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a b s t r a c t

Scaffold surfaces bound geometric structures that have a dual characterization as a curve network and a
solid. A subset of scaffold surfaces can bemodeledwithminimal single-valence (MSV)meshes, i.e. meshes
consisting of vertices of a single irregular valence n two of which are separated by exactly one regular,
4-valent vertex. We present an algorithm for constructing piecewise bi-quartic surfaces that join with
curvature continuity to formscaffold surfaces forMSVmeshes, forn = 5, . . . , 10. Additionally, for sphere-
like meshes, we exhibit bi-quartic curvature continuous surfaces with polar parameterization.
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1. Introduction

Carbon nanostructures, skeletonized solids, branching vascular
trees of the circulatory system, novel weave-like 3D printed ma-
terials, scaffolds for regrowing body parts, certain self-supporting
architectural or biomimetic structures share a dual characteriza-
tion as curve networks and as solids. Often these structures are em-
bedded into and interact with fields such as fluids, pressure from
interspersed deformable materials, outside forces, etc. so that the
smoothness of the surface of the solid representation as the inter-
face plays an important role, e.g. to encourage or discourage attach-
ment and growth of tissue on the skeleton solid. Curvature conti-
nuity of such scaffold surfaces is of interest for flow computations,
for example when applying the ‘finite volume’ method. While one
canmodel scaffold surfaceswith general curvature continuous (G2)
constructions, the similarity and potentially large number of scaf-
fold branches (Fig. 1(a)) make it worthwhile to search for partic-
ularly simple constructions of branches, with good curvature dis-
tribution but fewer pieces and/or of lower polynomial degree and
complexity than general G2 constructions.

In this paperwe derive such simple building blocks of curvature
continuous free-form scaffold surfaces: the most basic scaffold
surfaces arise from networks that admit quad-meshing with a
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single repeated valence n other than valence 4 (since n =

4 corresponds to the tensor-product mesh). These are meshes
assembled from pieces that have exactly n quadrilaterals clustered
around each n-valent point (Figs. 1(a), 2(a), see also Fig. 18 for a
carbon nanostructure modeled by scaffold surface.) Surprisingly
suchminimal single valence (MSV) surfaces admit G2 constructions
using 2 × 2 patches of degree bi-4 (see Figs. 1(c), 2(b)), or,
alternatively, just one bi-5 patch per quad. Both options will be
presented and complemented by a bi-4 construction for sphere-
like surfaces.

The core technical achievement in deriving these ‘minimal’
scaffold surfaces is to explicitly resolve the tightly inter-dependent
second-order smoothness constraints – whose complexity seems
to preclude an explicit solution – and to harness the remaining
degrees of freedom in such a way as to obtain a good distribution
of curvature over a set of challenging MSV meshes.

Overview. After a brief review of the state-of-the-art of high-
qualityG2 surface constructions, Section 2definesMSVmeshes and
the notation. Section 3 derives a bi-5 construction and Section 4
derives an alternative bi-4G2 construction. Section5 adds spherical
surfaces of degree bi-4.

1.1. Literature: curvature continuous surfaces

Multi-sided blends naturally arise when designing surfaces
even of simple topology but complex geometry. Early G2 construc-
tions for multi-sided blends [1–5] focused on the then hard task of
enforcing the formal mathematical constraints of curvature con-
tinuity. In the past decade the emphasis has shifted to achieving
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(a) MSV mesh. (b) Curvature continuous
scaffold surface.

(c) Neighborhoods of same
valence.

Fig. 1. G2 bi-4 scaffold surfacefrom MSV mesh with extraordinary nodes of valence 6.
(a) MSV mesh. (b) Scaffold surface.

Fig. 2. G2 bi-4 surface of genus 25 from MSV mesh with extraordinary nodes of
valence 8.

Table 1
Polynomial G2 constructions (with good curvature distribution on challenging test
data).

Degree Pieces per quad Reference

bi-9 1 [7,8]
bi-7 1 [9]
bi-6 1 [10]
bi-5 2 × 2 [11]

better highlight lines and distribution of curvature. Since a formal
mathematical definition of good shape is illusive, highlight lines
and curvature are tested on a representative set of challenging in-
putmeshes such as [6]. A consensus exists that oscillations in high-
light lines and curvature distribution are to be avoided.

Table 1 summarizes recent advances in modeling high quality
curvature continuous surfaces of moderate polynomial degree
for a given, unrestricted quad-mesh layout. Degree bi-6 for a
single patch per quad and degree bi-5 for 2 × 2 patches per
quad are thought to be the minimal degree for obtaining good
shape. By focusing on a special yet useful class of quad-meshes,
the constructions in this paper further reduce the polynomial
complexity of G2 surfaces without sacrificing good shape.

2. MSV meshes and setup

In the following, we will focus on a special patchwork of
quadrilateral facets (quads). As usual, nodes where four quads
meet are called regular, while the remaining ones are called
extraordinary nodes and are labeled o. For much of the exposition,
we assume that all extraordinary nodes have the same valence
n > 4 (specifically n ∈ {5, 6, 7, 8, 9, 10}) and each quad
is uniquely associated with one extraordinary node that is one
of its vertices. That is, extraordinary nodes o are separated by
exactly one regular node of type q and four extraordinary nodes
share one regular node of type r (see Fig. 3). A surface of genus
g constructed with such a quad mesh has 4(2−2g)

4−n extraordinary
nodes of valence n. We call this an MSV mesh (minimal single-
valence mesh)—MSV meshes with n = 4 are tensor-product
meshes, and MSV meshes with n = 3 form a partition of a cube
(a) o-centered view of input quad net c. (b) Tensor-border b.

(c) r-centered view. (d) q-centered view.

Fig. 3. MSV meshes. The unlabeled vertices of the same valence n are of type o.

and yield sphere-like meshes. Sphere-like surfaces are discussed
at the end of the paper.

We construct tensor-product patches f of bi-degree d in
Bernstein–Bézier form (BB-form)

f(u, v) :=

d
i=0

d
j=0

fijBd
i (u)B

d
j (v), u, v ∈ [0, 1],

where Bd
k(t) are the Bernstein–Bézier (BB) polynomials of degree d

and fij are the BB-coefficients.
Interpreting the nodes of the MSV mesh as bi-cubic B-spline

control points, B-spline to BB-form conversion (see e.g. [12,13])
is well-defined except for the BB-coefficients shared by n ≠

4 patches. The interpretation yields second-order Hermite data
along and across edges between the regular points r, q. Surround-
ing each o, the Hermite data define a tensor-border b (of depth 2
and degree 3) in terms of BB-coefficients, see Fig. 3(b).

Curvature continuity is verified by relating adjacent surface
pieces via a reparameterization ρ so that f̃ = f ◦ ρ.

Definition 1. Two surface pieces f̃ and f sharing a boundary
curve e join G2 if there is a suitably oriented and non-singular
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(a) Rotationally-symmetric indexing. (b) Sector-symmetric
indexing.

Fig. 4. Indexing: In both indexing systems the extraordinary point has index 00
and the junction of boundary curves of tensor-border b of adjacent sectors (labeled
k− 1 respectively k) is denoted by 50. (a) The reparameterized input tensor-border
b is rendered in green. (b) The locally independent (free) BB-coefficients are marked
by black and red disks, black and cyan circled crosses and the black squares. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

reparameterization ρ : R2
→ R2 so that the jets ∂k f̃ and ∂k(f ◦

ρ), k = 0, 1, 2, agree along e.

Throughout this paper e will correspond to patch parameters
(u, 0), i.e. v = 0. For each e the chain rule of differentiation yields
the well-known constraints (see e.g. [1,14])

0 = ∂v f̃ − a(u)∂vf − b(u)∂uf, (1)

0 = ∂2
v f̃ − a2(u)∂2

v f − 2a(u)b(u)∂uf∂vf − b2(u)∂2
u f

− e(u)∂uf − d(u)∂vf, where (2)

ρ2 := (u + b(u)v +
1
2
e(u)v2, a(u)v +

1
2
d(u)v2), (3)

is the Taylor expansion up to and including degree 2 of ρ with
respect to v.

3. Bi-5 construction for MSV meshes

In this section we build a cap of n > 4 patches, one per quad, of
degree bi-5 surrounding one extraordinary node o (Fig. 3).

3.1. Reparameterizing between sectors and solving constraints

As shown in Fig. 4(a), adjacent patches pk−1 and pk, k =

0, . . . , n − 1 (superscript modulo n) join along their shared
boundary curve p̀(u, 0) = ṕ(u, 0), where (see Fig. 4(b)) p̀ := pk−1

and ṕ := pk. (When solving the constraint systems (1) and (2),
it is convenient to index the BB-coefficients of adjacent patches p̀
and ṕ locally, symmetric with respect to the sector boundary curve
rather than rotationally symmetric about the extraordinary point
as is appropriate for the full surface cap in terms of pk.) To treat
adjacent patches without bias for one side along the inter-sector
boundary, in formula (3) we must set a(u) := −1 (so that ∂v f̃ and
∂vf are weighted equally in (1)) and e(u) := b(u)(b′(u) −

d(u)
2 ) (for

similar symmetry in (2)). Our setup allows choosing

b(u) := 2c(1 − u), d(u) := 0, where c := cos
2π
n

. (4)

The G1 and G2 constraints (1) and (2) between two patches then
amount to setting to zero two polynomials of degree 5. This yields
n local systems between sectors k − 1 and k for a total of 12 linear
equations in the BB-coefficients. We solve these 12 equations
symbolically for a subset of the BB-coefficients and optimize shape
with the remaining coefficients. The explicit symbolic solutions in
the remaining free coefficients are as follows.
(S1) We account for the interactions between the n local systems
of equations at the extraordinary point p̀00 by selecting the six
BB-coefficients p0
ij, 0 ≤ i + j ≤ 2, that define a quadratic

expansion at extraordinary point of the sector with index k =

0 and then express the corresponding BB-coefficients of other
sectors recursively via

ṕ00 := p̀00, ṕ10 := p̀10, ṕ20 := p̀20,
ṕ01 := −p̀01 + 2cp̀10 + 2(1 − c)p̀00;

ṕ11 := −p̀11 +


2 −

8c
5


p̀10 +

8c
5
p̀20;

ṕ02 := p̀02 − 5cp̀11 + 4c2p̀20 + (5c − 4)p̀01
+ (1 − c)(9cp̀10 + (4 − 5c)p̀00).

(5)

The last three assignments in (5) correspond to the red crosses in
Fig. 4(b).
(S2) The assignments in each local system of black crosses

ṕ21 := −p̀21 +


2 −

6c
5


p̀20 +

6c
5
p̀30,

ṕ12 := p̀12 +
4(5 − 4c)(1 − c)

5
p̀10 + 4(c − 1)p̀11

+
4c(9 − 7c)

5
p̀20 − 4cp̀21 +

12c2

5
p̀30

(6)

lead to a circulant system of 2n linear equations for computing pk
21,

pk
12 since pk−1

21 = p̀12, pk−1
12 = p̀21, pk

21 = ṕ21, pk
12 = ṕ12.

Similarly, the assignment in each local system of cyan crosses

ṕ22 := p̀22 +
(3c − 4)(3c − 5)

5
p̀20 + (3c − 4)p̀21

−
3c(3c − 4)

5
p̀30 −

3c
2(c − 2)

(p̀32 − ṕ32)

−
3c2

4(c − 2)(c − 4)


4(p̀42 − ṕ42) − c(p̀52 − ṕ52)


(7)

leads to a circulant system of n linear equations for computing pk
22

since pk−1
22 = p̀22, pk

22 = ṕ22.

(S3) The assignments of ṕij, i > 2 (hollow boxes and hollow
diamonds) can be made separate from other local systems, but
interact across qr with systems of neighboring extraordinary
nodes. The assignments guaranteeing smooth joints are

p̀51 := p̀50 +
1
4
(p̀52 − ṕ52),

ṕ51 := p̀50 −
1
4
(p̀52 − ṕ52),

(8)

p̀41 := w0p̀40 + (1 − w0)p̀50

+ w1(p̀42 − ṕ42) + w2(p̀52 − ṕ52), (9)
ṕ41 := w0p̀40 + (1 − w0)p̀50 − w1(p̀42 − ṕ42)

− w2(p̀52 − ṕ52);

p̀31 := w̃0p̀30 + (1 − w̃0)p̀40 + w̃1(p̀32 − ṕ32)

+ w̃2(p̀42 − ṕ42) + w̃3(p̀52 − ṕ52),

ṕ31 := w̃0p̀30 + (1 − w̃0)p̀40 − w̃1(p̀32 − ṕ32)

− w̃2(p̀42 − ṕ42) − w̃3(p̀52 − ṕ52),

w0 := 1 −
c

5
, w1 :=

1
4 − c

, w2 :=
c

4(c − 4)
;

w̃0 := 1 −
2c
5

, w̃1 :=
1

2(2 − c)
,

w̃2 :=
c

(c − 2)(4 − c)
, w̃3 :=

c2

4(c − 2)(c − 4)
.
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(a) Initial b. (b) Adjusted tensor-border a.

Fig. 5. The indices of the (a) initial bi-3 tensor-border b and (b) its bi-5 adjustment
a. The boundary curves are degree-raised, hence remain geometrically unchanged.

Fig. 6. Indices ij of adjusted tensor-borders aα with coefficients aα
ij meeting at a

point of type q (cf. Fig. 3(d)).

3.2. Matching the tensor-border b

While the assignments (8) match the degree-raised tensor-
border b, the assignments (9) are incompatible with a C2

prolongation of b. (If second order Hermite data of b is to be
preserved exactly, the reparameterization of the tensor-border
results in higher degree as in [9] (bi-7) and [10] (bi-6)).

However for MSV meshes, due to their structural symmetry
with respect to r, o, within caps across qo and across rq between
caps (cf. Fig. 3), we can adjust the initial bi-3 depth 2 tensor-
borders bα to new bi-5 depth 2 tensor-borders aα that allow
for a G2 construction. In particular, at a meeting point q of four
tensor-borders aα with coefficients aα

ij (see Fig. 6), the following
observation is easily verified.

Observation. Consider four tensor-borders aα meeting at a
point of type q. The coefficients are indexed by subscripts as in
Fig. 5 (differing from Fig. 3). If the three layers aα

3j, a
α
5j, j ∈ {0, 1, 2}

are C2 connected then so are the aα
4j, defined by (8) and (9).

We set aij, i = 0, . . . , 5, j = 0, 1, 2 as follows. Degree-raise b
to b̄ of degree 5 and preserve the boundary by setting ai0 = b̄i0. For
j = 1, 2 set

a3j :=

3
r=1

2
s=0

ν3j
rsbrs, a5j :=

2
s=0

ν
5j
3sb3s, (10)

where ν
3j
30 are chosen so that

3
r=1

2
s=0 ν

3j
rs = 1 and ν

5j
30 so that2

s=0 ν
5j
3s = 1.

Due to the symmetry of construction, it is easy to check that a3j,
a5j, j = 0, 1, 2, satisfy the assumptions of the Observation if we
choose

ν51
32 := 0, ν51

31 :=
1
2
ν52
31 + ν52

32 ;

ν31
i2 := 0, ν31

i1 :=
1
2
ν32
i1 + ν32

i2 , i = 1, 2, 3;

ν31
20 :=

3
5

− ν31
21 , ν31

10 :=
3
10

− ν31
11 .

(11)
3.3. Explicit solution of the circulant systems

The system (6) of 2n equations has a unique solution unless
n = 6. In the latter case one unknown can be taken as free and
we choose the BB-coefficient p0

21. In the system (7) of n equations
we choose, for any n, p0

22 as free and solve a subsystem of n − 1
equations for pk

22, k = 1, . . . , n − 1. For n = 5, 6, 7, 8 one can
check that the remaining equation holds if

ν32
10 := τn −

1
2
ν32
20 + τ̄n(ν

32
21 + 2ν32

22 + 2ν32
11 + 4ν32

12 ), (12)

where with c := cos 2π
n

n τn τ̄n

5 3(24−77c)
10(96c−29)

16c−5
2(96c−29)

6 3
20 −

1
14

7 3(−553−1572c+4096c2)
40(160+471c−1106c2)

28+79c−210c2

2(160+471c−1106c2)

8 3(1−8c)
20(c−4)

c
2(c−4)

3.4. The cap construction

In order to obtain high surface quality, caremust be takenwhen
setting the remaining nine unconstrained parameters
T := {ν32

31 , ν
32
32 , ν

32
20 , ν

32
21 , ν

32
22 , ν

32
11 , ν

32
12 , ν

52
31 , ν

52
32 }.

Then the following algorithm can be invoked separately for each
cap of n patches.

Algorithm bi-5
Input: a local MSV mesh, consisting of the 2-link of one
extraordinary node with n neighbors (Figs. 3(a), 7).
Output: a surface cap consisting of n polynomial patches of
degree bi-5. The cap is internally G2 and is C2 connected to its
neighbor caps.

1. For k = 0, . . . , n − 1 set the extraordinary point p00 = pk
00 to

the limit point of Catmull–Clark subdivision [15]

p00 :=
n

n + 5
c7 +

n−1
i=0

(γ5ci5 + γ6ci6),

γ5 :=
1

n(n + 5)
, γ6 :=

4
n(n + 5)

.

2. Set the tensor-border of p to a, the adjusted tensor-border of
the MSV mesh obtained by (10).

3. Resolve all smoothness constraints by expressing all BB-
coefficients in terms of a and the six coefficientsP := {p0

ij, p
0
22},

1 ≤ i + j ≤ 2, (plus p0
21 if n = 6) according to (5), (6), (7), (8),

(9).
4. Determine P by minimizing the functional

Fkf :=

 1

0

 1

0


i+j=k,i,j≥0

k!
i!j!

(∂ i
s∂

j
t f (s, t))

2dsdt

over all bi-5 patches taking F4 for n = 5, 6 and F3 for n = 7, 8
as determined by experimentation.

Applying the algorithm with T still in symbolic representa-
tion to the characteristic configuration of Catmull–Clark subdivi-
sion [16] and then minimizing (combinations of) functionals Fk
(and similar ones), a strategy that worked for general high-quality
constructions [17,10] failed to deliverT that result in good surfaces
for test data. Only by diligent experimenting with the test data, did
we find a good choice, namely setting to zero

0 = ν41
30 = ν42

30 = ν31
30 = ν32

30 = ν32
31 = ν32

20 . (13)
Applying the algorithm to the characteristic Catmull–Clark data
and minimizing then determines ν52

31 , ν
32
22 and ν32

11 .
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Fig. 7. MSV mesh indices m of hk,m
ij . The points ckm form the 2-link of the central

extraordinary node.

3.5. Implementation via generating functions

‘Algorithm bi-5’ works for each coordinate of the G2 surface
separately. When all input net points ckm have value 0, except for
c0m = 1 for one of the seven mesh points marked o, q, r in Fig. 3(a)
and labeled m = 1, 2, . . . , 7 in Fig. 7, we obtain the scalar-valued
bi-5 coefficients

hk,m
ij ∈ R, k = 0, . . . , n − 1, m = 1, . . . , 7, i, j ∈ {0, . . . , 5},

where the coefficients h0,7
ij = · · · = hn−1,7

ij correspond to o. Then
the BB-coefficients of the cap are

pκ
ij := h0,7

ij c07 +

n−1
k=0

6
m=1

hk,m
ij cκ−k

m . (14)

The superscript of cκ−k
m is interpreted modulo n.

3.6. A bi-5 example

We present only one bi-5 example since visually, by highlight
analysis and under curvature shading, the bi-5 and the following
bi-4 constructions for MSV meshes are nearly indistinguishable.
The specific example Fig. 8(c) demonstrates the importance of
choosing the functional Fk carefully in (4.) of the Algorithm: see
Fig. 8(d) vs. Fig. 8(e).

4. Bi-4 construction for MSV meshes

The analogous construction of G2 continuous surfaces of degree
bi-4 requires a split into 2 × 2 bi-4 patches ps,k, s ∈ {o, r, l,m} as
illustrated in Fig. 9.

4.1. Reparameterizing between sectors and solving constraints

For the derivation of the G2 constraints we abbreviate (see
Fig. 9(b))

p̀ := po,k−1, ṕ := po,k, p̀ := pr,k−1, ṕ := pl,k.

The reparameterizations (top) from o to the middle p̀40, and from
the middle to q (bottom) are

top a(u) := −1, b(u) := 2c(1 − u) + cu,
d(u) := 0 ⇒ e(u) := b(u)b′(u);

bottom a(u) := −1, b(u) := c(1 − u),
d(u) := 0 ⇒ e(u) := b(u)b′(u).

The G1 and G2 constraints (1) and (2) across oq amount to
setting to zero four polynomials of degree 4. This yields n local
systems between sector k−1 and k for a total of 20 linear equations.
Since we enforce internal C2 continuity within each split sector,
six BB-coefficients (thick gray layers in Fig. 9) are defined by the
BB-coefficients in their adjacent layers.We present the algorithmic
steps as similar as possible to the bi-5 construction.

(S1) We account for the interactions between the n local systems
of equations at p̀00 by selecting the six BB-coefficients po,0

ij , 0 ≤

i + j ≤ 2, that define a quadratic expansion of sector k = 0 at
extraordinary point and then express the corresponding (initially
independent) BB-coefficients of the other sectors recursively via

ṕ00 := p̀00, ṕ10 := p̀10, ṕ20 := p̀20;

ṕ01 := −p̀01 + 2cp̀10 + 2(1 − c)p̀00;

ṕ11 := −p̀11 +
3c
2
p̀20 +


2 −

5c
4


p̀10 −

c

4
p̀00;

ṕ02 := p̀02 −
16
3

cp̀11 + 4c2p̀20 +
4
3
(4c − 3)p̀01

+
2
3
c(14 − 13c)p̀10 +

2
3
(6 − 14c + 7c2)p̀00.

(15)

The last three assignments in (15) correspond to red crosses in
Fig. 9(b).
(S2) The assignments (black crosses)

ṕ21 := −p̀21 +


2 +

c

2


p̀20 −

3c
4
p̀10 +

c

2
p̀
20

−
c

4
p̀
30

,

ṕ12 := p̀12 +


4 −

35c
6

−
c2

12


p̀10 +


10c
3

− 4

p̀11

+
2c
3
p̀01 +

c(14 − 3c)
2

p̀20

− 4cp̀21 +
c(13c − 14)

12
p̀00 + c2p̀

20
−

c2

2
p̀
30

(16)

lead to a circulant system of 2n linear equations for computing po,k
21 ,

po,k
12 since po,k−1

21 = p̀12, po,k−1
12 = p̀21, po,k

21 = ṕ21, po,k
12 = ṕ12.

Similarly, since po,k−1
22 = p̀22, po,k

22 = ṕ22, the assignment (cyan
crosses)

ṕ22 := p̀22 + 2cp̀11 +
c(3c − 14)

4
p̀10 +

c2

4
p̀00

+


4 +

7c
3

−
7c2

6


p̀20 − 4


1 +

c

3


p̀21

+
c(3 + c)

6
(2p̀

20
− p̀

30
) +

c

c − 3
(p̀

22
− ṕ

22
)

+
c(3 + c)

6(c − 3)(c − 6)


6(p̀

32
− ṕ

32
) − c(p̀

42
− ṕ

42
)


(17)

in each local system leads to a circulant system of n linear
equations for computing po,k

22 .

(S2*) To retain the numbering of the bi-5 construction, the
assignments for p̀41, p̀40, ṕ41, ṕ42 appear in Appendix A.

(S3) The assignments (hollow boxes and hollow diamonds in
Fig. 9(b))

p̀41 := p̀
40

+
1
4
(p̀

42
− ṕ

42
),

ṕ41 := p̀
40

−
1
4
(p̀

42
− ṕ

42
).

(18)

p̀
31

:= w0p̀30
+ (1 − w0)p̀40 + w1(p̀32

− ṕ
32

)

+ w2(p̀42
− ṕ

42
),

ṕ
31

:= w0p̀30
+ (1 − w0)p̀40

− w1(p̀32
− ṕ

32
)

− w2(p̀42
− ṕ

42
);

p̀
21

:= w̃0p̀20
+ (1 − w̃0)p̀30

+ w̃1(p̀22
− ṕ

22
)

+ w̃2(p̀32
− ṕ

32
) + w̃3(p̀42

− ṕ
42

),

ṕ
21

:= w̃0p̀20
+ (1 − w̃0)p̀30

− w̃1(p̀22
− ṕ

22
)

− w̃2(p̀32
− ṕ

32
) − w̃3(p̀42

− ṕ
42

),

(19)
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(a) n = 5 MSV mesh. (b) 5-caps and BB-nets.

(c) n = 5 MSV mesh. (d) F3 . (e) F4 .

Fig. 8. Bi-5 surfaces of genus 4 from MSV meshes with extraordinary nodes of valence 5. (b) The connected BB-coefficients (BB-nets) of half the caps are shown. (c) is a
deformation of (a). (d) Red arrows point to highlight flaws when choosing F3 . (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
where

w0 := 1 −
c

8
, w1 :=

3
2(6 − c)

, w2 :=
c

4(c − 6)
;

w̃0 := 1 −
c

4
, w̃1 :=

3
4(3 − c)

,

w̃2 :=
3c

2(c − 3)(6 − c)
, w̃3 :=

c2

4(c − 3)(c − 6)

enforce G2 continuity.
Analogous to the bi-5 construction, the circulant system (16) of
2n equations has a unique solution unless n = 6. In the latter
case one unknown can be taken as free and we choose the BB-
coefficientpo,0

21 . The system (17) of n equations allows choosingpo,0
22

as free and solving any n − 1 equations for po,k
22 , k = 1, . . . , n − 1

provided a careful choice is made in adjusting the tensor-border.
Expressing, as in (10), the second-order expansion of p̀ and ṕ in
terms of the tensor-border b and scalar weights ν

ij
rs, the remaining

equation holds for n = 5, 6, 7, 8, 9, 10 if the weights satisfy one
constraint, (21) developed below.

4.2. Transformation of the adjusted tensor-border a to bi-4 form

The adjusted tensor-border consists of two C2-connected pieces
ȧ and ä of degree 4 and depth 2 (see Fig. 10(b)). While the
adjustment at q is analogous to the bi-5 construction, the same
strategy of setting parameters ν

ij
rs did not lead to quality surfaces.

Instead, we make the bi-4 surfaces inherit the adjusted tensor-
border from the bi-5 construction as follows.
(i) As in (10), for j = 1, 2 we set the BB-coefficients ȧij (ä0j = ȧ4j)
of degree 4 to

ä2j :=

3
r=1

2
s=0

ν2j
rsbrs, ä4j :=

2
s=0

ν
4j
3sb3s. (20)

ν41
32 := 0, ν41

31 :=
1
2
ν42
31 + ν42

32 ;

ν21
r2 := 0, ν21

r1 :=
1
2
ν22
r1 + ν22

r2 , r = 1, 2, 3;

ν21
20 :=

1
2

− ν21
21 , ν21

10 :=
1
2

− ν21
11 .

Then the layers ä2j, ä4j, j = 0, 1, 2, together with the
assignments of (S3) guarantee C2 continuity at points of type
r analogous to the Observation in the bi-5 construction. For
n = 5, 6, 7, 8, 9, 10 the remaining equation of the system (17)
holds if

ν22
10 := τn −

1
2
ν22
20 + τ̄n(ν

22
21 + 2ν22

22 + 2ν22
11 + 4ν22

12 ), (21)

where τn, τ̄n are listed in Appendix B.
(ii) To determine the remaining free coefficients ν

2j
rs , ν

4j
3s, we

split the adjusted bi-5 tensor-border into halves, express the
second-order expansion at q in bi-4 form in terms of the
original border coefficients bij and compare this expansion to
the expansion of ä at q in terms of bij. For valences n = 9, 10,
we set the free ν

2j
rs , ν

4j
3s to

ν ij,n
rs := ν ij,7

rs +
ν
ij,8
rs − ν

ij,7
rs

c8 − c7
(cn − c7), cn := cos

2π
n

.

(iii) The bi-4 second-order BB-form coefficients ȧij, i, j ∈ {0, 1, 2}
at rmatch the bi-4 expansion of the split and adjusted tensor-
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(a) Rotationally-symmetric
indexing.

(b) Sector-symmetric
indexing.

Fig. 9. Green: adjusted tensor-border a. The extraordinary point has index 00 in
both (a) and (b) and subscript 40 corresponds to q. The locally independent (free)
BB-coefficients are marked by black and red disks, black and cyan circled crosses
and the black squares. Thick-drawn gray layers are determined by adjacent layers
and C2 continuity. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

(a) Adjusted tensor-border a of a bi-5
patch.

(b) Transformation to bi-4 form.

Fig. 10. The indices of (a) the adjusted tensor-border a of the bi-5 patch and (b) its
transformation to two bi-4 pieces ȧ, ä.

border b. Then we set

ȧ4j := −
1
4
(ȧ1j + ä3j) +

3
4
(ȧ2j + ä2j),

ä0j := ȧ4j, j = 0, 1, 2,

and fix the remaining BB coefficients ȧ3j, ä1j to join C2 the
pieces ȧ and ä (One may check that ȧ and ä are then C3-
connected). Their combined boundary is the boundary of b,
degree-raised and split into two pieces.

4.3. Algorithm and implementation

Algorithm bi-4
Input: a local MSV mesh, consisting of the 2-link of one
extraordinary node with n neighbors (Figs. 3(a), 7).
Output: a surface cap consisting of 4n polynomial patches of
degree bi-4. The cap is internally G2 and is C2-connected to its
neighbor caps.

1. Set the extraordinary point p00 = po,k
00 for all k to the limit point

of Catmull–Clark subdivision.
2. Set the tensor-border of p to the adjusted pieces ȧ, ä of (20).
3. By P := {po,0

ij , po,0
22 , po,k

24 , po,k
44 }, 1 ≤ i + j ≤ 2, k = 0, . . . , n − 1,

denote the set of 6+2n unconstrained BB-coefficients plus po,0
21

if n = 6. (po,k−1
24 = p̀42; and po,k

44 is the point shared by all four
pieces of the 2 × 2 split). Express all remaining BB-coefficients
in terms of P and ȧ, ä to resolve all smoothness constraints
including the interior C2 join of the 2 × 2-split patches.

4. Determine P by minimizing, over all bi-4 patches, the
functional F4 for n = 5, 6 and F3 for n = 7, 8, 9, 10.

The implementation is analogous to that of the bi-5 construction.
(a) MSV mesh, n = 5. (b) 5-sided caps and
their BB-nets.

(c) Highlight lines.

(d) MSV mesh, n = 5. (e) Scaffold surface. (f) Gauss curvature.

(g) MSV mesh, n = 6. (h) 6-sided caps. (i) Mean curvature.

(j) n = 8, genus 9.

(k) n = 6, genus 9.

(l) n = 6, genus 17.

Fig. 11. Design with MSV meshes. (top two rows) Valence 5 allows designing
surfaces of genus 2. (g) is the sibling of Fig. 8(a) but using half the number of
extraordinary nodes due to the different valence.

4.4. Bi-4 examples

Although the connectivity of MSV meshes is severely restricted
they yield a range of surfaces of genus greater than one that
have good highlight lines thanks to the carefully set parameters.
Fig. 11 illustrates this claim for valence n = 5 and genus 2 and
valence n = 6 and genus 4 surfaces. Subsequent examples and
Fig. 12 make the point that, even though structurally constrained,
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(a) Mesh and surface of genus 11, extraordinary nodes of valence 8.

(b) Genus 11, valence 8.

(c) Surface of genus 10, extraordinary nodes of valence 6.

(d) Genus 10, valence 6.

Fig. 12. Bi-4 surfaces fromMSVmeshes. (left)MSVmeshes. (right) scaffold surfaces
with (a) coloredneighborhoods, (c) Gauss curvature shading, (d) highlight lines. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

(a) Surface of genus 7, extraordinary nodes of valence 7.

(b) Genus 11, valence 9.

Fig. 13. Bi-4 surfaces, esoteric valences.
MSV meshes allow for a range of free-form shapes. Often higher
valence can be replaced by a more complex arrangement of lower
n neighborhoods for increased flexibility. Fig. 11(k) was initially
modeled using valence 8 (cf. Fig. 11(j)) then redesigned with twice
the number of (valence 6) neighborhoods. The ‘platonic’ scaffold
surfaces of Fig. 19 naturally include valence n = 10 and shows that
high valences can be dealtwith by theAlgorithm (as also illustrated
by the esoteric valences and H.R. Giger-style designs of Fig. 13).

5. Sphere-like surfaces

So far, we focused on the most common valencies n =

5, 6, 7, 8, 9, 10 since, for the bulk of scaffold surfaces no other
valencies are required. Valence n = 3 does not seem relevant
for scaffold surfaces. MSV meshes with nodes of valence 3 model
a once-refined cube, hence genus 0 sphere-like surfaces. Since,
anyhow, the earlier construction does not directly transfer to the
case n = 3, we prefer to present a separate new class of free-
form surfaces based on meshes with polar structure. The resulting
sphere-like surfaces do not require minimality, yet are curvature
continuous and of degree only bi-4.

Polar meshes consist of meridians through the pole(s) and
periodic (latitudinal) parallels, see Fig. 14(a). Except for the poles,
all nodes have valence 4, making them single-valence but not
necessarily minimal. Minimality would require that poles are
separated by exactly one parallel as in Fig. 14(b). It is convenient
to treat the polar meshes combinatorially as quad meshes (see
Fig. 14(c)) with, at the irregularity, one edge collapsed to form
the pole (Fig. 14(d)). Interpreting the quad mesh as a bicubic B-
spline control net, and converting to BB-form yields a polar tensor-
border b of degree 3 and depth 2 that serves as Hermite data for
constructing the cap (Fig. 14(d)).

We construct polar surfaces whose patches join C2 across
parallels and whose parallels join G2. We recall that two curve
segments f : [0, 1] → R and g : [0, 1] → R join G1 at a common
point f (1) = g(0) if for some scalar β > 0g ′(0) = βf ′(1) and G2 if
additionally there exists γ ∈ R so that g ′′(0) = β2f ′′(1) + γ f ′(1).

The polar capping surfaces are based on a polar parameteriza-
tion ρ of the domain. The map ρ is quadratic in the u-direction
along parallels and linear in meridian v-direction (see Fig. 15(a)).
The first sector ρ1 of ρ is defined as

ρ1 := vr(u), r(u) :=

2
i=0

riB2
i (u), α :=

2π
n

, (22)

r0 := (1, 0), r1 :=

1, tan

α

2


, r2 := (cosα, sinα).

The other sectors are copies of ρ1 rotated by multiples of α. By
construction, ρ is C1, i.e. β = 1, and, due to symmetry, G2 with
γ := 2(cosα − 1).

The map ρ can be made more flexible by splitting r(u) as
illustrated in Fig. 15(b), (c). Splitting then yields new continuity
parameters βi, γi between the pieces. When the ratio between two
pieces is e : d then at the new splitting point βnew

:=
d
e , γ

new
:= 0

(see Fig. 15(c), top) and, at the original junction βnew
:=

d
eβ

old,

γ new
:=

d2
e γ old (Fig. 15(c), bottom).

The steps of the construction of polar caps are as follows.

Algorithm polar bi-4
Input: a polar mesh, consisting of the 2-link of one
extraordinary node with n neighbors (Fig. 14(d)).
Output: a surface cap consisting of n polynomial patches of
degree bi-4. The cap is singular at the star point, internally G2

and C2 connected across parallels.
(P1) Express the composition q ◦ ρ of ρ with q, a (still undefined)

quadratic expansion at the origin (0, 0), in BB-form of degree
4 along parallels and 3 along meridians (see Fig. 16(a)).
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(a) n = 8 pole. (b) Minimal polar mesh.

(c) Combinatorial 2-link. (d) Geometric 2-link. (e) Tensor-border.

Fig. 14. Polar structure. Polar meshes with (a) three parallels, (b) one parallel. (c) Combinatorial quad structure; (d) geometric structure with triangular faces; (e) Polar
tensor-border b of degree 3 and depth 2.
(a) ρ. (b) ρ partitioned.

(c) Computing β and γ .

Fig. 15. Polar parameterization (a) uniform G2 piecewise quadratic construction
in the periodic direction and linear in the meridian direction. (b) Splitting uniform
sectors into multiple pieces. (c) Two cases for calculation of β and γ from the ratio
e : d after a splitting point has been added. top: at new point (where intervals e and
d meet) bottom: at the original junction point.

(P2) Fix the six coefficients of q per coordinate by minimizing the
sum of distances between corresponding control points of
the composition that are circled in Fig. 16(a) and the control
points of the tensor-border b indicated as circles in Fig. 16(b).

(P3) Interpolate the red andblue jetsmatchedbypatches of degree
5 along the meridians (and degree 4 along the parallels). This
yields patches of degree 4, 5 with one edge collapsed to form
the pole.

(P4) Decrease the degree along the meridian from 5 (BB-
coefficients shown in Fig. 16(d), top), by splitting along the
v-direction into either
– two C3-connected pieces of degree 4 (Fig. 16(e),middle); or
– into three C2-connected pieces of degree 3 (Fig. 16(e),

bottom).

The bi-44 and bi-43 caps are nearly indistinguishable visually,
via highlights or under curvature shading. The patches constructed
in (P3) are C2 connected to the input tensor-border b and
G2 connected in the periodic direction of parallels and, as a
composition of a G2 and a C∞ map, they join with curvature
(a) q ◦ ρ. (b) Tensor-border b.

(c) Cap of degree 4, 5. (d) Cap of degree bi-4.

(e) Masks for meridian degree reduction.

Fig. 16. Polar cap. (e) (middle) The degree 5 layer is split into two. The red and
blue expansions are expressed in BB-form of degree 4. The mask defines the circled
common point of degree 4 pieces (cf. Section 4.2(iii)). (bottom) The degree 5 layer
is split into three. The red and blue expansions are expressed in BB-form of degree
3. The mask defines the left circled common point of the degree 3 pieces (the right
circled point is defined by symmetry). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

continuity at a pole. Step (P4) does not change the curvature
continuity established in (P3).

Comparison. Unlike minimal scaffold surfaces for valence n =

3, polar surfaces do not need to beminimal to attain the lowdegree
bi-4. Compared to [18], geometric continuity, specifically replacing
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(a) n = 6 polar
MSV mesh.

(b) Structure. (c) Highlight across
pole (top).

(d) Polar MSV mesh. (e) Highlight shading.

(f) Polar drill bit (with cap (d)).

(g) Polar art.

Fig. 17. G2 polar surfaces of degree bi-4, genus 0. Top row: (b) shows the BB-
coefficients and (c) highlight shading looking down onto the pole.

a cubic C2 r by a quadratic G2 r, allows for lower degree of the
parallels (4 vs. 6) – while the partitioning as in Fig. 15(b) provides
flexibility for feature design. The lower degree comes at a cost: all
parallels need to share the same G2 reparameterization. However,
for sphere-like surfaces this is not a major concern: it neither
adds to the complexity of the construction nor stifles design (see
Fig. 17(f), (g)). The rational bi-3 polar G2 caps of [19] can model
exact sphere caps, but generically have poorer shape.

6. Conclusion

We introduced a special class of curvature continuous surfaces
of low and likely least polynomial degree and few(est) number
of pieces for the special class of MSV meshes. MSV meshes occur
in nature and engineering practice alike. We focused on the main
cases, MSV meshes with valence 5, 6 or 8 but also covered more
esoteric valences. Valence 3 requires special consideration. Since
the result would be sphere-like surfaces, we opted to instead
(a) MSV mesh and curvature continuous surface.

(b) Structure (local 2 × 2 split, n = 6 neighborhoods).

(c) Shape (highlight lines, Gauss curvature).

Fig. 18. Carbon nano structure as MSV mesh and scaffold surface.

use a more flexible polar construction. Our curvature continuous
polar surfaces of degree bi-4 have a simple derivation. Their key
structure is the quadratic expansion at the pole. Together, the
two families offer a structurally simple solution to the modeling
of a common but special class of shapes. Curvature and highlight
shading show the bi-4 scaffold surfaces to have shape at least
as good as the state-of-the-art methods of Table 1 and typically
indistinguishable from [10].
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Appendix A

Here and in Appendix B, c := cos(2π/n).

p̀40 :=
1
4
(3p̀20 − p̀10 + 3p̀

20
− p̀

30
),

p̀41 :=
3
4
p̀21 −

1
4
p̀11 −

c

32
(p̀00 − 4p̀10 + 4p̀20) +

12 − c

16
p̀
20
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Fig. 19. (row 1–5) Platonic MSV meshes and bi-4 scaffold surfaces with n = 6, 6, 8, 6, 10 from top to bottom. (row 6) chopped tetrahedron, n = 6.
+
3c − 8
32

p̀
30

+
9(p̀

22
− ṕ

22
)

16(3 − c)

−
(3 + 2c)(6(p̀

32
− ṕ

32
) − c(p̀

42
− ṕ

42
))

16(3 − c)(6 − c)
,

ṕ42 := p̀42 +
c

8
p̀00 + p̀11 +

c2 − 2c − 4
4

p̀10 + (
2c
3

− 3)p̀21

+
18 − 4c − c2

6
p̀20 +

c(9 − 2c)(2p̀
20

− p̀
30

)

24
+
(9 + 2c)(p̀

22
− ṕ

22
)

4(c − 3)

+
(9 + 6c + 2c2)(6(p̀

32
− ṕ

32
) − c(p̀

42
− ṕ

42
))

12(3 − c)(6 − c)
.

The formula for ṕ41 is obtained from that for p̀41 by exchanging, for

j = 1, 2, p̀ij ↔ ṕij and p̀
ij

↔ ṕ
ij
.
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Appendix B

The weights τ in the computation of ν22
10 are as follows.

n τn τ̄n
5 89−299c

16(41−136c)
44c−13

4(41−136c)

6 7
32 −

7
44

7 1935+5800c−12872c2

64(226+667c−1554c2)
−71−215c+462c2

4(226+667c−1554c2)

8 35+6c
32(6−c)

c+3
4(c−6)

9 797−5170c+3332c2

64(86−577c+470c2)
−

31−197c+106c2

4(86−577c+470c2)

10 24677+79880c
32(3239+10486c)

−2377−7694c
4(3239+10486c)
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