w = 0.75) 0.3, 0.3 0.0448, 1 2.9242 dB, 1.0001 dB

Twilight G 4 dB (w = 1) 0.5, 0.5, 0.5 0.3884, 0.5, 0.4852 3.9998 dB
C80 1 dB (w = 1) 0.5, 0.5, 0.5 0.2725, 0.4998, 0.516 0.9995 dB
G, C80 4 dB (w = 0.25), 1 dB (w = 0.75) 0.5, 0.5, 0.5 0.3288, 0.4988, 0.9756 4.0003 dB, 0.999 dB

Concert Hall G 4 dB (w = 1) 0.5, 0.5, 0.5, 0.36 0.1, 0.1, 0.7, 0.1 2.9149 dB
C80 1 dB (w = 1) 0.5, 0.5, 0.5 0.1468, 0.4177, 0.3593 1 dB
G, C80 4 dB (w = 0.25), 1 dB (w = 0.75) 0.5, 0.5, 0.5, 0.36 0.1, 0.7, 0.7, 0.1 2.4050 dB, 6.0772 dB
(a) Cathedral. (b) Twilight. (c) Concert Hall.

Fig. 7. Impulse responses before and after optimization on each scene. Optimizing for Strength increases the overall energy in the response, while optimizing for Clarity
increases the ratio energy in the first 80 ms of the impulse response to the remaining energy. These changes can be seen in the figures after optimization is performed.
(a) Strength (G) optimization. (b) Clarity (C80) optimization.

Fig. 8. Cathedral field slices before and after optimization. Optimizing the acoustic materials causes a change in the full acoustic field. At the sample listener position we
use for the impulse responses in Fig. 7, we show the desired target acoustic value after optimization.



N. Morales, D. Manocha / Computer-Aided Design 78 (2016) 83–92 91
(a) Strength (G) optimization. (b) Clarity (C80) optimization.

Fig. 9. Twilight field slices before and after optimization. In this scene partly open to air, we can see how the strength and clarity values outside of the main structure are
affected by the optimization of acoustic materials.
(a) Strength (G) optimization. (b) Clarity (C80) optimization.

Fig. 10. Concert Hall field slices before and after optimization. The listener position in this case is further away from the source andmostly affected by direct sound, yielding
a high clarity but lower strength.
acoustic Strength uses the energy of the full impulse response,
Strength optimization tended to increase overall energy. On the
other hand, Clarity optimization tended to decrease the proportion
of the second part of the impulse response compared to the
first part, despite overall increasing the reflectivity of the scene
materials.

Fig. 8, Fig. 9 and Fig. 10 show the acoustic Strength and Clarity
values before and after optimizing for acoustic Strength. These
images show how the results for a single source and listener
position can be used to drive the acoustic design of a concert hall
or other acoustic space.

6.4. Analysis

Our analysis shows that our method is effective in determining
the material parameters that effectively yield the desired acoustic
characteristics. We are able, in most cases, to complete the
optimization in less time than an equivalent finite difference
technique for determining the gradient. In the cases in which we
do not, ourmethod yields results that aremore accurate and closer
to the desired acoustic characteristics.

Additionally, our method is general purpose and is capable of
working on a multitude of scenes. The only input is the scene
with the desiredmaterial segment assignments. This is particularly
useful for engineers and architects as arbitrarily complex CAD
models can be used for optimization.

Finally, our method uses a fast underlying acoustic wave
propagation simulation that can give accurate results with much
lower computational and memory requirements compared to
other standard methods such as FDTD. For example, the clarity
optimization on the Cathedral scene took approximately 1 h to
compute. Using FDTD would take around 75 h to compute [23].
This can make an important difference in turnaround time for
architectural acoustic design and development.

7. Conclusion and future work

We introduce an efficient wave-based acoustic material design
optimizer that is capable of handling multiple material segments
and multiple target acoustic properties. We show that using the
exact derivatives fromAutomatic Differentiation helps us converge
faster on the target optimization result. Additionally, we take
advantage of the performance and memory efficiency of the ARD
solver compared to other standard acoustic wave solvers. Finally,
we show how our system can be used in the application of
designing concert halls or other acoustic spaces.
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In the future we would like to explore methods of applying
discrete optimization techniques to the acoustic material opti-
mization problem. While our method can take advantage of the
sensitivity of ARD to drive continuous optimization, some of the
materials producedmay not be physically realisticmaterials. These
continuous values can be discretized into material categories (for
example concrete bricks have an absorption between (0.01 and
0.02)). However, discrete optimization approaches could take as
input a library of acousticmaterials thatmust be used rather than a
continuous curve of absorption values. A further advantage to this
approach could be the incorporation of other constraints on the
optimization, including material cost or the structural feasibility
of using a particular material in a specific location.
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