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a b s t r a c t

When drilling circular holes into metal circular pipes, burr is generated at the hole entrance as well as at
the hole exit. The burrs generated at the edge curves associated with the outer and inner pipe surfaces
must be removed by constant chamfering. Geometrically, the two edge curves can be defined as cylinder-
to-pipe intersection curves. In this paper, we employ differential geometric properties of the surface-to-
surface intersection curves in order to generate an interference-free tool path with constant chamfering
for a ball-end cutter. We demonstrate the effectiveness of our method by conducting experiments with
physical pipe models.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Burr is formed as a result of the undesirable plastic flow of
metals through variousmachining operations applied to tasks such
as grinding, drilling, milling, engraving, and turning [1]. Burr may
cause injury to workers during the assembly process, and may
trigger severe problems in high-speed equipment, fluid-power
systems, food processing, etc. [1]. Therefore, deburring must be
included in the finishing process not only to remove the unwanted
burr, but also to ensure uniform chamfering at the produced edges
for aesthetic purposes. It is also known that constant chamfering
can greatly improve the performance and lifetime of products [1].
Unfortunately, the most common burr removal process currently
employed in manufacturing plants is hand deburring using hand-
held deburring tools, which is time consuming [1]. Furthermore,
there is no chamfer on the curved edge. According to Gillespie [2],
for precision parts, edge finishing frequently constitutes 30%
of the overall cost. Liao et al. [3] proposed the modeling and
control of an automated polishing/deburring process that utilizes
a dual-purpose compliant toolhead. However, the problem of tools
interferingwithworkwas not discussed. Song and Song [4] studied
a tool path modification method using an iterative closest point
(ICP) based contour matching algorithm to enable the robotic
deburring process to compensate for the position/orientation

∗ Corresponding author. Tel.: +81 45 339 3930.
E-mail address: maekawa@ynu.ac.jp (T. Maekawa).

http://dx.doi.org/10.1016/j.cad.2016.04.008
0010-4485/© 2016 Elsevier Ltd. All rights reserved.
errors of the workpiece when it is placed in a jig. The proposed
method was implemented on a six degree of freedom (DOF)
articulated manipulator with force control strategies and a virtual
wall to perform the robotic deburring. However, the quality of the
deburring was not discussed.

In this paper, we introduce an interference-free automatic
tool path generation method for a ball-end cutter with constant
chamfering to remove burrs resulting from the drilling of a
circular pipe based on the differential geometry of cylinder-to-pipe
intersection curves. As shown in Fig. 2(a), the resulting intersection
curve is a space curve, which looks like the curved edge of a potato
chip. We assume that the drilling operation is perpendicular to the
pipe without eccentricity, and a tool consists of a ball-end cutter
and a circular rod, which must not interfere with the pipe, with
the exception of the cutter contact point, while deburring.

The remaining part of this paper is organized as follows. In
Section 2, we present the differential geometry of the cylinder-
to-pipe intersection curves. The tool path generation for the
deburring process is discussed in Section 3. In Section 4, we study
cutter interference avoidance. In Section 5, we demonstrate the
effectiveness of our method by conducting experiments using
physical pipe models. Finally, we conclude the paper in Section 6.

2. Differential geometry of cylinder-to-pipe intersection curves

We first introduce several notations and definitions. Bold letters
such as t, C(θ) denote vectors and vector functions. Equivalently,
(a, b, c) and (a(θ), b(θ), c(θ)) denote vectors and vector
functions, respectively. The dot Ċ(θ) denotes the differentiation of
C(θ) with respect to the parameter θ .
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Fig. 1. (a) A drill (cylinder) intersects a circular pipe orthogonally without
eccentricity. (b) Four intersection curves.
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Fig. 2. Cylinder-to-pipe intersection: (a) Frenet frame along the intersection curve.
The intersection curve looks like the edge of a potato chip. (b) The hole surface
spanned by the two intersection curves is a ruled surface.

2.1. Cylinder-to-pipe intersection curve

Let us define a mathematical description of the geometry,
which is illustrated in Fig. 1(a). In this paper, we consider the
geometry of a cylinder-to-pipe intersection where a circular
pipe consisting of outer and inner surfaces with thickness t are
intersected orthogonallywithout eccentricity by a circular cylinder
representing a drill. In other words, the center lines of the pipe and
drill intersect orthogonally.We assume that the drill is represented
by a cylinder having a radius r , and its centerline coincideswith the
z-axis. It can be expressed by a parametric form:

D(θ, z) = (r cos θ, r sin θ, z), (1)

where θ is the parameter within 0 ≤ θ ≤ 2π . We take the center
line of the outer pipe surface, which is coincident with the y-axis,
having a radius R, and represent it by an implicit form:

x2 + z2 = R2. (2)

Similarly, the inner pipe surface is given by

x2 + z2 = RI
2, (3)

where RI = R−t is the radius of inner pipe surface and t is the pipe
thickness. We can obtain the intersection curves CO(θ) between
the drill surface and the outer pipe surface by substituting the
vector components of (1) into (2), and solving for z, which yields a
parametric representation of the intersection curve [5,6]:

CO(θ) =


r cos θ, r sin θ, ±


R2 − r2 cos2 θ


, (4)

where the plus sign corresponds to the upper intersection curve,
while the minus sign corresponds to the lower intersection
curve (see Fig. 1(b)). In this paper, we only consider the upper
intersection curve (plus sign), as the minus sign can be obtained in
the samemanner. Similarly, we have two intersection curves CI(θ)
for the inner pipe surface:

CI(θ) =


r cos θ, r sin θ, ±


RI

2
− r2 cos2 θ


, (5)
Fig. 3. Ball-end cutter: (a) Geometry. (b) Classification of the ball-end cutter
surface.

where we only consider the upper intersection curve (plus sign)
(see Fig. 1(b)). To simplify the notation, we drop the subscripts
O, I from C throughout the rest of the paper, except when stated
otherwise.

2.2. Differential geometry of intersection curve

The unit tangent t, binormal b, and normal n vectors of the
intersection curve C(θ) (see Fig. 2(a)) can be obtained as

t =
Ċ(θ)

|Ċ(θ)|
, (6)

b =
Ċ(θ) × C̈(θ)

|Ċ(θ) × C̈(θ)|
, (7)

n = b × t. (8)
The curvature of the intersection curve is given by

κ =
|Ċ(θ) × C̈(θ)|

|Ċ(θ)|3
, (9)

and the curvature vector k is obtained as
k = κn. (10)

3. Tool path generation

3.1. Hole surface

The hole surface H(θ, τ ) (see Fig. 2(b)) is a ruled surface
bounded by two intersection curves CI(θ) and CO(θ), and is defined
as follows:
H(θ, τ ) = (1 − τ)CI(θ) + τCO(θ). (11)
The unit normal vector of the hole surface NH is simply a unit
normal of a cross-sectional circle of the cylinder representing the
drill, and it is given by
NH = (cos θ, sin θ, 0) . (12)

3.2. Ball-end cutter

The deburring cutter consists of double-start knife edges
wrapped around a sphere of diameter 2RB in the form of a right-
handed helix with a lead angle 15°, and it is connected to a rod of
diameter 2Rod, as illustrated in Fig. 3(a). The knife edge of the cutter
is limited to the angle 360°− 2β , as depicted in Fig. 3(a). The non-
cutting surface consists of the non-knife and cutter rod surfaces, as
illustrated in Fig. 3(b). The ball-end cutter is attached to a compact
machining center (DMG Mori Seiki MILLTAP 700) that is equipped
with a vertical 3-axis milling.
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Fig. 4. Global cutter interference: (a) Ideal path with curvature plot in black. (b) Interference while deburring CI , where the red portion indicates the interference regions.
(c) Interference while deburring CO , where the red portion indicates the interference regions. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 5. (a) Unit tangent vector tI1 of the intersection curve between plane T and the hole surface. (b) Unit tangent vector tI2 of the intersection curve between plane T and
the pipe inner surface. (c) The unit vector e pointing from the center of the cutter to the cutter contact point.
3.3. Cutter location

The cutter location is defined as the coordinates of the center of
the ball-end cutter. Ideally, it should be along the offset curve of the
intersection curve C(θ)with an offset distance RB [7,8] considering
initially the case of zerowidth chamfering, as illustrated in Fig. 4(a).
However, the ball-end cutter collides with the hole surface when
deburring the inner/outer intersection curve CI/CO, if the vector
from the cutter contact point to the center of the ball-end cutter
has a positive/negative z component respectively, as illustrated in
Fig. 4(b)/(c), respectively. In the rest of the paper, we only consider
the case for the inner intersection curve as the outer intersection
curve case is similar. In order to avoid such collisions, we attempt
to set the cutter location on the normal plane T (similar to the
offset curve), which is orthogonal to the tangent vector t of the
intersection curve at the reference point xp = CI(θ) (see Fig. 5).
The equation for plane T is given by:

ax + by + cz + d = 0, (13)

where (a, b, c) = t and d = −t ·xp. Let us define the unit tangent
vector tI1 (see Fig. 5(a)) of the intersection curve between plane T
and the hole surface (11) as follows:

tI1 = NH × t. (14)

We also define the unit tangent vector tI2 (see Fig. 5(b)) of the
intersection curve between the inner pipe surface and plane T as
follows:

tI2 = t × NP , (15)

where NP is a unit normal vector of the inner pipe surface, and can
be obtained using the implicit expression of the inner pipe surface
fP(x, y, z) = x2 + z2 − RI

2
= 0 leading to

NP =
∇fP
|∇fP |

=


x

√
x2 + z2

, 0,
z

√
x2 + z2


. (16)
Substituting the parametric expression (5) into (16) yields

NP =


r cos θ

RI
, 0,


RI

2
− r2 cos2 θ

RI


. (17)

Because our goal is to generate the constant chamferingwithout
any interference, it is natural to set the cutter location along the
bisection vector of tI1 and tI2, as shown in Fig. 6(a). Therefore,
the unit vector pointing from the center of the cutter towards the
cutter contact point (see Fig. 5(c)) is given by:

e =
tI1 + αtI2
|tI1 + αtI2|

. (18)

We refer to the unit vector −e as the cutter vector. When α =

1, e is a bisector of an angle spanned by tI1 and tI2 (see Fig. 6(a)).
In general, α is set to be equal to 1; however, in some situations, α
is adjusted to avoid cutter rod interference (see Section 4.2). If we
denote the feed of the tool towards the pipe as δ, the cutter location
CL(θ) = (xCL(θ), yCL(θ), zCL(θ)) is given by

CL(θ) = xp − (RB − δ)e, (19)

as shown in Fig. 6(a), and hence the equation of the ball-end cutter,
which is represented as a sphere, can be expressed as:

|x − CL(θ)|2 = RB
2, (20)

where x = (x, y, z). As illustrated in Fig. 6(b), the chamfering
width W can be defined as the line between points A and B. Point
A can be obtained as an intersection point between the straight line
emanating from xp along the vector tI1:

r1(ζ ) = xp + ζ tI1, (21)

and the sphere (20). Substituting r1(ζ ) into x of (20) results in the
following quadratic equation:

ζ 2
+ 2(RB − δ)e · tI1ζ + δ2

− 2δRB = 0, (22)
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Fig. 6. Chamfering width W : (a) Bisection of tI1 and tI2(α = 1). (b) Cross section of the chamfering when α ≠ 1. (c) Three orbits of point A, point B, and xp , and close-up
view.
Fig. 7. Solution of Newton’s method. (a) Meaningful solution. (b) Unwanted
solution.

where the meaningful solution is

ζ = −(RB − δ)e · tI1 +


(RB − δ)2(e · tI1)2 − (δ2 − 2δRB). (23)

Similarly, point B can be obtained as an intersection point
between the line along tI2:

r2(η) = xp + ηtI2, (24)

and the sphere. The meaningful solution is

η = −(RB − δ)e · tI2 +


(RB − δ)2(e · tI2)2 − (δ2 − 2δRB). (25)

Because ζ and η are both functions of δ, the chamfering width W
can be expressed as a function of δ:

W (δ) = |r1(ζ (δ)) − r2(η(δ))|. (26)

Thus, given the chamfering width W , the feed of the tool δ can be
obtained by finding the root for

G(δ) = |r1(ζ (δ)) − r2(η(δ))|2 − W 2
= 0. (27)

We employed Newton’s method to find the root of (27), where
we used a small positive number δ = W/4 for the initial value.
Starting with this initial value, Newton’s method converges to
the correct solution (see Fig. 7(a)), whereas with a negative small
number, it generally converges to the unwanted solution (see
Fig. 7(b)). If we use the initial values with a large magnitude, the
solution generally diverges.

Fig. 6(c) depicts the three orbits of point A, point B and xp. We
can observe that AB is constant and the line segments Axp and Bxp
are of equal length (see Fig. 6(a)). In other words, the cutter vector
divides the cross section of the machined surface into two equi-
length circular arcs.
Fig. 8. Chordal deviation of the approximated line segment: (a) Initial equi-length
line segments (e.g., number of line segments: 12). (b) Line segments are subdivided
if the chordal deviation is not within the tolerance.

3.4. Generation of line segments

The procedure begins with approximating the intersection
curve C(θ) by a set of equi-length line segments (see Fig. 8(a)). The
maximum chordal deviation is calculated for each line segment,
and if the deviation is greater than the prescribed tolerance,
the curve is subdivided until the chordal deviation is within the
tolerance ϵ [9].

Because the intersection curve is not arc length parametrized,
points of the curve obtained at parameter values θ0, θ1, . . . , θN
corresponding to a uniform increment ∆θ = θk − θk−1 will not
be evenly distributed along the curve. If we denote the arc length
of the intersection curve as s, then the parametric speed of the
curve, which is the rate of change of its length s with respect to
the parameter θ , is given as v =

ds
dθ = |Ċ(θ)|. The total length of

the intersection curve L is evaluated as:

L =

 2π

0
ds =

 2π

0

ds
dθ

dθ =

 2π

0
|Ċ(θ)|dθ. (28)

If we divide the total arc length L by N segments, the length of the
divided curve segment ∆s is given by

∆s =
L
N

. (29)

We want to find the parameter θk such that

k∆s =

 θk

0
|Ċ(θ)|dθ. (30)

If we rewrite (30) as

f (θk) =

 θk

0
|Ċ(θ)|dθ − k∆s = 0, (31)
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Fig. 9. The condition RB ≤ 1/|ke(θ)| is satisfied; therefore, there is no local
interference.

our task is to find the root of f (θk) = 0 [10,11]. We use the
Gauss–Legendre n-point quadrature formula [12] to evaluate the
integral in (31). The root can be obtained using Newton’s method
as:

θ
(n)
k = θ

(n−1)
k −

f (θ (n−1)
k )

ḟ (θ (n−1)
k )

, (32)

where the superscript (n) denotes the nth iteration, and

ḟ (θ (n−1)
k ) = |Ċ(θ (n−1)

k )| = v(θ
(n−1)
k ). (33)

We approximate the deviation λ by the distance between point
C


θk+θk+1
2


and the line segment connecting C(θk) and C(θk+1), as

shown in Fig. 8(b). This leads us to

λ =

|(C(θk+1) − C(θk)) × (C


θk+θk+1
2


− C(θk))|

|C(θk+1) − C(θk)|
. (34)

If the deviation of the linear segment to the curve segment is not
within the prescribed tolerance ϵ, we add point C


θk+θk+1

2


as a

new reference point and split the curve segment into two line
segments. The number of initial line segments is typically N =

60, and hence, the intervals between them are small. Accordingly,
there is no significant difference ifwe take theparametricmidpoint
or arc length midpoint for adding the new reference points.
Therefore, we choose the parametric midpoint for simplicity.

4. Cutter interference avoidance

There are two types of cutter interference, namely, the ball-
end cutter interference and the non-cutting surface interference.
The ball-end cutter interference can be further divided into a local
interference, where the radius of the ball exceeds the local radius
of curvature along the path, and the global interference, where
the ball-end cutter interferes with the hole surface because of the
global distance between them.

4.1. Ball-end cutter interference

4.1.1. Local interference
As shown in Fig. 4(a), ideally, it is best to locate the center of

the ball-end cutter along the curvature vector of the intersection
curve. In such cases, the condition required to avoid local cutter
interference is:

RB ≤
1

κ(θ)
, (0 ≤ θ ≤ 2π). (35)

However, in real operations, the center of the cutter is located
along the cutter vector −e, as discussed in Section 3.3. Therefore,
Fig. 10. Cutter rod interference. Figures in the left-hand side column are the cases
where the non-knife surface of the cutter makes contact with the hole surface (case
(i)), while those in the right-hand side column are the cases where the cutter rod
touches the hole surface (case (ii)): (a) Top view. (b) Front view of (a). (c) Top view.
(d) Front view of (c).

as shown in Fig. 9, the condition to avoid local cutter interference
becomes:

RB ≤
1

|ke(θ)|
, (0 ≤ θ ≤ 2π), (36)

where

ke(θ) = [k(θ) · (−e(θ))][−e(θ)]. (37)

4.1.2. Global interference
As illustrated in Fig. 4(b), the ball-end cutter interferes with the

hole surface when deburring CI(θ), if the cutter vector −e has a
positive z-component. In order to avoid global cutter interference,
we must keep the z-component of the cutter vector as −ez ≤ 0.
Below, we prove that if α = 1 in (18), then −ez ≤ 0 for any θ .

Proof. Because the z-component of tI1 and tI2 are given by

tI1z =


RI

2
− r2 cos2 θ

RI
2
− r2 cos4 θ

, (38)

tI2z =
−r cos2 θ


RI

2
− r2 cos2 θ

RI


RI

2
− r2 cos4 θ

, (39)

the z-component of tI1 + αtI2, ēz becomes

ēz =


RI

2
− r2 cos2 θ

RI
2
− r2 cos4 θ


1 − α

r
RI

cos2 θ


. (40)

As RI ≤ r , it is easy to find that−ēz ≤ 0 for any θ when α = 1, and
hence −ez ≤ 0. This completes the proof. In case the avoidance of
the cutter rod interference is applied, α is not equal to 1. In such
cases, α must satisfy

α ≤
RI

r cos2 θ
. (41)

4.2. Non-cutting surface interference

As illustrated in Fig. 3, the non-cutting surface consists of
the non-knife and cutter rod surfaces. Fig. 10(a) and (b) show
case (i) where the non-knife surface (see Fig. 3) of the cutter
contacts the hole surfaceH(θ, τ ), while Fig. 10(c) and (d) illustrate
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Fig. 11. (a) Determination of α to avoid cutter rod interference. (b) Close-up view
of (a). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

case (ii) where the cutter rod touches the hole surface during
the deburring operation. We can treat both cases in a similar
manner by considering the non-knife surface of the ball-end cutter
as a part of the cutter rod. In other words, it is equivalent to
checking interference using a cutterwith a larger rod diameter that
encompasses the non-cutting region of the ball-end cutter.

Let us define a cylinder (red in Fig. 10) generated by revolving
the center line of the cutter rod around the center line of the drill,
which defines a non-cutting surface interference-free region. If we
denote the radius of the cylinder as RR, where RR = r − RB sinβ
for case (i), or RR = r − Rod for case (ii), then the cylinder can be
expressed as:

R(θ, z) = (RR cos θ, RR sin θ, z). (42)

To avoid the interference, we adjust α so that the center of the
cutter rod axis must stay within the cylinder (42). In other words,
the limit cutter location point must be on the intersection curve
(red curve in Fig. 11) between the plane (13) and the red cylinder.
Therefore, we have:

aRR cos θ + bRR sin θ + cz + d = 0. (43)

In general, the plane is not parallel to the z-aix, thus c ≠ 0, and
hence the intersection curve between the plane and cylinder can
be obtained as:

CR(θ) =


RR cos θ, RR sin θ, −

aRR cos θ + bRR sin θ + d
c


. (44)

Alternatively, we could set α = 1 and adjust the chamfering
width such that the non-cutting surface does not interferewith the
pipe surface. However, it may not produce the desired chamfering
width.

In the following, we study how to adjust α so that the center
of the cutter rod axis stays within the cylinder (42) to avoid cutter
rod interference. The algorithm is described in Algorithm 1. First,
we set the initial value for α in (18), where we typically use α = 1,
then the line equation along e will be

l(u) = xp + ue, (45)

where u is a parameter. There are two intersection points between
the line (45) and the closed intersection curve (44) where the
intersection point closer to xp is the meaningful solution xR (see
Fig. 11(b)), and the further one is the unwanted solution. The
intersection problemcan be formulated as a vector equation l(u) =

CR(θ) with two unknowns u and θ (see Fig. 11). The system of
equations is overdetermined. Therefore, we first solve the first two
equations using Newton’s method and select the solution u and
θ which satisfy the third. If the correction for Newton’s method
is large, it is an indication that the problem is highly nonlinear.
In such a case, we multiply the correction by a step correction
Fig. 12. (a) Degenerate case (θ = π/2, 3π/2). (b) Close-up view of (a).

factor µ, where 0 < µ < 1. We typically use µ = 0.2.
The initial values for u and θ are set equal to u = r − RR and
θ of xp = CI(θ), respectively. Since the angle difference along
the intersection curve between the meaningful solution and the
unwanted solution is about π , it is unlikely to converge to the
unwanted solution as long as we use the above initial values
together with the damped Newton’s method. If we denote the
intersection point as xR(α) = (xR(α), yR(α), zR(α)), which
depends on α, the following condition must be satisfied in order
to avoid the cutter rod interference (see Fig. 11(b)):

F(α) = (xp − xR(α))2 + (yp − yR(α))2

+ (zp − zR(α))2 − (RB − δ)2 = 0. (46)

With the initial guess of α, (46) is usually not satisfied.
Therefore, we adjust α such that |F(α)| becomes smaller than the
prescribed tolerance ϵα by employing the bisection method [12].
Note that the initial interval for the bisection method is set to
satisfy the condition (41); therefore, the solution fromEq. (46) does
not violate (41). When the tangent vector (6) is orthogonal to the
z-axis, c vanishes and the intersection curve CR(θ) degenerates to
two straight lines that are parallel to the z-axis at θ = 0, π or
θ = π/2, 3π/2 as shown in Fig. 12. Let these lines be

q(ξ) = (RR cos θ, RR sin θ, 0) + ξ(0, 0, 1). (47)

Then, the line–line intersection with (45) can be formulated as
follows:

(RR cos θ, RR sin θ, 0) + ξ(0, 0, 1)
= (xp, yp, zp) + u(ex, ey, ez). (48)

The x-component of the vector equation can be used to find u for
θ = 0 and π , while the y-component can be used to find u for
θ = π/2, 3π/2. Using this u, the intersection point is evaluated
by xR(α) = l(u). The z-component is used to verify the result by
obtaining ξ using u, and substituting into (47).

Algorithm 1 Avoidance of cutter rod interference
Input: Initial values α0, u0, θ0, and the tolerance ϵα

Output: αnew
1: αold = α0, uold = u0, θold = θ0
2: repeat
3: e = EvaluateCutterVector(αold)
4: if Intersection curve is non-degenerate (c ≠ 0) then
5: (unew, θnew) = ComputeLineEllipseIntersection(e, uold, θold)

6: else if Intersection curve is degenerate (c = 0) then
7: (unew, θnew) = ComputeLineLineIntersection(e, uold, θold)

8: end if
9: xR(αold) = EvaluateIntersectionPoint(unew, θnew)

10: αnew = UpdateByBisectionMethod(xR(αold))
11: αold = αnew, uold = unew, θold = θnew
12: until |F(αnew)| < ϵα



32 T. Sato et al. / Computer-Aided Design 78 (2016) 26–35
Fig. 13. Pipe models: (a) CAD model. (b) Aluminummodel.

Table 1
Experimental conditions.

Exp. No. 2β Cutter rod interference ϵ (mm) # of line segments

1 72° No 0.02 96
2 93° Yes 0.01 101
3 93° No 0.01 101

5. Physical experiments

In this section, we demonstrate the effectiveness of our
algorithms by applying them to aluminum pipe models. The
experimental setup is only for checking the inner intersection tool
path. All of the computations are performed on an Intel Core i7-
4770 (3.40 GHz) PC with 8 GB of RAM.

5.1. Experimental setup

Pipes are modeled as shown in Fig. 13(a) for ease of handling
and easy measurement, and their geometries are fixed for all of
the experiments. The inner diameter of the pipe model and the
diameter of the drill are chosen to be RI = 36mm and r = 26mm,
respectively. We use aluminum A5052 for the pipe specimen, as
depicted in Fig. 13(b).

The radius of the ball-end cutter is RB = 6 mm, and the rod
diameter is Rod = 3.6 mm. The chamfering width is set to W =

0.7 mm. The feed rate and the number of rotations of the cutter
are 300 mm/min and 3000 rpm, respectively.

Under these conditions, 1/|ke(θ)| (0 ≤ θ ≤ 2π) is always
larger than the radius of the ball-end cutter for α = 1 (see
Fig. 14(a)), and hence, there is no local interference, as shown in
Fig. 14(b), while Fig. 14(c) shows that −ez is always negative, and
therefore, there is no global interference.

We conduct three experiments to remove burrs generated at
the pipe hole exit (see Fig. 15(a)). The experimental conditions are
presented in Table 1. In Section 5.2, we conduct an experiment
(No. 1) where we have no cutter rod interference with α = 1. In
Section 5.3, we examine the casewhen the non-knife surface of the
cutter interferes with the hole surface using α = 1 (No. 2), while
in Section 5.4, α is adjusted in some regions so that the cutter rod
(non-knife surface) interference is avoided (No. 3).

5.2. Interference-free cutter path with α = 1 (2β = 72°)

Experiment No. 1 is the most typical experiment in pipe
deburring where there is no cutter rod interference, even with
constantα = 1 for 0 ≤ θ ≤ 2π . Fig. 15(b) shows a close-up viewof
the experimental results, which clearly shows the unwanted burrs
removed.

5.3. Non-cutting surface interference path with α = 1 (2β = 93°)

If the cutter rod interferes with the hole surface, it may damage
the milling machine; therefore, we only test interference with the
Table 2
Measurement of chamfering width.

No. Projected chamfering width based
on computation (mm)

Projected chamfering width
based on measurement (mm)

1 0.491 0.485
2 0.495 0.489
3 0.491 0.481

non-knife surface, using a special cutter that has a non-knife angle
of 2β = 93° so that the non-knife surface makes contact with
CI(θ). With α = 1 (0 ≤ θ ≤ 2π), the non-knife surface of
the cutter interferes with CI(θ), generating scars on the chamfer
surface, as shown in Fig. 16. Fig. 14(d) shows that the distance from
the center of the sphere exceeds the radius RR = r − RB sinβ =

10.824 mm.

5.4. Interference-free cutter path with α ≠ 1 (2β = 93°)

In Section 5.3, we kept α = 1 for 0 ≤ θ ≤ 2π , and this
resulted in the non-knife surface of the cutter interfering with the
intersection curve CI(θ). This left scars on the chamfer surface. To
avoid such interference, α should be adjusted based on Algorithm
1 such that the distance of the cutter location from the center line
xCL(θ)2 + yCL(θ)2 stays within the interference limit radius RR,

as shown in Fig. 14(e) and (h). Fig. 14(f) and (g) illustrate that even
with α ≠ 1 for some region of CI(θ), 1/|ke| is always larger than
the radius of the ball-end cutter and −ez is kept negative; hence,
there is no local or global interference. Although we conduct the
experiment for non-knife surface interference, it is apparent that
Algorithm 1 also works to determine the interference-free path
with the cutter rod. Fig. 17 confirms that adjusting α avoids the
non-cutting surface interference.

5.5. Accuracy of chamfering surface

The accuracy is measured by comparing the top view of
the chamfering surface taken by a digital microscope (KEYENCE
VHX-900), with that of the computing models overlaid on the
chamfered surface, as shown in Fig. 18. Table 2 compares the
projected chamferingwidth (top view) of the computationalmodel
and the measurements at three different locations. The overlaid
image in Fig. 18 and Table 2 demonstrate that the edge curve is
accurately chamfered.

5.6. Comparison with hand deburring

The computational time for the cutter path generation, constant
feed rate of the milling machine, and the time for deburring are
listed in Table 3. Because the cutter rod (non-knife surface) inter-
ference is involved in the experiment, for safety,we reduce the feed
rate to one sixth of the value used in real operations. In real oper-
ations, the feed rate is typically 1800 mm/min, and the deburring
operation takes only 2.4 s. According to Uchida [13], burrs become
larger as r/RI approaches one, and hand-held deburring tools are
required to remove burrs. Therefore, it takes about 30 s on average
to complete the finishing operations. In summary, the deburring
time is about 12 times faster than that of hand deburring, and in
terms of the chamferingwidth, the quality is much better. Further-
more, our method can significantly reduce the labor cost. Fig. 19
shows a typical result obtained for hand-held deburring, which
clearly shows that the chamferingwidth is not constant;moreover,
unwanted scars are generated by the worker.
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Fig. 14. Computational results. Figures in the left-hand side column are the results for α = 1 for (0 ≤ θ ≤ 2π), while those in the right-hand side column are the results
for α ≠ 1. From top to bottom, α distribution, local interference check, global interference check, cutter location distance from the center line


xCL(θ)2 + yCL(θ)2 .
6. Conclusion

In this paper, we introduced an interference-free automatic
tool path generation method for a ball-end cutter to remove burrs
resulting from the drilling of a circular pipe with constant chamfer
based on the differential geometry of cylinder-to-pipe intersection
curves.

The advantages of our algorithm are as follows:

• An efficient and accurate automatic collision-free tool path is
generated.

• Burrs are removed with constant chamfering. Furthermore, the
cutter vector divides the cross section of the chamfered surface
into two equi-length circular arcs.
Table 3
Experimental results.

Comp. time (s) Feed rate
(mm/min)

Deburring time
(s)

Exp. 1 0.046 300 14.3
Exp. 2 0.047 300 14.3
Exp. 3 0.062 300 14.3
Real operations 0.046 1800 2.4
Hand deburring – – 30.0

• The parameter values at the sequence of reference points are
determined such that the feedrate of the machine operates as a
function of the distance along the tool path.
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Fig. 15. (a) Burrs generated at the hole exit (3π/2 < θ < 2π). (b) The
experimental results of Exp. No. 1, which clearly show that the unwanted burrs
are removed with constant chamfering at the edge. The chamfering width does not
appear to be constant, but this is because of the view point of the image.

Fig. 16. Scars are generated on the chamfered surface.

Fig. 17. By adjusting α, non-cutting surface interference is avoided.

We provided an outline of the concept of deburring the edges
resulting from drilling a circular hole in a circular pipe. However,
there are several possibilities for extensions of our algorithm, two
of which are:

• The algorithm can be extended to automatically generate a tool
path for an inclined hole, and for a hole with eccentricity.

• The algorithm can be extended to the deburring of drilled holes
of cone pipes with constant chamfering.
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Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cad.2016.04.008.
Fig. 18. Accuracy of the chamfering surface. Top left: Computer model of
chamfering surface. Top right: Deburred aluminum model. Bottom: Chamfering
surface is precisely overlaid on the deburred aluminummodel.

Fig. 19. The result of hand deburring. Compared with Fig. 18, the quality of
chamfering is not comparable in terms of chamfer width and appearance.
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