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a b s t r a c t

Additive manufacturing transforms material into three-dimensional parts incrementally, layer by layer
or path by path. Subject to the build direction and machine resolution, an additively manufactured part
deviates from its design model in terms of both geometry and mechanical performance. In particular, the
material inside the fabricated part often exhibits spatially varying material distribution (heterogeneity)
and direction dependent behavior (anisotropy), indicating that the design model is no longer a suitable
surrogate to consistently estimate the mechanical performance of the printed component.

We propose a new two-stage approach tomodeling and estimating effective elastic properties of parts
fabricated by fused deposition modeling (FDM) process. First, we construct an implicit representation of
an effective mesoscale geometry–material model of the printed structure that captures the details of the
particular process and published material information. This representation of mesoscale geometry and
material of the printed structure is then homogenized at macro scale through a solution of an integral
equation formulated using Green’s function. We show that the integral equation can be converted into
a system of linear equations that is symmetric and positive definite and can be solved efficiently using
conjugate gradient method and Fourier transform. The computed homogenized properties are validated
by both finite element method and experiment results. The proposed two-stage approach can be used to
estimate other effective material properties in a variety of additive manufacturing processes, whenever a
similar effective mesoscale geometry–material model can be constructed.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation and goals

Additive manufacturing (AM) represents a spectrum of tech-
nologies producing 3D parts incrementally, layer by layer or path
by path. This distinctive feature gives AM numerous advantages
over the traditional manufacturing techniques, such as the abil-
ity to fabricate parts with complex shapes and internal struc-
tures without a significant increase in cost or turnaround time. In
many cases, a complex heterogeneous structure with less material
may be both cheaper and faster to manufacture than a part with
a simpler geometry and homogeneous material, such as a solid
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cube. This phenomenon is sometimes referred to the ‘‘complexity
paradox’’.

Similarly to other manufacturing methods, the quality of
additively manufactured parts is subject to the process limitations
and machine imprecision. Various differences between designed
and manufactured parts have been studied in the past, in terms
of surface roughness [1,2], dimensional accuracy [3,4], and other
manufacturability criteria [5,6]. Experiments have also been
conducted to estimate the material properties of the printed part.
The test specimens are printed in shapes per material testing
standards (e.g. ASTM D3039 [7]) with material deposition paths
(roads) aligned along the axial, transverse or cross directions [8,9].

In contrast to many traditional manufacturing processes, the
material undergoes a fundamental phase transformation during
the AM process, changing not only its geometry but also its
mechanical properties. Processing plan and parameters in AM also
play a more significant role in the final performance of the part—
the same nominal part geometry manufactured with two different
set of process planswill generally result in partswith very different
properties. As a result, all AM processes lead to a heterogeneous
and anisotropic distribution ofmaterial properties in the interior of
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Fig. 1. To model and estimate the effective material properties of parts made
by FDM, the proposed approach includes two stages shown in the left branch:
modeling of printed material and numerical homogenization. Direct simulation of
the design model is likely to yield poor results due to the various inconsistencies
between the design model and the printed part. The proposed method is verified
with the physical testing result in [10] on the right branch in Section 5.

the fabricated part,which is usually not represented and accounted
for in the part’s design model. In other words, the design model is
no longer a suitable surrogate for the fabricated part. The accuracy
of downstream applications, such as structural analysis, relies on
the ability tomodel not only themanufactured part’s geometry but
also its material’s mechanical properties.

Thematerial properties may be estimated at least three distinct
scales: material phase changes take place at the micro scale,
allowing planningmaterial deposition at the (meso) scale of layers
and paths, which are fused together to give effective mechanical
properties of the manufactured part’s (macro) scale. As AM is
rapidly evolving from a technology to prototype products in the
conceptual design stage into a manufacturing process for the
end-use load-bearing functional components, it is imperative to
develop a computational infrastructure that allows mechanical
analysis to be performed directly on the manufactured part.
Estimating such effective properties at the scale of the part’s geometry
is the goal of this paper.

1.2. Contributions and outline

Specifically, we propose a new approach to modeling and esti-
mating the effective (macroscopic) material properties in the in-
terior of the parts produced by the Fused Deposition Modeling
(FDM) process using homogenization. Informally, homogenization
replaces the known detailed geometry and multi-phase material
properties at a finer scale by simpler ‘effective’ geometric domain
and single-phase (solid) material properties at a coarser scale. The
effective domain is usually a cuboid, and the effective material
properties are estimated from average stress and strain relation-
ship over the cuboid. Homogenization is challenging for AM parts
for two reasons: (1) geometry and material properties may not be
known at the micro and mesoscales; and (2) homogenization re-
quires significant computational resources.

The proposed approach deals with the two challenges in two
stages (Fig. 1): a modeling stage that generates a representation
of (mesoscale) geometry and anisotropy of thematerial deposition
in the interior of the part, followed by an efficient analysis stage
homogenizing the generated 3D-printed structure for its effective
material properties. The concept of homogenization is extensively
used in both two stages.

In the modeling stage, given a manufacturing process plan
in the form of G-code that describes the printer’s toolpath, we
construct an effective geometry–material model to represent the
heterogeneous distribution and anisotropic material properties of
the FDMprinted structures. The construction combines an analytic
model of geometry with experimentally measured material
properties that are linked together by homogenization assumed
in the measurement procedure. We also describe an implicit
representation of this mesoscale effective geometry–material
model that supports efficient queries and can be evaluated on
demand for further processing. This is the first contribution of the
paper detailed in Section 3.

In the second stage, described in Section 4, the mesoscale
geometry–material model of the printed structure is homogenized
to obtain the effective (macro-scale) material elasticity tensor. We
adopt Green’s function method that is often used in the studies
of random heterogeneous materials. We convert the formulated
integral equation into a system of linear equations and show that
the linear system is symmetric and positive definite with properly
chosen reference material. This is our second contribution, which
gives a formal basis for using efficient homogenization techniques.
The symmetric and positive definite linear system is solved by the
conjugate gradient (CG)method. Thematrix–vectormultiplication
required by CG is equivalent to the convolution between Green’s
operator and the vector of polarized stresses, and thus can be
evaluated efficiently through Fourier transform.

To validate our results, in Section 5, we show that the computed
results are consistent with those obtained by a more traditional
(but an order ofmagnitude slower) homogenizationmethod based
on finite element method. We also apply the complete two-stage
modeling-homogenization approach tomodels of printedmaterial
samples and show that predicted effective material properties
are in agreement with the physical tests performed on the same
structures.

2. Background and related work

2.1. Fused deposition modeling

FDM is a widely used AM process that produces parts with
significant material anisotropy and heterogeneity that cannot be
neglected. Parts built by FDM differ noticeably from their design
models due to many factors, including stair—stepping on the
surface of the part, the rounding of sharp corners, air gaps and the
use of infill patterns to save the printingmaterial and printing time,
impacting the mechanical performance of the part.

To manufacture by FDM, the design (solid) model is first
converted to a stereolithography (STL) file, which represents
the solid part by a triangle tessellation of its boundary. The
STL model is subsequently sent to a process planning software
(e.g. Slic3r [11]) that generates the printer’s head toolpath together
with the printing process specifications, such as build direction,
nozzle diameter, and infill percentage. As the printer’s head
moves, a molten filament is extruded through a heated nozzle.
For each layer, the nozzle moves following a piece-wise linear
path horizontally. The material extruded along each line segment
is commonly referred as a ‘road’. After each deposition, the road
solidifies and bonds with adjacent roads in both current and
previously deposited layers. After the whole layer is deposited,
either the nozzle or the printing plate shifts vertically to print the
next layer.

Much research has been dedicated to model the geometric
differences between the design model and printed part; a
comprehensive survey is beyond the scope of this paper. For
example, elliptical model of the road cross-section is proposed
in [12] to analyze surface roughness distribution according
to changes in the angle between the surface and the build
direction.Manufacturability of the designed part is examined in [5]
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and [13] usingmorphological operationswith voxel representation
and polygonal offsets respectively. Manufacturability analysis
identifies hard to print features such as bridges, spikes, and holes.
More recently, Nelaturi and Shapiro [6] model the printed shape
as the accumulation of material deposited at each translated
print head position, which is mathematically represented as the
convolution between smallest printing volume by the moving
head and the nominal geometry. The model also captures process
uncertainty by introducing probability density functions into the
convolution. Because the process plan is represented as a stack of
slices, only geometric differences over the boundary of the part are
reflected in this formulation. Amore detailedmodel of the process-
planned geometry may be modeled by the actual geometry of the
roads, with each road represented by a sweep (convolution) of the
smallest printing volume over the actual toolpath [14].

The studies of themechanical properties of the printedmaterial
rely heavily on the experiments. For ABS plastic, experimental
results show that the tensile strength along the road is about 75%
weaker than the raw material [8]. The same study also found that
the bonds between roads are much inferior to the raw material
(20%–50%, depending on the size of the air gap). This observation
has been repeatedly confirmed by later experiments [15,16,9]. In
particular, FDM parts with different build directions are compared
with injection molded monolithic part with the same geometry so
that the material properties in the printed part can be compared
with the raw material directly [9]. The anisotropic mechanical
properties of the printed part by different AM processes are
reviewed in [17].

Ourmesoscale effective geometry–materialmodel combines an
implicit sweep-based geometric model of the material deposition
processwithmeasuredmaterial properties. The combination is not
trivial because, strictly speaking, the twomodels are incompatible.
For example, as we explain in Section 3, the mechanical properties
measured as an average over some domain of material sample do
not hold for individual roads (solidified filament).

2.2. Homogenization using Green’s function

Relating the macroscopic properties to the microscopic mate-
rial structures is a long-standing problem. Informally, homoge-
nization refers to the process of calculating the effective properties
of a material structure [18,19]. One popular strategy for homog-
enizing a structure numerically is though Finite Element Method
(FEM) where six independent periodic boundary conditions are
imposed [20]. Multiple recent studies adopt FEM-based homoge-
nization to design and optimize mesoscale structures for additive
manufacturing. Without being exhaustive, a set of cubic patterns
achieving a broad range of stiffness and Poisson’s ratios is designed
through a combinatorial search over topologies followed by shape
optimization in [21]. A similar result through topology optimiza-
tion is reported in [22]. By imposing manufacturing constraints,
manufacturable material structures with negative Poisson’s ratios
are designed through topology optimization in [23].

An alternative approach to homogenization can be formulated
using Green’s function (see Appendix A). The development of the
method dates backs to 1970s [24–27]. A major computational
difficulty in the formulated integral equation is computing the
convolution of Green’s function. Initially, the integral equation
was used to predict effective properties or estimate their bounds
based on the statistics of microscopic material structures [28].
It is only recently an efficient solution of the integral equation
was proposed, allowing the application of the approach to the
detailed models of material structures. Evaluating the convolution
using Fourier transform was first proposed by Moulinec and
Suquet [29]: by the convolution theorem, the convolution in real
domain becomes multiplication in the frequency domain. Just as
in FEM-based homogenization, the periodic boundary conditions
are usually assumed for the material [19]. Fourier transform
also assumes the periodicity of the function implicitly. The first
attempt [29], often referred as the basic scheme, solves the
problem through the fixed-point iteration which is equivalent
to the Neumann series solution of the integral equation. In
this approach, the number of iterations needed for convergence
grows linearly with the contrast in material coefficients between
different phases.1 As a result, the iteration may not converge for
phases with infinite contrast, e.g. porous materials. It was later
discovered that the lack of convergence is due to the Neumann
series expansion rather than the formulation of the problem and
will be corrected if other iterative linear solvers are applied [30].
The basic scheme inspiredmany follow-up results,mainly focusing
on improving the convergence speed and the convergence with
arbitrary phase contrast [31–34]. The Fourier transform of the
problem was later shown to be mathematically equivalent to
Galerkin approximation with trigonometric polynomials [35]. The
efficient homogenization technique described in Section 4 relies on
the combination of FFT and conjugate gradient methods, exploring
the fact that the resulting system of linear equation is symmetric
and positive definite.

3. Mesoscale FDM geometry–material model

3.1. Idealized geometry of printed structures

Intuitively, we would like to simulate the FDM printing process
as a deposition of filament along the specified toolpath. At
any given instant, the printer’s head deposits some minimum
manufacturing volume (MMV),whose shapemay be approximated
in terms of simple quadratic and/or superelliptic primitives with
dimensions determined by the road width and layer height (see
Fig. 2 left). The shape of the road may be represented as the sweep
of MMV along the toolpath specified by the instructions in the G-
code, as shown on the right. Sweeping MMV over all toolpaths in
the G-code yields a first approximation of geometry discretized by
the printing process. Fig. 3 shows the design model, toolpath, and
the reconstructed printed shape of a two-dimensional infill pattern
generated through Customizer byMakerBot [36]. Such an idealized
geometry model was proposed in [14] and can be used to reason
about stair-stepping, surface roughness, air gaps, and other small
geometric differences between the designed and printed model.

We will adopt this idealized geometric model as a first approx-
imation of the mesoscale geometry–material model, based on the
assumption that most of the differences between the mechanical
performance of the designed andprinted structures originate in the
process planning stage. This is reasonable because the air gaps and
the bonding interface between the roads,which aremodeled by the
idealized geometry model, impact the mechanical performance of
the printed structure farmore significantly than dimension inaccu-
racy and printing imperfections due to gravity and random events
such as inconsistent polymer flow. Global deformations such as
warping due to thermally induced stress are not modeled since
they cannot be predicted without first solving the effective mate-
rial problem under consideration in this paper. Another limitation
of the idealized geometry model is that the union of the roads is
not volume conservative. The model will underestimate the total
volume of the base material when the distance between the par-
allel toolpath is smaller than the road width. We expect that such
problem is less likely to happen with a proper toolpath.

1 Contrast refers to the magnitude of difference between the coefficients in the
respective material tensors.
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Fig. 2. The shape of the minimummanufacturing volume and a single road. w, l, and h, represent the width, length of the road and layer height, respectively.
(a) Design model represented by triangle
tessellation.

(b) Toolpath as a collection of line segments. (c) Printed model reconstructed from the toolpath
(b) with road width w = 0.3.

(d) Reconstructed printed model with w = 0.25. (e) Detailed view of (c). (f) Detailed view of (d).

Fig. 3. Printed geometry model for a two-dimensional infill pattern.
3.2. Mesoscale material properties

A standard method for modeling a multi-phase material
structure is to partition the overall domain into regions with
distinct but known material properties. Thus, idealized geometry
model distinguishes the space occupied the roads from the voids.
However, the elastic properties of the roads themselves vary
significantly over the roads and are not generally known. Firstly,
it is very difficult to predict the properties of the solidified road
base material that is remelted from the filament and extruded
through the nozzle during the deposition process. Furthermore,
the elasticity tensor of the filament itself is likely to be incomplete
since only the stiffness in the direction of filament’s extrusion can
be tested inmost scenarios. Secondly, the stiffness of the deposited
material changes significantly in the areas where adjacent roads
are bonded together and is also difficult to predict. The quality of
the bonds between the roads depend not only on the neck (contact
area) formed between the adjacent roads, but also the molecular
diffusion and randomization at the interface [37]. Heat transfer
and thermal history models, such as the ones proposed in [38,37],
are required to predict the strength and stiffness of the bond.
The compound complexity of these physical phenomena casts
serious doubts on the feasibility of being able to predict material
properties of the idealized geometrymodel either computationally
or experimentally.

In contrast, the measured material properties published by
various manufacturers estimate not material properties of the
constituent phases, but the effective material properties of the
specimen formed by uniform patterns of parallel roads (Fig. 4)
(top). These measurements determine the compounded effects of
the stiffness of the roads, air gaps and the bonding between the
roads; the properties are averaged over an effective domain, shown
as the blue rectangular region in Fig. 4 (middle) where they are
assumed to be constant. Clearly, thesemeasured properties cannot
be applied directly to the idealized geometry model constructed
from a number of roads with arbitrary orientation and spacing.
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Fig. 4. The material properties of printed structure are measured on a specimen
formed by a uniformpattern of parallel roads. Top: tensile tests are performed along
X and Y directions. Middle: the cross-section of the specimen. The blue rectangle
indicates an effective domain of the measurement. The red rectangle indicates an
effective cross-section of a road that is compatible with the assumptions in the
measurement. Bottom: reinterpreted geometry of a single road.

3.3. Effective geometry–material model

It should now be clear that the effective geometry and material
models of the FDM structures are interdependent and cannot
be treated separately. The difficulty is that this interdependence
is implicit in the (inconsistent) assumptions underlying the
geometry model and material measurement procedures, but it
cannot be used explicitly to express either model in terms of the
other. Hence, we propose to simultaneously modify both models
of geometry and of material, in order to bring them into the
agreement and construct a consistent effective geometry–material
model.

First, the idealized road shown in Fig. 2 is reinterpreted with
a rectangular cross-section shown at the bottom of Fig. 4. This
reinterpretation is consistent with the material measurement
process that assumes the effective rectangular cross-section of
the specimen shown in Fig. 4 does not have any voids. Secondly,
because the measurement specimen is a periodic arrangement
of parallel roads, the measurement procedure implies that the
measured material properties remain constant and are identical
on the cross-section of each individual road. This means that the
measured anisotropic material properties can now be assigned
based on the reinterpreted geometry and the direction of the
road, while eliminating the need to model air gaps and bonding
stiffness.2

Next, we transform the measured material properties to be
consistent with the direction of individual roads. The material
properties are measured in a coordinate system with z axis
pointing in the build direction and x axis aligned with the (stiffest)
direction of the roads in the specimen. The measurement results
are generally represented by the following transverse isotropic
compliance tensor:

S =
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, (1)

where Ep, νp and Ex, νx are Young’smoduli and Poisson ratios in the
y–z symmetry plane and x-direction, respectively. Gxp is the shear
modulus in the x-direction. The elasticity tensor C is calculated
as the inverse of the compliance tensor S. Note that y–z is the
symmetry plane, which is different from the usual convention that
x–y is the symmetry plane.

The roads can be printed along any direction within the layer
while remaining perpendicular to the build direction. To align the
x axis of measurement with the road direction, this fourth-order
elasticity tensor must be rotated within the layer [39]:

C ′

mnop = RmiRnjRokRplCijkl, (2)

where Rij is the ijth component of R:

R =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


, (3)

and θ is the angle between the x axis and the road direction. Fig. 5
shows the result of aligning thematerial tensor with the directions
of the roads within a single layer. Here, the stiffest direction of the
elasticity tensor is sampled at different locations and is plotted as
a vector field.

One final modification of material model is required to account
for areas wheremultiple roads overlap. In such cases, the elasticity
tensor is simply averaged over all overlapping roads. For example,
if the overlap is between two parallel roads, the elasticity tensor
remains the same as in both roads. If two roads form a T-section,
the returned elasticity tensor becomes isotropic in the plane of the
layer after averaging from the two roads.

3.4. Implementation via implicit representation

The mesoscale geometry–material model is conveniently
represented by extending the implicit sweep-based representation
of the idealized printed geometry. The pointmembership of a given
query point against such a representation is determined by its

2 Printing defects such as imperfect bonding must be treated separately with
thermal history models, which is outside the scope of current discussion.
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(a) Discretized first layer. The number of roads each query
point belongs to is color coded. The averaged material
property is returned if the query point belongs to more than
one road.

(b) The stiffest direction of material tensor for each query
point.

(c) The zoomed in view of (b).

Fig. 5. Material distribution of printed model for a two-dimensional infill pattern.
point membership against the MMV centered at its nearest point
on the toolpath.

The same implicit representation is adapted and reinterpreted
to be consistent with the proposed effective geometry–material
model. A transformed material tensor is associated with every
road. When a material tensor is queried at a point, both the point
and the relevant roads are simply projected onto the horizontal x–y
plane of the layer (perpendicular to the build direction). The two-
dimensional pointmembership classification against the projected
road effectively eliminates the air gaps between the adjacent
bonded roads, while other voids within the layers can still be
recovered. This implicit representation of the effective mesoscale
geometry–material model is sufficient for many downstream
applications; in particular, it forms the input for the macro scale
homogenization stage discussed in the following section.

4. Homogenization via Green’s function

In principle, the mesoscale model developed in Section 3 may
be used directly for performing mechanical analysis on an FDM
printed part. However, this may not be desirable for at least two
reasons. Discretization of the domain at the scale finer than the
road geometrywill result in an excessively large simulationmodel.
Secondly, as we already explained, application of the measured
material properties to effective mesoscale geometry is a form
of homogenization. As such, this mesoscale model shares the
usual accuracy limitations of homogenization in the vicinity of
(relatively) small features and boundaries.3

For these reasons, below we further homogenize the con-
structed mesoscale geometry–material model to estimate the
macroscopic material properties in the interior of an FDM printed
structure. Because local forces and displacement are further aver-
aged over an effective macroscopic domain, it is reasonable to ex-
pect that the accuracy limitations of themesoscalemodelwill have
limited or no effect on results of this homogenization.

4.1. The governing integral equation

We rely on the formulation developed in [25,27] and summa-
rize its core result below. The effective elasticity tensor Ceff of a
heterogeneous material can be defined as follows:

σ = Ceffϵ (4)

where ϵ and σ are the mean value of strain ϵ and stress σ in the
material sample. Note that the effective tensor is almost never the
volume average of its constituent materials. In fact, the volume
average serves as an upper bound of the effective properties and
is almost never achieved in practice.

Due to the symmetry of the strain and stress tensor, a set
of six independent experiments is required for measuring Ceff.

3 Roughly speaking, effective properties are used when the feature size is at least
an order of magnitude larger than the size of the effective geometric domain.
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For a heterogeneous material with elasticity tensor C subject to
the displacement boundary condition, the displacement u, stress
σ , strain ϵ, and body force b must conform to the following
equilibrium equations:

divσ + b = 0, x ∈ Ω

σ = Cϵ, ϵ =
1
2
[∇u + (∇u)T ],

u(x) = u0(x), x ∈ ∂Ω.

(5)

Given a homogeneous reference comparison material with the
constant elasticity C0, the stress polarization tensor τ may be
defined:

τ = σ − C0ϵ = (C − C0)ϵ. (6)

Substituting Eq. (6) into (5) leads to the solution of ϵ (see derivation
in Appendix B), also known as the Lippmann–Schwinger equation:

ϵ(x) = −


Ω

Γ (x, x′)δC(x′)ϵ(x′)dx′
+ ϵ0(x)

Γijpq(x, x′) =
∂2Gip(x, x′)

∂xj∂x′
q


(ij),(pq)

(7)

where the bracketed subscripts imply symmetries on (ij) and (pq),
ϵ0 is a constant strain field resulting from the prescribed u0, and δC
represents the variations in elasticity from the reference material:
δC = C − C0. G is Green’s function of an infinite size material:

[Cijkl(x)Gkp,l(x, x′)],j + δipδ(x − x′) = 0. (8)

The close form expressions of Γ and G is explicitly known in the
frequency domain, as summarized in Appendix A.

The solution of Eq. (7) is the strain tensor distribution ϵ(x)
within thematerial domain. The stress tensor field is subsequently
computed as the point-wise multiplication of the modeled
material elasticity tensor field by the strain tensor distribution:
σ(x) = C(x)ϵ(x). Our implementation follows Mandel’s notation,
where the 2nd-rank strain and stress tensors are mapped to six-
dimensional vectors and the 4th-rank elasticity and compliance
tensors are mapped to 6× 6 matrices. After repeating this process
six times independently, the effective elasticity tensor can be
computed as follows:

Ceff
=

 ...
...

...
...

...
...

σ1 σ2 σ3 σ4 σ5 σ6
...

...
...

...
...

...


 ...

...
...

...
...

...
ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ6
...

...
...

...
...

...


−1

. (9)

If the input strain vector is of unit length and parallel to the
axes, the strain matrix in Eq. (9) will be an identity matrix so
that the inversion is not required. This is because the averaged
strain always equals to the prescribed constant strain per Eq. (16).
This identity can also be used to verify the implementation of the
algorithm.

Eq. (7) is a Fredholm integral equation of the second type,whose
classical solution requires Neumann series expansion [40]. First
proposed by Moulinec and Suquet [29], the integral term in Eq. (7)
is efficiently evaluated through Fourier transform. In their work,
a fixed-point iteration following the Neumann series expansion is
proposed:

ϵ i+1(x) = ϵ i(x) − F −1Γ̂ F (δCϵ i(x))


(10)

where F and F −1 represent the forward and inverse Fourier
transforms, and Γ̂ is Green’s operator in the frequency domain. As
reviewed in Section 2, this method suffers slow convergence when
the contrast of material properties increases, which is undesirable
for our application as the phase contrast goes to infinity with the
existence of air gaps.
4.2. Solution as a linear system

We now describe a method to solve Eq. (7) by converting it
into a system of linear equations. Though the integration kernel
Γ in Eq. (7) is inseparable in the continuous domain, it can
be separated approximately with the following piece-wise linear
approximation:

Γ (x, x′)δC(x′) ≈

N
j=1

uj(x)vj(x′),

uj(x) = Γ (x, j)δC(j), vj(x′) =


1, if x′

= j
0, if x′

≠ j.

(11)

The following linear system can be derived from Eq. (7) (see
Appendix C for details):
δij +

N
j=1

ΓijδCj


ϵj = ϵ0

i . (12)

Or in matrix form:

Aϵ = ϵ0,

A =


I + Γ11δC1 Γ12δC2 . . . Γ1NδCN

Γ21δC1 I + Γ22δC2 . . . Γ2NδCN
...

...
. . .

...

ΓN1δC1 ΓN2δC2 . . . I + ΓNNδCN

 ,
(13)

where Γij = Γi−j = F −1(Γ̂ (ξ)). Note that every block in A is a
6 × 6 matrix representing a 4th rank tensor. Apparently, A is not
symmetric in general. However, by letting

B = AδC−1

=


δC−1

1 + Γ11 Γ12 . . . Γ1N

Γ21 δC−1
2 + Γ22 . . . Γ2N

...
...

. . .
...

ΓN1 ΓN2 . . . δC−1
N + ΓNN

 ,
(14)

the linear system transforms into

BδC(δC−1τ) = ϵ0. (15)
δC can be seen as the right preconditioner for the linear systemwith
τ as the unknown. Since only ϵ is required for homogenization,
we just need to solve the preconditioned system BδCϵ = ϵ0. Γ is
symmetric in that Γ̂ is an even function by definition (Eq. (A.15)).
Given δC is also symmetric as a elasticity tensor, B is symmetric.

In order to solve this preconditioned linear system by the
conjugate gradient (CG) method, B also needs to be positive
definite [41]. It has been proved that the definiteness of B and δC
are consistent [42]. Here, we give an intuitive explanation of the
proof. First, Γ is positive definite because it has positive diagonal
entries and is diagonally dominant as Γ decays rapidly with the
increasing distance between x and x′. When C0 is smaller than all
the phases in Ω , δC is also positive definite. B is therefore positive
definite. When δC is negative definite, the proof is more involved
and is included in Appendix D. In the case when both B and δC are
negative definite, BδC becomes positive definite as both B and δC
are symmetric.

Given the usually large N , constructing A can be prohibitively
expensive. Fortunately, for every iteration, CG only needs the
results of Aϵ for any vector ϵ and there is no need to represent
A explicitly. Since Aϵ = ϵ + Γ ∗ (δCϵ), where ∗ represents
convolution, the vector is efficiently computed in the frequency
domain. Note that the combination of Fourier transform and CG
has been explored before in [34], despite the authors’ belief that
the linear system is not symmetric. Our analysis of the integral
equation and explicit derivation of the corresponding linear system
above justifies the use of CG even though the corresponding linear
system appears to be non-symmetric.
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5. Experiment results

To demonstrate the effectiveness of the proposed approach,
we compare the computed homogenization results with those
predicted by the finite elementmethod, and validate the predicted
effective macro scale material properties by the known results of
physical tests.

5.1. Comparison with finite element method

A voxelized finite element mesh of the mesoscale geome-
try–material printed model is created by every query point within
the effectivematerial domain as a linear elementwith 8 nodes. The
output of FEA analysis is the nodal displacement field. The strain
field can be derived by differentiating the displacement field nu-
merically. Numerical differentiation is sensitive to the noise and
may generate erroneous results. Instead, we compute the aver-
aged strain and stress through the displacement and traction on
the boundary of the material domain directly based on the follow-
ing equations:

ϵ ij :=
1

|Ω|


Ω

ϵij(x) dx =
1

|Ω|


∂Ω

1
2
(uinj + ujni) dS,

σ ij :=
1

|Ω|


Ω

σij(x) dx =
1

|Ω|


∂Ω

1
2
(tixj + tjxi) dS,

(16)

where Ω is the material domain and ∂Ω is its boundary. Eq. (16)
follows immediately from the divergence theorem.

A fictitious isotropic material with Young’s modulus E =

1 GPa and Poisson’s ratio ν = 0.3 is assigned to the 2D infill
pattern shown in Fig. 3. The input material elasticity tensor field
has a resolution of 296 × 296 × 16 and is generated from the
printed mesoscale model proposed in Section 3. A soft material
(E = 0.01 GPa) is assigned to the void phase as the stiffness
matrix in FEM becomes ill-conditioned with elements of zero
stiffness. The reference material for the proposed homogenization
method has Young’s modulus E = 1.5 GPa and Poisson’s ratio
ν = 0.3 so that the linear system remains positive definite. The
effective elasticity tensors Ceff and C fem computed respectively by
the proposed homogenizationmethod and the FEM-basedmethod
are as follows:

Ceff
=


0.0327 0.0150 0.0139 0 0 0
0.0150 0.0327 0.0139 0 0 0
0.0139 0.0139 0.3335 0 0 0

0 0 0 0.0338 0 0
0 0 0 0 0.0338 0
0 0 0 0 0 0.0254



C fem
=


0.0330 0.0141 0.0132 0 0 0
0.0138 0.0330 0.0129 0 0 0
0.0151 0.0151 0.4234 0 0 0

0 0 0 0.0227 0.0005 0
0 0 0 0.0005 0.0227 0
0 0 0 0 0 0.0235

 .

(17)

The in-plane symmetry of the structure is reflected in the
simulated result as Ceff

11 = Ceff
22 and Ceff

13 = Ceff
23 . The homogenization

also captures the in-plane spring-like behavior, which is about 10
times less stiff in the x and y directions than the z direction. We
attribute the small difference between Ceff and C fem to the different
boundary conditions used. In FEM, a simple uniform displacement
boundary condition is used since the Lagrange multipliers are
required to apply periodic boundary condition in FEM [43]. Both
the proposed homogenization method and FEM are implemented
in MATLAB. To homogenize the example in Fig. 3, homogenization
using Green’s function took less than 3 h to converge while the
FEM required more than 24 h on an Intel i7 computer with 16 GB
memory.
Fig. 6. The FDM printed tensile test specimens. Top row: from left to right, infill
pattern A, infill pattern B and linear infill pattern. Middle row: the G-codes for the
first two layers. Bottom row: the first layers of the printed models reconstructed
from the G-codes.
Source: Top row images courtesy of [10].

5.2. Comparison with physical tests

We also compare the predicted homogenization results with
the physicallymeasured effective tensilemodulus reported in [10].
The samples for the physical testing are shown in Fig. 6. During
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Fig. 7. The strain and stress distributions in the first layer of the homogenized
regions with the displacement boundary condition along the vertical direction (x
axis) of the specimen. Top row: absolute value of ϵx . Bottom row: absolute value of
σx .

the tensile test, only displacements in the central neck region
are measured for the evaluation of the effective tensile modulus
of specimen. For comparison with the results of physical testing,
the neck regions were reconstructed from the G-code and
homogenized by the proposed approach.

The filament used for the FDM printing is ABS plastic made by
Airwolf3D with measured diameter 2.82 mm and tensile modulus
2.25 GPa. The layer height is explicitly known from the G-code.
However, the road width still needs to be computed from the G-
code based on the conservation of volume if such information is
not explicitly given. We estimate that the road width is roughly
0.6 mm. With the distance between parallel roads being 0.4 mm,
this results in an overfill that eliminates most of the air gaps
in regions of solid infills, such as the contour regions close to
the boundary the specimen. Based on this observation, the axial
stiffness Ex is estimated as almost identical to the stiffness of
the filament and the transverse stiffness Ep is about 80%–90% of
the filament stiffness. Based on the experiment results in [44],
Poisson’s ratio νxp and νp in the transverse isotropic elasticity
tensor (Eq. (1)) are both set to be 0.39 and Gxp is set to be
1.6 GPa. Fig. 7 shows the strain and stress distributions in the first
layer of the homogenized regions with the displacement boundary
condition along the vertical direction of the specimen.

The homogenized effective elasticity tensor is not directly
comparable to the tensile testing result. For example, the
homogenized elasticity tensor of Infill B with Ex = 2.25 GPa and
Ep = 1.8 GPa is

2.4166 1.1825 1.0978 −0.0000 −0.0001 0.0003
1.1826 2.2511 1.0561 −0.0001 −0.0000 0.0005
1.0977 1.0559 2.0888 −0.0001 −0.0001 0.0001

−0.0000 −0.0001 −0.0001 0.9174 −0.0003 −0.0000
−0.0001 −0.0000 −0.0001 −0.0003 0.9977 −0.0000
0.0003 0.0005 0.0001 −0.0000 −0.0000 1.2634

 . (18)

To compute the tensile modulus along the x, y, and z directions, we
assume that the homogenized structures are orthotropic. In this
particular set of examples, such assumption is reasonable given
the normal and shear components in the homogenized effective
elasticity tensor are essentially not coupled. The tensile modulus
Table 1
Themeasured and homogenized tensilemodulus by the proposedmethod. The first
row shows the measured modulus (GPa) in [10]. The rest of the rows show the
simulated modulus with Ex = 2.25 GPa and different stiffness in the transverse
direction. Ep and Ex are material coefficients of the transverse isotropic material
tensor (Eq. (1)).

Infill A Infill B Linear
Measured modulus [10] 1.24 1.71 0.79
Ep/Ex = 1 1.4201 1.6769 0.7245
Ep/Ex = 0.9 1.3904 1.6396 0.7142
Ep/Ex = 0.8 1.3674 1.6103 0.7059
Ep/Ex = 0.7 1.3422 1.5784 0.6968

along the axial directions can be computed with the orthotropic
compliance tensor S:

S =



1
Ex

−
νyx

Ey
−

νzx

Ez
0 0 0

−
νxy

Ex

1
Ey

−
νzy

Ez
0 0 0

−
νxz

Ex
−

νyz

Ey

1
Ez

0 0 0

0 0 0
1

2Gyz
0 0

0 0 0 0
1

2Gzx
0

0 0 0 0 0
1

2Gxy


.

It is clear that Ex =
1
S11

, Ey =
1
S22

, and Ez =
1
S33

.
The measured and homogenized tensile moduli are reported in

Table 1 with different stiffness in the transverse directions. The
stress–strain curves for physical tests on different specimens are
shown in Fig. 8. We observe that the homogenized tensile moduli
are smaller than the measured ones for Infill B and the linear infill.
We believe this is due to the distance between the parallel roads
being less than the road width. For example, the thickness of the
vertical walls on the side of the infill pattern is reconstructed as
1 mm gives the 0.6 mm road width and 0.4 mm distance between
the parallel toolpaths. However, the actual thickness of walls from
the printed parts is about 1.2 mm. The proposed printed model
does not preserve the volume of the filament and underestimate
the volume of the material in printed part with overfills. Since the
G-code generator used in [10] is custom-built to study the effects of
different infill patterns, the overfill is less likely to happen in most
of the established process planning procedures. We also observed
that the measured modulus of Infill A is around the midpoint
of Infill B and linear infill. Even though our predicted modulus
for infill A is higher than the measured result, it agrees with the
stress–strain curve shown in Fig. 8, in which the tensile moduli for
Infill A and B are much closer.

6. Conclusions

6.1. Summary and significance

The main contribution of the paper is a new approach to pre-
dicting effectivematerial properties of FDMprinted structures. The
approach is based on two novel ideas. First, given the manufactur-
ing process plan and widely available material specifications, we
formulated and constructed an implicit representation of an ef-
fective mesoscale geometry–material model of the printed struc-
ture that captures the heterogeneity and anisotropy resulting from
the printing process. We then showed how this implicit represen-
tation of the mesoscale model may be queried and homogenized
at macro scale in order to predict the effective material proper-
ties of the printed structure that accounts for build orientation,
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Fig. 8. The stress–strain curve of physical testing result.
Source: Image courtesy of [10].

directional changes, infill patterns and other mesoscale details of
3D printing. We adopted and significantly improved the homog-
enization method using Green’s function, showing that the corre-
sponding linear system is symmetric and positive definite, and can
be efficiently solved by the conjugate gradient method with ma-
trix–vector multiplication evaluated in the frequency domain. The
predicted effectivematerial properties are in good agreementwith
known experimental results and with the homogenization results
predicted by the finite elementmethod. The potent combination of
implicit representations and queries handles the mesoscale com-
plexity of FDM structures and is a further demonstration of the
effectiveness of the query-based approach [45,6] that avoids mul-
tiple representations and conversions of geometry and material
models.

Our results point towards new opportunities in design,
validation, and simulation of FDM printed structures. The ability
to estimate the effective macro scale material properties implies
that a heterogeneous material structure can be replaced with an
equivalent homogeneous material, at least when the scale of the
structural problem (the macro scale) and the scale of the material
heterogeneity (the meso and micro scales) are well separated.
The proposed approach is likely to be particularly effective for
analyzing structures that are much larger than the printed road
width and layer height. In such situations, the estimated effective
material properties may be used for subsequent mechanical
simulations, for example to predict warping, global deformations,
and other performance and/or manufacturability characteristics.
Different process plans may now be compared and optimized with
respect to the effective material properties in terms of process
parameters such as build direction, layer height, road width or
extrusion rate. Various infill patterns may be parameterized and
ranked in terms of their effective material properties, allowing
their systematic (re)use in creating components with guaranteed
mechanical performance.

6.2. Extensions and open issues

The proposed two-stage approach to estimating effectivemate-
rial properties is not limited to linear elasticity or to FDM printing.
In principle, similar effective mesoscale geometry–material mod-
els of printed structures, as well as their subsequent homogeniza-
tion, may be employedwith other additivemanufacturing process,
such as Selective Laser Sintering, Stereolithography, and Inkjet
printing. Other effective material properties of 3D printed struc-
tures may be modeled and predicted within the proposed compu-
tational framework. As observed in [46], similar homogenization
technique applies to thermal and electrical conductivity, dielectric
Fig. 9. The change of effective Young’s modulus with different sampling resolu-
tions. Lower resolutions lead to the approximation errors on Green’s operator Γ .

constant, permeability, and other material properties that share
the same general form as the linear elasticity tensor.

Numerical properties of the proposed homogenization method
deserve further investigation. For example, the behavior of the pre-
conditioner δC is not fully understood, and the condition number
of the linear system has not yet been studied. Furthermore, ho-
mogenization process involves discretization errors in the implicit
representation of printed roads, requires setting tolerances for
convergence, and introduces discretization error of Green’s op-
erator. Among these sources of errors, the last one in particular
deserves further study. Since Green’s operator is derived and eval-
uated in the frequency domain, higher frequencies are lost at a low
sampling resolution. Fig. 9 plots the effective Young’s modulus (of
the same structure) at different sampling resolutions. It suggests
that a minimum number of frequencies may be required for an
accurate evaluation of Green’s operator. This may become particu-
larly importantwhenhomogenizing FDMpartwith a small number
of layers.
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Appendix A. Green’s function for elasticity

The elastic Green’s function Gij(x, x′) is defined as the displace-
ment in the i-direction at x due to a point force in the j-direction
at x′. It is the solution ui(x) of Eq. (5) when the body force bj is a
delta function, i.e. bk(x) = δ(x − x′)δjk. Eq. (5) and the symmetry
of strain tensor directly gives
[Cijkluk,l],j + bi = 0. (A.1)
Consider a constant point force F acting at x′ inΩ , the displacement
field caused by F is

uk(x) = Gkp(x, x′)Fp. (A.2)
The displacement gradient and stress field are

uk,l(x) = Gkp,l(x, x′)Fp,
σij(x) = Cijkl(x)Gkp,l(x, x′)Fp.

(A.3)

If force F is acting on point x′
∈ Ω , then F must be balanced by the

tractions on the boundary ∂Ω:

Fi +


∂Ω

σij(x)nj(x) dS = 0,

Fi +


∂Ω

Cijkl(x)Gkp,l(x, x′)nj(x)Fp dx = 0.
(A.4)
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By divergence theorem

Fi +


Ω

[Cijkl(x)Gkp,l(x, x′)],jFp dx = 0. (A.5)

Fi can bemoved into the volume integral by theDirac delta function
Ω

{[Cijkl(x)Gkp,l(x, x′)],jFp + Fiδ(x − x′)} dx = 0. (A.6)

Factoring Fp out using Kronecker delta function
Ω

{[Cijkl(x)Gkp,lj(x, x′)],j + δipδ(x − x′)}Fp dx = 0. (A.7)

Since this holds for any arbitrary Ω and any arbitrary constant
point force F , it must hold for every point:

[Cijkl(x)Gkp,l(x, x′)],j + δipδ(x − x′) = 0. (A.8)

Since Eq. (A.1) is linear in b, for arbitrary b, by superposition:

uk(x) =


Ω

Gkp(x, x′)bp(x′) dx′. (A.9)

For an infinite and uniform material, Cijkl is constant and
G(x, x′) = G(x − x′) = G(x) by setting x′

= 0. Then Eq. (A.8)
becomes the following:

CijklGkp,jl(x) + δipδ(x) = 0. (A.10)

Let the forward and inverse Fourier transform of G(x) be

Ĝij(ξ) =


∞

−∞

Gij(x)e−iξxdx,

Gij(x) =


∞

−∞

Ĝij(ξ)eiξxdξ .

(A.11)

Note that index i should not be confused with complex number
i =

√
−1. With δ(x) =


∞

−∞
eiξxdξ , substitute Eq. (A.11) into

Eq. (A.10):
∞

−∞


i2ξjξlCijklĜkp(ξ) + δip


eiξxdξ = 0. (A.12)

For this to be true at all x, we must have

−ξjξlCijklĜkp(ξ) + δip = 0,
Ĝki(ξ) = (Cijklξjξl)

−1.
(A.13)

From Eq. (7), Green’s operator is the second order derivative of
Green’s function:

Γmnpq = −
1
4

 ∂2Gmp

∂xn∂xq
+

∂2Gnp

∂xm∂xq
+

∂2Gmq

∂xn∂xp
+

∂2Gnq

∂xm∂xp


. (A.14)

In frequency domain,

Γ̂mnpq =
1
4


(Cpjmlξjξl)

−1ξnξq + (Cpjnlξjξl)
−1ξmξq

+ (Cqjmlξjξl)
−1ξnξp + (Cqjnlξjξl)

−1ξmξp


. (A.15)

For isotropic material with Lame coefficients λ and µ,

Cijkl = λδijδkl + µ(δikδjl + δilδjk),

Cikjlξkξl = (λ + µ)ξiξj + µ|ξ |
2δij,

Γ̂ijkl =
1

4µ|ξ |2
(δikξlξj + δilξkξj + δjkξlξi + δljξiξk)

−
λ + µ

µ(λ + 2µ)

ξiξjξkξl

|ξ |4
.

(A.16)
Appendix B. Lippmann–Schwinger equation

Substituting Eq. (6) into Eq. (5) gives

(C0
ijkluk,l),j + τij,j + bi = 0. (B.1)

Since Eq. (B.1)is linear, its solution can be separated as u = u0
+u1,

where u0 is the solution of the real body force b and u1 is the
solution of additional body force divτ :

(C0
ijklu

0
k,l),j + bi = 0, (B.2)

(C0
ijklu

1
k,l),j + τij,j = 0. (B.3)

Introducing Green’s function (Eq. (A.8)) into Eq. (B.3) for the
comparison material, the stress polarization tensor τ becomes the
‘‘body force’’, from Eq. (A.9)

u1
i (x) =


Ω

Gip(x, x′)τpq,q(x′) dx′, (B.4)

by integrating by parts and combining with u0

ui(x) = u0
i (x) −


Ω

∂Gip(x, x′)

∂x′
q

τpq(x′) dx′, (B.5)

by differentiation and the symmetry of strain tensor

ϵij(x) = ϵ0
ij(x) −


Ω

Γijpq(x, x′)τpq(x′) dx′, (B.6)

where

Γijpq(x, x′) =
∂2Gip(x, x′)

∂xj∂x′
q


(ij),(pq)

. (B.7)

The bracketed subscripts imply symmetry, which is the results of
symmetries in the elasticity tensor. Let δC = C − C0. Substituting
Eq. (6), Eq. (B.6) becomes

ϵ(x) = −


Ω

Γ (x, x′)δC(x′)ϵ(x′)dx′
+ ϵ0(x), (B.8)

This derivation follows the classical results of Korringa [25] and
Kroner [27].

Appendix C. Converting the integral equation into linear equa-
tions

Substitute Eq. (11) into Eq. (7):

ϵ(x) = −


Ω

 N
j=1

uj(x)vj(x′)

ϵ(x′)dx′

− ϵ0(x)

= −

N
j=1


uj(x)


Ω

vj(x′)ϵ(x′)dx′


+ ϵ0(x), (C.1)

Since


Ω
vj(x′)ϵ(x′)dx′ is the sampling of continuous ϵ over Ω ,

let
Ω

vj(x′)ϵ(x′)dx′
= ϵj. (C.2)

Substitute Eq. (C.2) into Eq. (C.1):

ϵ(x) = −

N
j=1

uj(x)ϵj + ϵ0(x). (C.3)
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Substitute Eq. (C.3) back into Eq. (C.2), we have

ϵi = −


Ω

vi(x′)

−

N
j=1

uj(x′)ϵj + ϵ0(x′)

dx′

= −

N
j=1

ϵj


Ω

vi(x′)uj(x′)dx′
+


Ω

vi(x′)ϵ0(x′)dx′

= −

N
j=1

Γ (i, j)δC(j)ϵj + ϵ0
i

ϵ0
i =


δij +

N
j=1

Γ (i, j)δC(j)

ϵj =


δij +

N
j=1

ΓijδCj


ϵj.

(C.4)

Appendix D. Positive definiteness

This section follows the proof given in [42], which requires
virtual work equality:

σ1ϵ2 = 0, (D.1)

for any divergence free stress σ1 and strain ϵ2 derived from a
displacement that is 0 over the boundary. First, we show that Γ

is positive definite. Since

τ1Γ τ2 = −τ1ϵ2 = −δCϵ1ϵ2 = ϵ1C0ϵ2, (D.2)

Γ is seen to be positive definite after setting ϵ1 = ϵ2, as C0 is
positive definite.

When δC is positive definite, the positive definiteness of B is
shown in text. Herewe show the casewhen δC is negative definite.
It is convenient to introduce strain polarization tensor η:

τ = C0η, η = S0τ = S0(C − C0)ϵ = S0σ − ϵ. (D.3)

Using Eq. (D.1) again,

τ1Γ τ2 = −τ1ϵ2 = η1C0(η2 − S0σ2)

= η1C0η2 − η1σ2 = η1C0η2 − σ1S0σ2, (D.4)

Since (C − C0)
−1C0 = S0(S0 − S)−1

− I ,

τ(C − C0)
−1τ = ηL0(C − C0)

−1L0η

= η(S0 − S)−1η − ηC0η. (D.5)

Then δC−1
+Γ = η(S0 −S)−1η−σ1S0σ2 is negative definite when

δC is negative definite.
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